Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Price instruments and policy objectives</td>
<td>44</td>
</tr>
<tr>
<td>2.2</td>
<td>Non-price instruments and policy objectives</td>
<td>48</td>
</tr>
<tr>
<td>3.1</td>
<td>Description of common scenarios</td>
<td>60</td>
</tr>
<tr>
<td>4.1</td>
<td>The structure of the welfare function</td>
<td>69</td>
</tr>
<tr>
<td>4.2</td>
<td>Optimal tax rules</td>
<td>76</td>
</tr>
<tr>
<td>4.3</td>
<td>Assumptions on the marginal cost of public funds</td>
<td>80</td>
</tr>
<tr>
<td>4.4</td>
<td>Price elasticities literature</td>
<td>82</td>
</tr>
<tr>
<td>4.5</td>
<td>Corresponding price elasticities</td>
<td>82</td>
</tr>
<tr>
<td>4.6</td>
<td>Different model versions</td>
<td>84</td>
</tr>
<tr>
<td>5.1</td>
<td>The structure of the welfare function</td>
<td>98</td>
</tr>
<tr>
<td>5.2</td>
<td>Overview of possible exercises</td>
<td>109</td>
</tr>
<tr>
<td>6.1</td>
<td>Dimensions of the spatial version of the TRENEN-Amsterdam model</td>
<td>127</td>
</tr>
<tr>
<td>6.2</td>
<td>Details of groups, OD pairs and numbers of routes per group</td>
<td>127</td>
</tr>
<tr>
<td>6.3</td>
<td>Characteristic equations from the network model for Amsterdam</td>
<td>128</td>
</tr>
<tr>
<td>6.4</td>
<td>Some parameter values for the simulation presented</td>
<td>129</td>
</tr>
<tr>
<td>6.5</td>
<td>Some simulation results of the linearised TRENEN-Amsterdam model</td>
<td>129</td>
</tr>
<tr>
<td>7.1</td>
<td>The marginal social costs of motorised road transport</td>
<td>137</td>
</tr>
<tr>
<td>7.2</td>
<td>The value of marginal time savings in passenger and freight transport in 2005</td>
<td>140</td>
</tr>
<tr>
<td>7.3</td>
<td>The marginal external congestion costs for Brussels and Belgium in 2005</td>
<td>140</td>
</tr>
<tr>
<td>7.4</td>
<td>The impacts of air pollutants considered by ExternE-Transport</td>
<td>142</td>
</tr>
<tr>
<td>7.5</td>
<td>Damage costs per g of pollutant</td>
<td>143</td>
</tr>
<tr>
<td>7.6</td>
<td>The use of the ExternE-Transport results in the case studies</td>
<td>143</td>
</tr>
<tr>
<td>7.7</td>
<td>The marginal external air pollution costs of passenger cars in Brussels in the reference equilibrium</td>
<td>144</td>
</tr>
<tr>
<td>7.8</td>
<td>The marginal external air pollution costs of interregional transport in Belgium in the reference equilibrium</td>
<td>145</td>
</tr>
<tr>
<td>7.9</td>
<td>The marginal external air pollution costs of urban public transport</td>
<td>145</td>
</tr>
</tbody>
</table>
7.10 The accident risks in the benchmark equilibrium
7.11 The pure economic costs of the different accident categories
7.12 The marginal external accident costs of transport in Brussels and Belgium in the initial equilibrium
7.13 Marginal external noise cost in Brussels in 2005
7.14 General overview of the marginal external costs in the initial equilibrium in Brussels and Belgium
7A.1 The time–flow relationship
7A.2 Damage estimates for a gasoline passenger car in different locations
7A.3 Average emission factors of a gasoline car in g/vkm
7A.4 ExternE emissions for urban and interregional passenger car traffic
7A.5 Auto-Oil I emission reductions for 1996–2010
7A.6 Fuel consumption with standard and improved fuel efficiency
7A.7 The emission factors for gasoline cars – urban case studies
7A.8 The emission factors for diesel cars – urban case studies
7A.9 The emission factors for interregional public passenger transport
7A.10 The emission factors for interregional freight transport
7A.11 The marginal external costs in the initial equilibrium – Amsterdam
7A.12 The marginal external costs in the initial equilibrium – Dublin
7A.13 The marginal external costs in the initial equilibrium – London
7A.14 The marginal external costs in the initial equilibrium – Ireland
8.1 Estimates of the marginal and average accident risk
10.1 Functional forms tested in selection of unit time–flow relationship for TRENEN
10.2 Summary statistics derived from non-linear curve-fitting routine
10.3 Network parameters for Dublin and Dubai
11.1 Characterisation of the reference situation
11.2 Key results of optimal policy
11.3a Taxes in reference situation and optimal pricing
11.3b Generalised prices for reference and optimal pricing
11.3c Generalised prices in reference and optimal pricing
11.4 Changes in consumer surpluses for two scenarios 232
11.5 Money price changes of a vehicle kilometre caused by fuel price increases 233
11.6 Emission reductions 235
11.7 Main components of welfare 235
11.8a Key results of counterfactual equilibria, reference parking charges, reference technology 236
11.8b Key results of counterfactual equilibria, improved parking charges, reference technology 236
