Index

ABC policy (Amsterdam) 248
accident costs 69, 70, 218, 255, 309–10, 329, 341, 342, 411
accident-flow relationship 170–71
econometric analysis 173–79
previous studies of 171–73
cold-blooded costs 146–48
by accident type 148–50
insurance premiums 39, 44, 147, 148, 281
interregional model 106
marginal to average risk ratio 174, 176–79
pricing policy instruments 44, 48
transport modes 148–49
accounting approach, to transport costing 184
aggregate regression techniques 172, 174–79
air pollution costs 218, 255, 309, 341, 342, 411
damage cost per g of pollutant 143
feasibility of taxing 21–23
fuel-efficient/clean vehicle subsidies 38–39
interregional transport in Belgium 145
transport modes 141–44
urban public transport 144–46
Alexandre, A. 152
Altman, D.G. 176
Amsterdam case study 254–55, 260
background
city information 245–47
transport 247–49
conclusions 269–70
cordon pricing 261, 265–66, 274
external costs 254–55, 260
optimal pricing policy 266, 273
assumptions 260
generalised prices 264–65
optimal taxes 260, 261–64
optimal volumes 261
policy option comparisons 266–69
purpose of 249
reference case 249–57, 259
behaviour 256–57
characteristics 257–59
pricing problems 2005 249–57, 259
public transport capacity 251–53
road capacity 251–53
taxes 253–54
traffic growth and consumption 251
transport market 249–51
volume and composition of traffic 249–51, 258, 259
Amsterdam network model
road network 124–31
theoretical considerations 121–24
area licensing 42, 44
Arnott, R. 118
automatic licence-plate number recognition 205
automatic vehicle identification (AVI) 42–43
Bailey, M. 172
Barde, J.-Ph. 152
Baumol, W.J. 135
Belgium case study
background 329–31
conclusions 362–64
congestion pricing 331, 353–56, 362, 363, 367–68
optimal pricing policy 345, 362
demand and modal composition 348, 349
emission technology 348–49
optimal taxes 346–47
price increases 346, 350
welfare effects 348–49
Belgium case study (cont.)
policy comparisons 356–58
reference case
external costs 340–42, 342
resource costs 337–40, 342
transport market 331–36, 342
Bickel, P. 135, 136, 141, 143t, 145, 163, 167
Blythe, P. 201
Boniver, V. 135
bottlenecks 373
Bovenberg, A.L. 78
British Rail 303
Brussels case study
background
parking 211–13
traffic flows 211–13
transport market 213–14, 219–21
transport policy 215–18, 222–23
conclusions 238–39
cordon pricing 230–32, 236, 237, 241
optimal pricing policy 224, 236, 237
optimal taxes 227–29
parking charges 230, 237, 240, 241, 242, 243
volume effects 224–26
welfare effects 224–26, 238
policy instrument comparisons 235–38
reference case 216–23, 238–39
uniform pricing 232–34, 237, 238, 242
bus services
Belgium case study 333
buses
Bus Eireann (Irish Bus) 373, 375, 376
costs in Europe 397–99
demand in London 304
Dublin Bus 373
London case study 305–6
pricing structure in Belgium 333
privatisation 296, 304
Quality Bus Corridors (QBC) 277
Button, K. 9
calibration 83, 107–8
Calthrop, E. 186, 230
canals 246
capacity provision 45
CAPRI consortium 5
car capital costs 186
carpooling 71, 73, 119, 221, 256, 280, 305, 308
catalytic converters 21, 73, 340
compulsory installation 22–23
