Chapter 10: Commonly agreed life cycle sustainability assessment principles: examples in construction, challenges and feasibility
Restricted access

This chapter intends to enhance the interdisciplinary application of Life Cycle Sustainability Assessment (LCSA) and help decision-makers in all sectors and the uptake of sustainability in its three dimensions. Identified and evaluated literature reveals shortcomings in LCSA framework implementation, for example studies considering only two pillars, not being fully aligned with ISO 14040/ISO 14044, lacking interconnectedness between the three pillars, or missing interpretation and optimization approaches. Based on these challenges, global LCSA experts developed the following Ten Principles during an eight-month consensus-building process: (1) Understanding the Areas of Protection; (2) Alignment with ISO 14040; (3) Completeness; (4) Stakeholders’ perspective consideration; (5) Product utility consideration; (6) Materiality of system boundaries; (7) Consistency; (8) Transparency; (9) Explicit trade-offs communication; and (10) Caution when compensating impacts. This chapter aims to support non-experts and experts, practitioners, and scientists in increasing the applicability of LCSA by elaborating on the benefits of applying the principles, illustrating the application of them through examples in the construction sector and discussing the remaining challenges.

  • Akhanova, G., Nadeem, A., Kim, J.R., Azhar, S., 2020. A multi-criteria decision-making framework for building sustainability assessment in Kazakhstan. Sustain. Cities Soc. 52, 101842. https://doi.org/10.1016/j.scs.2019.101842.

  • Anand, C.K., Amor, B., 2017. Recent developments, future challenges and new research directions in LCA of buildings: A critical review. Renew. Sustain. Energy Rev. 67, 408–416. https://doi.org/10.1016/j.rser.2016.09.058.

  • Arroyo, P., Fuenzalida, C., Albert, A., Hallowell, M.R., 2016. Collaborating in decision making of sustainable building design: An experimental study comparing CBA and WRC methods. Energy Build. 128, 132–142. https://doi.org/10.1016/j.enbuild.2016.05.079.

  • Backes, J.G., Hinkle-Johnson, R., Traverso, M., 2023a. The influence of the functional unit on the comparability of life cycle assessments in the construction sector: A systematic literature review and attempt at unification for reinforced concrete. Case Studies in Construction Materials, e01966. https://doi.org/10.1016/j.cscm.2023.e01966.

  • Backes, J.G., Traverso, M., 2021a. Life cycle sustainability assessment – a survey based potential future development for implementation and interpretation. Sustain. 13, 13688. https://doi.org/10.3390/su132413688.

  • Backes, J.G., Traverso, M., 2021b. Life Cycle Sustainability Assessment in the Construction Sector – Actual Application and Future Outlook. Paper presented at the 10th International Conference on Life Cycle Management (LCM 2021).

  • Backes, J.G., Traverso, M., 2021c. Application of life cycle sustainability assessment in the construction sector: A systematic literature review. Processes 9, 1248. https://doi.org/10.3390/pr9071248.

  • Backes, J.G., Traverso, M., 2022. Life cycle sustainability assessment as a metrics towards SDGs Agenda 2030. Current Opinion in Green and Sustainable Chemistry, 100683. https://doi.org/10.1016/j.cogsc.2022.100683.

  • Backes, J.G., Traverso, M., Horvath, A., 2023b. Environmental assessment of a disruptive innovation: Comparative cradle-to-gate life cycle assessments of carbon-reinforced concrete building component. Int. J. Life Cycle Assess. 28, 16–37. https://doi.org/10.1007/s11367–022–02115-z.

  • Benoît-Norris, C., Vickery-Niederman, G., Valdivia, S. et al., 2011. Introducing the UNEP/SETAC methodological sheets for subcategories of social LCA. Int. J. Life Cycle Assess. 16, 682–690. https://doi.org/10.1007/s11367-011-0301-y.

  • Building Research Establishment Ltd, 2020. BREEAM. https://www.breeam.com/ (accessed 29.7.2020).

  • Choi, J., 2019. Strategy for reducing carbon dioxide emissions from maintenance and rehabilitation of highway pavement. J. Clean. Prod. 209, 88–100. https://doi.org/10.1016/j.jclepro.2018.10.226.

  • DGNB, 2021. Deutsche Gesellschaft für Nachhaltiges Bauen. https://www.dgnb.de/de/ (accessed 22.3.2021).

  • Dong, Y.H., Ng, S.T., 2016. A modeling framework to evaluate sustainability of building construction based on LCSA. Int. J. Life Cycle Assess. 21, 555–568. https://doi.org/10.1007/s11367–016–1044–6.

  • Duflou, J.R., De Moor, J., Verpoest, I., Dewulf, W., 2009. Environmental impact analysis of composite use in car manufacturing. CIRP Ann. – Manuf. Technol. 58, 9–12. https://doi.org/10.1016/j.cirp.2009.03.077.

  • Finkbeiner, M., Schau, E.M., Lehmann, A., Traverso, M., 2010. Towards life cycle sustainability assessment. Sustain. 2, 3309–3322. https://doi.org/10.3390/su2103309.

  • Gabler Wirtschaftslexikon, 2018. Pareto-Optimum. https://wirtschaftslexikon.gabler.de/definition/pareto-optimum-45936/version-269222 (accessed 21.4.23).

  • Hohmann, A., Schwab, B., Wehner, D., Albrecht, S., Ilg, R., Schüppel, D., von Reden, T., 2015. Vorstudie zur Lebenszyklusanalyse mit ökobilanzieller Bewertung relevanter Fertigungsprozessketten für CFK-Strukturen. Fraunhofer Verlag, Stuttgart.