11A.1 Characterisation of optimal pricing, improved parking charges 240
11A.2 Characterisation of cordon pricing, reference parking charges 241
11A.3 Characterisation of uniform pricing, reference parking charges 242
11A.4 Characterisation of improved parking charges 243
12.1a Consumer price in Euros per vehicle-km 253
12.1b Price per litre fuel in Euros 253
12.1c Money price public transport per passenger-km in Euros 254
12.1d Resource vehicle costs, net of tax, in Euros per car-km 254
12.1e Resource cost in Euros per litre fuel 254
12.1f Total resource cost in Euros per vehicle-km 255
12.1g The proportions in which the vehicle fleet types are used 255
12.1h Average occupancy rate in persons per vehicle in public transport 256
12.1i The demand in passenger-km per representative individual per day 256
12.1j (Cross-) price elasticities 256
12.2 Characterisation of the reference situation 259
12.3 Key results of optimal policy compared with reference situation 262
12.4a Taxes in reference situation and optimal pricing 263
12.4b Generalised prices in reference situation and optimal pricing 263
12.4c Composition of generalised prices in reference and optimal pricing for a small petrol car driven alone by an inhabitant not paying for parking 264
12.5 Percentage changes in consumer surpluses for two scenarios 266
12.6a Key results of counterfactual equilibria, reference parking charges, reference technology 267
List of tables

12.6b Key results of counterfactual equilibria, reference parking charges, regulation of technology 267
12.6c Key results of counterfactual equilibria, improved parking charges, reference technology 268
12.6d Key results of counterfactual equilibria, improved parking charges, regulation of technology 268
12A.1 Average trip length 1995 TRENEN zones in kms: public transport 270
12A.2 Average trip length 1995 TRENEN zones in kms: bicycle 271
12A.3 Average trip length 1995 TRENEN zones in kms: car 271
12A.4 Kilometrage 1995 TRENEN zones: public transport 271
12A.5 Kilometrage 1995 TRENEN zones: bicycle 271
12A.6 Kilometrage 1995 TRENEN zones: car 271
12A.7 Average trip duration 1995 TRENEN zones in minutes: public transport 272
12A.8 Average trip duration 1995 TRENEN zones in minutes: bicycle 272
12A.9 Average trip duration 1995 TRENEN zones in minutes: car 272
12A.10 Characterisation of the full optimum (FO) with improved parking charges and standard emission technologies 273
12A.11 Characterisation of the cordon pricing (CO) with reference to parking charges and standard emission technologies 274
13.1 Values of time used in DTI study 280
13.2 Resource costs for bus and rail 282
13.3 Resource costs, prices, taxes and external costs in the reference situation 284
13.4 Naming convention for option tests 285
13.5 Key results from the full optimum pricing scenario 286
13.6 Taxes in reference and full optimum scenarios 286
13.7 Sensitivity tests for the 2005 TRENEN model 287
13.8 Reference passenger-kilometres demanded over total population 288
13.9 Percentage reference market share of transport quantities demanded 288
13.10 Full optimum passenger-kilometres demanded over total population 290
13.11 Percentage full optimum market share of transport quantities demanded 290
13.12 Comparison of taxes in sensitivity tests 291
13.13 Comparison of money price in sensitivity tests 292
13.14 Percentage change in overall results w.r.t. reference scenario 293
15A.8b Nash equilibrium scenario: demand composition freight 369
15A.9 Nash equilibrium scenario: technology choice and welfare components 370
16.1 Transport flows and modal shares, reference situation 375
16.2 Prices, taxes and marginal external costs in the reference situation 377
16.3 Taxes and marginal external cost in full optimum for 2005 379
16.4 Modal shares in the reference (RF) and the full optimum (FO) 380
16.5 Some other key results of the optimal policy 381
16.6 Technology choice and welfare components 381
16.7 Speeds and tax revenues 381
16.8 Taxes and marginal external costs for policies 383
16.9 Key results of policy without time-differentiated policy 384
16.10 Market share for each mode type 384
16.11 Technology choice and welfare components 384
16.12 Key results of policies 386
17.1 Characteristics of the areas studied 392
17.2 Prices, taxes and costs for the urban case studies in the full optimum scenario 402
17.3 Prices, taxes and costs for the interregional case studies in the full optimum scenario 404
17.4 Total volume and composition of traffic 405
17.5 Speeds 405
17.6 Prices, taxes and costs 406
17.7 Volumes, composition of traffic and speeds 406
17.8 Welfare, total external costs and tax revenues 408