pre-heated 73, 104, 185
see also emission technology regulation
Citizens’ Network, The (EU Green Paper) 55
Common Transport Policy (CPU) 52–53
commuters
cordon pricing 230–32, 265
Dublin case study 276–77, 278
London case study 300, 301, 302
complementarity effect, of increased transport tax 79, 80
concessions, travel 304, 305
congestion function 195–96, 198–99, 238–39, 255, 312
Amsterdam case study 251–53
Belgium case study 340–41
Brussels case study 212–13, 214
Dubai case study 200–201
Dublin case study 198–200
Europe case study 393–95
formats 196–98
London case study 308
network 194–95
see also speed-flow relationship
Belgian road system 329, 332
cordons 58, 60
damage estimates 161
demand effects 355, 367–68
dominant external cost 266, 269
emission technologies 162–67, 367–68
fuel taxes 40–41
Index

highway tolls 353–54
infrastructure, financing 28–32
interregional model 105–6
modal shifts 355–56
policy instruments 21–22, 44, 48, 49
public transport pricing 353, 354–55
redistribution of revenue 32–33
spatial planning 33
time-flow relationship 137–39, 160
time-savings value 139, 140
TRENEN policy reform package 57–58, 59, 60
vehicle taxes 38
welfare gains 356–58, 368
constant elasticity of substitution utility function see CES utility function
Consumentenbond 253, 254
customer demand 70–71
consumer surplus 15, 16–17, 19–20
approach 68–70
cordon pricing 231–32, 265
optimal pricing 224, 226
Coras Iompair Eireann (CIE) 373, 375, 376
cordon pricing 42, 44, 217
Amsterdam case study 261, 265–66, 274
Brussels case study 230–32, 236, 237, 241
congestion pricing 58, 60
London case study 313, 314, 316, 317, 321, 325
cross-price effects 90–91, 106–7, 115
cycling 247, 306
DART (Dublin rail service) 277, 281, 282
Dartford tunnel 302
De Borger, B. xv, 25, 94, 106, 119, 153, 194, 197, 331, 337, 343, 359, 371
De Jong, G.C. 139
De Mooij, R.A. 78
decision-making authorities 410–11
Deloitte & Touche 281
demand
determinants of 10–13
functions 67–68
management 47, 48, 49
transport market interdependency 24–28, 66–67
Demand for Public Transport, The (TRRL 1980) 188
demand management 47, 48, 49
Denis, C. 82
Dewees, D.N. 191–92
Diamond, P.A. 87, 91, 113
Dickerson, A. xv, 148, 174
diesel cars
emission technologies 104, 163, 166, 185, 381
fuel taxes 301, 332, 343, 345, 351
optimal pricing effects 378, 380, 403
resource costs 220–21
share of Belgian car stock 334
vehicle taxes 332
distance-related taxes 41, 44
D’Ouville, E.L. 35
DRI, Kuleuven 82
DTI see Dublin Transportation Initiative (DTI) Strategy
Dublin case study 283, 284
background 276–78
optimal pricing policy 285–87
money prices 290, 292
optimal taxes 286, 290–91
sensitivity tests 289–93
policy implementation 293–94
reference situation 278–84
external costs 283, 284
private transport 279–82
public transport 281–82
sensitivity tests 287–89
speed-flow relationship 282–83
Dublin Transportation Initiative (DTI) Strategy 277, 278–80, 282, 293–94
dynamic models 409
electronic road pricing 42–43, 44, 45, 224, 260
emission technology regulation 21–23, 46–47, 48, 67, 73, 89–90, 103–4, 144
Amsterdam case study 266–69, 273
emission technology regulation (cont.)