  • Hunkeler, D., Lichtenvort, K., Rebitzer, G., 2008. Environmental Life Cycle Costing. Society of Environmental Toxicology and Chemistry (SETAC).

  • ISO 14040, 2006. Environmental management – Life cycle assessment – Principles and framework.

  • ISO 14044, 2018. Environmental management – Life cycle assessment – Requirements and guidelines.

  • Janjua, S.Y., Sarker, P.K., Biswas, W.K., 2019. A review of residential buildings’ sustainability performance using a life cycle assessment approach. J. Sustain. Res. 1, e190006. https://doi.org/10.20900/jsr20190006.

  • Kloepffer, W., 2008. Life cycle sustainability assessment of products. Int. J. Life Cycle Assess. 13, 89–95. https://doi.org/10.1065/lca2008.02.376.

  • Kortmann, J., 2020. Verfahrenstechnische Untersuchungen zur Recyclingfähigkeit von Carbonbeton. Springer Fachmedien Wiesbaden, Wiesbaden. https://doi.org/10.1007/978–3-658–30125–5.

  • Kortmann, J., Kopf, F., Hillemann, L., Jehle, P., 2018. Recycling von Carbonbeton – Aufbereitung im großtechnischen Maßstab gelungen! Bauingenieur 11, 38–44.

  • Neugebauer, S., Martinez-Blanco, J., Scheumann, R., Finkbeiner, M., 2015. Enhancing the practical implementation of life cycle sustainability assessment – proposal of a tiered approach. J. Clean. Prod. 102, 165–176. https://doi.org/10.1016/j.jclepro.2015.04.053.

  • Scope, C., Guenther, E., Schütz, J., Mielecke, T., Mündecke, E., Schultze, K., Saling, P., 2020. Aiming for life cycle sustainability assessment of cement‐based composites: A trend study for wall systems of carbon concrete: Dresden Nexus Conference 2020 – Session 4 – Circular economy for building with secondary construction materials to minimise resource. Civ. Eng. Des. 2, 143–158. https://doi.org/10.1002/cend.202000024.

  • Scope, C., Vogel, M., Guenther, E., 2021. Greener, cheaper, or more sustainable: Reviewing sustainability assessments of maintenance strategies of concrete structures. Sustain. Prod. Consum. 26, 838–858. https://doi.org/10.1016/j.spc.2020.12.022.

  • Traverso, M., Asdrubali, F., Francia, A., Finkbeiner, M., 2012. Towards life cycle sustainability assessment: An implementation to photovoltaic modules. Int. J. Life Cycle Assess. 17, 1068–1079. https://doi.org/10.1007/s11367–012–0433–8.

  • UNEP, 2020. Guidelines for Social Life Cycle Assessment of Products and Organizations.

  • UNEP/SETAC, 2009. Guidelines for Social Life Cycle Assessment of Products.

  • U.S. Green Building Council, 2020. LEED Rating System. https://www.usgbc.org/leed (accessed 29.7.2020).

  • Valdivia, S., Backes, J.G., Traverso, M., Sonnemann, G., Cucurachi, S., Guinée, J.B., Schaubroeck, T., Finkbeiner, M., Leroy-Parmentier, N., Ugaya, C., Peña, C., Zamagni, A., Inaba, A., Amaral, M., Berger, M., Dvarioniene, J., Vakhitova, T., Benoit-Norris, C., Prox, M., Foolmaun, R., Goedkoop, M., 2021. Principles for the application of life cycle sustainability assessment. Int. J. Life Cycle Assess. 26, 1900–1905. https://doi.org/10.1007/s11367–021–01958–2.

  • Valdivia, S., Ugaya, C.M.L., Hildenbrand, J., Traverso, M., Mazijn, B., Sonnemann, G., 2013. A UNEP/SETAC approach towards a life cycle sustainability assessment – our contribution to Rio+20. Int. J. Life Cycle Assess. 18, 1673–1685. https://doi.org/10.1007/s11367–012–0529–1.

  • Visentin, C., da Silva Trentin, A.W., Braun, A.B., Thomé, A., 2020. Life cycle sustainability assessment: A systematic literature review through the application perspective, indicators, and methodologies. J. Clean. Prod. 270, 122509. https://doi.org/10.1016/j.jclepro.2020.122509.

  • Weniger, A., Del Rosario, P., Backes, J.G., Traverso, M., 2023. Consumer behavior and sustainability in the construction industry – relevance of sustainability-related criteria in purchasing decision. Buildings 2023, 13, 638. https://doi.org/10.3390/buildings13030638.

  • Witten, E., Mathes, V., Sauer, M., Kühnel, M., 2018. Composites – Marktbericht 2018.

  • Zamagni, A., 2012. Life cycle sustainability assessment. Int. J. Life Cycle Assess. 17, 373–376. https://doi.org/10.1007/s11367–012–0389–8.

  • Zanghelini, G.M., Cherubini, E., Soares, S.R., 2018. How multi-criteria decision analysis (MCDA) is aiding life cycle assessment (LCA) in results interpretation. J. Clean. Prod. 172, 609–622. https://doi.org/10.1016/j.jclepro.2017.10.230.

  • Zhou, H., 2013. The Comparative Life Cycle Assessment of Structural Retrofit Techniques. SSEBE-CESEM-2013-CPR-009 Course Project Report Series.

You are not authenticated to view the full text of this chapter or article.

Access options

Get access to the full article by using one of the access options below.

Other access options

Redeem Token

Institutional Login

Log in with Open Athens, Shibboleth, or your institutional credentials

Login via Institutional Access

Personal login

Log in with your Elgar Online account

Login with your Elgar account
Handbook