Belgium case study 339–40
congestion pricing 162–67, 367–68
cordon pricing 231
diesel cars 104, 163, 164, 166, 185, 381
Dublin case study 285, 286
fuel efficiency 163–64
gasoline cars 164, 165
improved technology 163–66, 185, 339–40
Ireland case study 381, 384
London case study 318
Nash equilibrium 370
optimal pricing policy 348–49
TRENEN policy reform package 58–59, 60
uniform pricing 234, 351, 364–65
welfare effects 234–35, 237, 269, 318, 348–49
see also air pollution costs; catalytic converters
ingengineering approach, to transport costing 184
environmental costs 14–15, 16, 19, 75, 97
price distortions (double dividend) 34
EUCARS model 82
Europe 2000 studies (EU) 61
Europe case study
background 389–90
conclusions 411–12
optimal pricing policy 390
freight transport 405–7
passenger transport 401–5
welfare effects 407, 408
policy implementation 407
decision-making authorities 410–11
implementation costs 409
reliability of results 409
revenue redistribution 409–10
safety and pollution policies 411
reference case
bus costs 397–99
car costs 396–97
freight transport costs 399–400
generalised costs 391, 393–96
study areas, characteristics 391, 392
Eurovignettes 58, 351, 370
Evans, A.W. 192
external costs see marginal external costs
ExternE-Transport project 136, 309, 403
emission technologies 163
marginal external air pollution costs 141–46
Fowkes, A.S. 179
Frans, B. xv
freight transport 53
Belgium case study 334, 335–36, 342
Brussels transport policy 216
demand 101–3
Europe case study 399–400, 405–7
highway tolls 354
interurban environment 93
marginal external costs 378
optimal pricing effects 103, 346, 347, 380
resource costs 189
supply 103
tax exporting 360–62
Fridstrøm, L. 172
fuel
efficiency 38–39, 163–64
resource costs 185–86, 280
taxes 24, 35, 44, 56, 254
congestion costs 40–41
country-specific VAT 58
diesel cars 301, 332, 343, 345, 351
increasing 321
uniform pricing 232–34, 237, 238
Future Development of the Common Transport Policy, The (EU White Paper) 52–53
GAMS software (TRENEN) 124, 125–30
Gemeenlijk Vervoersbedrijf 254, 256
generalised prices 16, 19, 218, 311, 393
Amsterdam case study 257, 259, 263, 264–65
demand functions 68, 71, 85–86
Europe case study 391, 393–96
London case study 340
marginal social costs 391, 395
optimal pricing policy 228–29
public transport 264
time component 16
traffic volume 11–13, 19
transport modes 74–75, 96–97
transport services 104–5
GENMOD network model 249–50, 251, 253, 270–72
Gibbons E. xv
Glaister, S. 65
global external costs 340, 360
Global Positioning System (GPS) 203
global taxation system 223, 229, 265
Gomers, M.A. 139
Goodwin, P. 39
Gordon, R. 118
Goulder, L.H. 78
Grieson, R.E. 118
Growth, Competitiveness and Employment (EU White Paper) 61
Hague Consultancy Group (HCG) 139, 253, 255
Halcrow Fox 244
Hall, M.D. 199
Hansson, L. 179, 187
Harrington, W. 164
Heaney, Q. xv
Heathrow Express, direct rail service 307
heavy goods vehicles 54
road maintenance costs 187
Held, J. 156, 171, 172
Highway Capacity Manual (TRB) 191
highway tolls, time-differentiated 58, 353–54, 356
highway vignettes 42, 44, 58, 203, 351, 370
Hills, P.J. 192
Hoen, A. 249, 261
Hopkins, M. 179
housing policy 36
Iarnrod Eireann (Irish Rail) 373
infrastructure
decay in London underground 302
investment 10, 28–32, 45–46, 297, 302, 333, 410
pricing policy 28–32, 44, 48
road-use pricing 204–5
institutional aspects, Brussels transport policy 216
insurance costs 39, 44, 147, 148, 281
intermodal systems 53
internal costs estimating 184–85
resource costs 185–89
inputs 182–84
interregional model 93–95, 330, 345
calibration 107–8
demand 95–96
one-country version 111–15
cross-price effects 115
demand 112–13
overview 95–97
pricing rules 114–15
optimal tax rules 106–7
federal optimum 110–11, 115–18
local optimum 108–9
Nash equilibrium 109–10
structure 99–107
demand side 99–103
externalities 105–6
generalised prices 104–5
supply side 103–4
supply 96
two-country version 115–18
welfare function 113–14, 116
consumer welfare 98–99
correction term for tax revenue 98, 99
external costs 98, 99
see also Belgium case study; Europe case study; Ireland case study
investment
infrastructure 10, 28–32, 45–46, 297, 302, 333, 410
pricing policy 28–32, 35
Ireland case study 372–88, 376–80
background 372–73
conclusions 385–87
optimal pricing policy
demand effects 380
marginal external costs 378–80
Ireland case study (cont.)
modal shares 380
optimal taxes 378–79
technology choice 381
welfare effects 380–81
optimal pricing policy (no time-differentiation) 382–84
marginal external costs 382–83
modal shares 382, 384
optimal taxes 382–83
technology choice 384
welfare effects 384
policy comparisons 385
reference case
marginal external costs 376–78
resource costs and taxes 374–75
transport flows and modal shares 374–75
transport market 374
IRIS study 211, 214, 215, 216
Jansson, J.O. 135, 146, 156, 179, 339
Johansson, B. 41
Jones-Lee, M.W. 135, 149, 156, 171
Jong, J.S. 342
JOULE II programme (EC) 309
Jubilee Line Extension 307
Kazimi, C. 135
Keller, W.J. 71, 81, 99
Khazzoom, J.D. 164
kilometre tax 41, 44, 54
Kirwan, K.J. xv, 195, 197, 198, 214, 283, 337, 340, 374
Klooster, J.P.G.N. 139
Koopman, G.J. 82
Krelove, R. 118
Krutilla, R. 118
Kuhn-Tucker conditions 88
labour market
resource costs 184
transport taxes effects 33–34, 78–79, 223, 410
Laffont, J.J. 35
Lagrange multipliers 88
land-use policy 33
Lea, R. 187
Level of Service (LOS) D (Ireland) 385
Lewis, D. 65
Liefkenshoektunnel 332
Lijesen, M. 249, 261
London Area Transport Survey (1991) 298
London case study 296–327, 309–10
background 296–98
cordon pricing 313, 314, 316, 317, 321, 325
optimum pricing policy 313–14, 315, 319–20, 324
policy option comparisons 319, 320
policy recommendations 319, 321–22
reference case 298–310, 315, 317, 326
characteristics 323
elasticities 310
external costs 309–10
pricing problems in 2005 310–12
resource costs and taxes 307–9
road capacity and public transport capacity 307
traffic growth and composition 306–7
transport market 298–301
resource costs and taxes 307–9
speed-flow relationship 308, 309
transport market
buses 305–6
rail 302–4
roads 301–2
uniform pricing 313, 316, 317, 318, 326–27
London Orbital Motorway 298
London Transport
integrating transport services 296, 297
London Underground 303
planning responsibility 304
London Underground
areas of concentration 302
infrastructure decay 302
integration of transport services 296
lack of investment 297, 307
privatisation proposals 303
Maddison, D. 135, 170, 171, 179
marginal external costs 218, 311, 346
accidents (see accident costs)
air pollution (see air pollution costs)
case study comparisons 154–55, 168–69
congestion (see congestion pricing)
defining 135
environmental (see environmental costs)
internalisation of 65, 66, 221
Ireland case study 376–80, 382–83
local versus global 105–6, 107, 117
noise (see noise costs)
road damage (see roads, damage costs)
spillover effects from abroad 93, 102, 105–6, 107, 118, 329–30, 345, 359–60
marginal resource costs 66, 280–81, 391, 393
Amsterdam case study 257–59
Belgium case study 337–40
Dublin case study 279–82, 284
estimating 10–11, 12, 19, 184–89, 307, 321
fuel 185–86, 280
inputs 182–84
Ireland case study 374–75
London case study 307–9
parking costs 186–87, 219, 222, 281, 308, 311, 312, 393
private transport 73–74, 103, 185–87
marginal social costs 135, 136
categories 136, 137
congestion 13–14, 35
investment in infrastructure 28–32
optimal pricing policy 260, 363, 389–90
optimal taxation 17–21
pollution 14
prices and 54–55, 222–23
willingness to pay 13, 14, 18–19, 30, 31
Markandya, A. 152
market equilibrium
optimal 17–21
present traffic 10–17
Markham, J. 179, 187
Markusen, J. 118
Marshallian demand functions 131
mathematical model, need for
transport analysis 65
Mattson, L.-G. 41
Mayeres, I. xv, 32, 87, 135, 136, 150, 170, 280, 341
McDonald, J.L. 35
McGeehan, H. 187
McGrath, S. 283, 374
Merrifield, P. 118
metro see London Underground
Mintz, J. 118
Mirrlees, J.A. 87, 113
Mohring, H. 74, 77, 339
Mohring effect 74, 229, 264, 266, 339
money prices 218, 219, 221, 311
Amsterdam case study 257–59
optimal pricing policy 229, 290, 292
public transport 248–49, 253–54, 281
uniform pricing 232–33
Morey, E. 118
motorway tolling 205
MVA Consultancy 139, 244
Nash, C.A. 179
Nash equilibrium 109–10
strategic behaviour 358–62, 363–64, 371
demand effects 360, 369
modal shares 360, 362, 369
welfare effects 362, 370
National Road Traffic Forecast (DETR) 306
Nelson, J.P. 152
network model 212, 409
Amsterdam 121–31
congestion function 194–201
Dublin 278
network models
SATURN 195, 199
Network South East 303
New Deal for Transport, A (DETR White Paper, 1998) 204, 296
Newbery, D.M. 106, 135, 149, 150, 153, 156, 179, 187, 341
NMBS-SNCF 332
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>noise costs</td>
<td>150, 218, 310</td>
</tr>
<tr>
<td>hedonic housing market method</td>
<td>151–52</td>
</tr>
<tr>
<td>noise function</td>
<td>151</td>
</tr>
<tr>
<td>pricing policy instruments</td>
<td>44, 48</td>
</tr>
<tr>
<td>results</td>
<td>152–53</td>
</tr>
<tr>
<td>noise regulation</td>
<td>46–47, 48</td>
</tr>
<tr>
<td>Oates, W.J.</td>
<td>135</td>
</tr>
<tr>
<td>occupancy rates</td>
<td></td>
</tr>
<tr>
<td>pooled cars</td>
<td>256, 280, 308</td>
</tr>
<tr>
<td>public transport</td>
<td>256, 257</td>
</tr>
<tr>
<td>Ochelen, S.</td>
<td>82, 135, 136, 170, 244, 341</td>
</tr>
<tr>
<td>off-peak periods</td>
<td>see peak versus off-peak periods</td>
</tr>
<tr>
<td>Office of Director of Traffic (Dublin)</td>
<td>293</td>
</tr>
<tr>
<td>O’Flaherty, C.A.</td>
<td>197</td>
</tr>
<tr>
<td>Olewiler, N.</td>
<td>118</td>
</tr>
<tr>
<td>O’Mahony, M.</td>
<td>xv, 214, 283, 337, 340, 374, 393</td>
</tr>
<tr>
<td>operating costs</td>
<td>281</td>
</tr>
<tr>
<td>optimal pricing policy</td>
<td></td>
</tr>
<tr>
<td>Amsterdam case study</td>
<td>261–66, 273</td>
</tr>
<tr>
<td>Belgium case study</td>
<td>345–50, 362</td>
</tr>
<tr>
<td>Brussels case study</td>
<td>224–30, 236, 237, 240–43</td>
</tr>
<tr>
<td>car use prices</td>
<td>401, 403</td>
</tr>
<tr>
<td>effective policies</td>
<td>21–23</td>
</tr>
<tr>
<td>Europe case study</td>
<td>390, 400–408</td>
</tr>
<tr>
<td>infrastructure policy</td>
<td>28–32</td>
</tr>
<tr>
<td>Ireland case study</td>
<td>378–81, 378–84</td>
</tr>
<tr>
<td>London case study</td>
<td>313–14, 315, 319–20, 324</td>
</tr>
<tr>
<td>market equilibrium</td>
<td>10–21</td>
</tr>
<tr>
<td>parking charges, improved</td>
<td>224, 226, 230, 237, 240, 241, 242, 243, 403</td>
</tr>
<tr>
<td>price distortions</td>
<td>33–34</td>
</tr>
<tr>
<td>public transport prices</td>
<td>403–4</td>
</tr>
<tr>
<td>redistribution of revenue</td>
<td>32</td>
</tr>
<tr>
<td>spatial planning</td>
<td>33</td>
</tr>
<tr>
<td>speed-flow effects</td>
<td>405</td>
</tr>
<tr>
<td>transport market interaction</td>
<td>24–28</td>
</tr>
<tr>
<td>TRENEN policy reform package</td>
<td>57, 59, 60</td>
</tr>
<tr>
<td>volume effects</td>
<td>224–26, 404–5, 406–7</td>
</tr>
<tr>
<td>welfare effects</td>
<td>224–26, 238, 380–81, 407, 408</td>
</tr>
<tr>
<td>optimal taxes</td>
<td>346</td>
</tr>
<tr>
<td>Amsterdam case study</td>
<td>260, 261–64</td>
</tr>
<tr>
<td>Belgium case study</td>
<td>346–47</td>
</tr>
<tr>
<td>Brussels case study</td>
<td>227–29</td>
</tr>
<tr>
<td>cordon pricing</td>
<td>231</td>
</tr>
<tr>
<td>Dublin case study</td>
<td>286, 290–91</td>
</tr>
<tr>
<td>flexibility</td>
<td>224</td>
</tr>
<tr>
<td>interregional model</td>
<td>106–7</td>
</tr>
<tr>
<td>Ireland case study</td>
<td>378–79, 382–83</td>
</tr>
<tr>
<td>non-differential</td>
<td>24–25</td>
</tr>
<tr>
<td>urban model</td>
<td>74–77, 90</td>
</tr>
<tr>
<td>optimality rule</td>
<td>(Mohring) 74</td>
</tr>
<tr>
<td>O’Reilly, D.</td>
<td>179</td>
</tr>
<tr>
<td>Oscar Faber</td>
<td>387</td>
</tr>
<tr>
<td>O’Sullivan, D.</td>
<td>337, 341</td>
</tr>
<tr>
<td>Oum, T.H.</td>
<td>39, 106, 114, 342</td>
</tr>
<tr>
<td>park and ride schemes</td>
<td>248</td>
</tr>
<tr>
<td>parking charges</td>
<td>40, 44, 56, 60, 211–13, 248, 277, 281, 293</td>
</tr>
<tr>
<td>free parking</td>
<td></td>
</tr>
<tr>
<td>mode choice influence</td>
<td>299</td>
</tr>
<tr>
<td>price distortion</td>
<td>215, 233, 250, 257–58, 270, 321</td>
</tr>
<tr>
<td>improved charges</td>
<td>260, 262</td>
</tr>
<tr>
<td>Amsterdam case study</td>
<td>266–69, 273</td>
</tr>
<tr>
<td>cordon pricing</td>
<td>231–32</td>
</tr>
<tr>
<td>Dublin case study</td>
<td>285, 286</td>
</tr>
<tr>
<td>London case study</td>
<td>313, 316, 318, 327</td>
</tr>
<tr>
<td>optimal pricing policy</td>
<td>224, 226, 230, 237, 240, 241, 242, 243, 403</td>
</tr>
<tr>
<td>resource costs</td>
<td>186–87, 219, 222, 281, 308, 311, 312, 393</td>
</tr>
<tr>
<td>passenger cars</td>
<td></td>
</tr>
<tr>
<td>Brussels transport policy</td>
<td>216</td>
</tr>
<tr>
<td>Europe case study</td>
<td>396–97, 401–5</td>
</tr>
<tr>
<td>peak versus off-peak periods</td>
<td>all-day peaks 296</td>
</tr>
<tr>
<td>Amsterdam case study</td>
<td>258–59, 264–65</td>
</tr>
<tr>
<td>Belgium case study</td>
<td>333</td>
</tr>
<tr>
<td>Brussels case study</td>
<td>212–13, 219–21</td>
</tr>
<tr>
<td>car and rail travel, pricing</td>
<td>26–28</td>
</tr>
<tr>
<td>car capital costs</td>
<td>186</td>
</tr>
<tr>
<td>congestion pricing</td>
<td>57, 58, 345, 354–55</td>
</tr>
</tbody>
</table>
Dublin case study 279, 285, 286
London case study 299, 302, 304, 311–12
marginal social costs 376–78
optimal non-differential tax 24–26
optimal pricing policy effects 227–29, 378–80
public transport
demand 285, 348
prices 221, 338–39
resource costs 188–89, 282
tax structure 221
volume and composition of traffic 220, 221
Pearce, D.W. 152, 179
Peirson, J. xv, 135, 148, 170, 172, 174, 179
Pigouvian taxes 90
policy, EU transport
price instruments 52–55
private transport, alternatives to 55
policy assessment, quantitative analysis 65
policy coordination, need for at European level 363–64
policy instruments 21–23, 37–38, 97
implementation costs 237, 238, 269, 286–87, 351
non-price instruments 45–49
policy reform packages 51, 60
price instruments 38–45
suitability for specific externalities 21–22, 43–45
policy reform packages
criteria for inclusion in study 51–52, 55
price instruments, emphasis on 59
social cost pricing 55–56
TRENEN packages 56–59
congestion pricing 57–58, 59, 60
emission technology regulation 58–59, 60
optimal pricing 57, 59, 60
reference scenario 56–57
uniform pricing 58, 59, 217
policymaking, supranational 53
pollution see air pollution costs
polynomial specification 174, 176
price elasticities 81–82, 256, 257, 342–43
Belgium case study 342–43
London case study 310
price instruments 38–45
congestion externality 237
emphasis in EU policy 51, 52–55
inefficiency 56
interregional model 104–105, 119
pricing policy, and infrastructure policy 28–32
private passenger transport
Belgium case study 334, 335, 342
demand and supply model 9, 10–12
Dublin case study 279–82
need for alternatives 52
optimal taxes 9–10
resource costs 185–87
supply 103
uniform pricing 58
privatisation, of buses and railways 296, 303
producers
choices 73–74, 96
surplus 15, 16–17
Proost, S. xvi, 32, 82, 87, 135, 136, 170, 186, 230, 244, 341
public transport
Amsterdam case study 247, 251–53, 258
Belgium case study 337–40, 342
Brussels transport policy 216
congestion pricing 353, 354–55
demand 285, 348
Dublin case study 276–77, 281–82
fixed versus variable costs 281–82
funding for 55
generalised prices 264
integration 55
London case study 307, 312
money prices 248–49, 253–54, 258, 281
operating costs 307
pricing 56, 221, 338–39
resource costs 187–89, 188–89, 281–82, 282
subsidies 39–40, 44, 409–10
Belgium case study 333
case study comparisons 398–99
congestion 27–28, 239
public transport (cont.)
 Ireland case study 373, 382, 387, 404
 optimal pricing policy 227, 286
 supply 45–46, 48
 total transport share 247, 261, 289–90
Public Transport Company of Amsterdam (GVB) 253–54
Quality Bus Corridors (QBC) 277
Quinet, E. 185
rail travel
 Belgium 339
 Dublin 277, 281, 282
 London 296, 302–4
 subsidies 27–28
Railway Regulator 296
railways, privatisation 296, 303
Railways Act (1993) 303
Ramsey rules 90
regulatory versus economic policy approaches 293–94
resource costs see marginal resource costs
revenue redistribution
 income distribution 410
 infrastructure investment 410
 marginal social costs 20–21
 parking fees 40
road-use pricing 41–42, 201–2, 206, 294, 387
area-wide 203, 204
 automatic 203, 204–5
 Dublin 387
 examples 203–4
 implementation costs 409
 infrastructure tolling 204–5
 manual systems 202–3
 short-range 203
 trials 204
 video-based 203
roads
 capacity 251–53, 307
 capital costs 187
 damage costs 153–54
 infrastructure investment 45–46, 48
 maintenance costs 187
 networks 331–32
 prices 339
 Rouwendal, J. 186
 Royston, P. 176
safety
 performance 54
 regulations 46, 48
SATURN network model 195, 199
season tickets, rail travel 303–4
sensitivity tests 287–93, 409
Sharp, D. xvi
simulation versus optimisation 84, 108
 Amsterdam network model 128–29
single market, and transport policy 53
Skarstad, O. 187
Skinner, I. 135, 170, 172, 179
Small, K.A. 9, 46, 66, 135, 269
smart cards 43
Snow, A. 79
social costs see marginal social costs
spatial differentiation 237–38
spatial disaggregation 121–31, 251
speed-density function 192
speed-flow relationship 191–206, 374
 demand variation 195–96
 Dublin case study 282–83
 link-based 191–93
 London case study 308, 309
 road-use pricing 201–6
 see also congestion function
speeds
 Ireland case study 374, 381, 382
 London case study 301–2
 optimal pricing policy gains 226, 229
spillover effects, to and from abroad
 93, 102, 105–6, 107, 118, 329–30, 345, 359–60
statistical approach, to transport costing 184–85
Steer Davies Gleave 139, 280
Stratec 155
subsidies
 improved emission technologies 340
 interregional model 97, 99
 public transport 338, 339, 345, 355
 rail travel 27–28
 urban model 75
urban model (cont.)
 comparative statistics 81–83
 model versions 84
 software implementation 83–84
urban versus interregional models
 congestion pricing 57–58, 60
 uniform pricing 57–58, 60
utility function see CES utility function

Van den Bergh, J. xvi, 121, 124
Van Dender, K. xvi, 186, 230, 244
van Gent, H. 256
Van Vliet, D. 199
VAT 58, 76–77, 280, 302
vehicle costs 73–74, 188, 280, 281
vehicle taxes 38, 44, 54, 56, 302, 311
Vehicle Registration Tax (VRT) 28, 280
Verhoef, E.T. xvi, 121, 124, 261, 249, 269
VIA ratios 163, 164, 167, 351
Vickerman, R. xvi, 135, 148, 170, 172, 174, 179
Vickrey, R.E. 172
vignettes 42, 44, 58, 203, 351, 370
Vitaliano, D.F 156, 171, 172
Viton, P.A. 77
volume, traffic
 Amsterdam case study 249–251, 258, 259
 Brussels case study 224–26
generalised prices 11–13, 19
marginal social costs 13, 14, 17–18, 18–19
peak versus off-peak periods 220, 221
pollution control 22
time costs 12, 14, 34–35

Wardman, M. 188
Wardrop, J. 122
Wardrop’s principle 122, 124
Warren, R.S. 79
Waters, W.G. 39, 184, 342
welfare effects
 congestion pricing 269, 356–58, 368
cordon pricing 231–32, 265–66
emission technology regulation
 234–35, 237, 269, 318, 348–49
improved parking charges 40, 318
measuring 14–17, 15
non-cooperative behaviour 358–62
optimal social costs 18–21
partial policies 266, 269
policy package design 55–56
public transport subsidies 27
strategic behaviour 362, 370
uniform pricing 366
welfare function 113–14, 116
calibration 83
consumer welfare 98–99
correction term for tax revenue 98, 99
external costs 98, 99
interregional model 98–99
marginal cost of public funds 77–79
optimisation 66
urban model 66, 68–70, 86–87
Wildasin, D. 118
willingness-to-pay (WTP) 13, 14, 18–19, 30, 31, 139
Wilson, J. 35
Wit, J. de 256
X-inefficiency 28
Yong, J.S. 39
zoning
 Amsterdam network model 121–31, 251
 Dublin study 199–200, 278–79
 London travel 303
theoretical considerations 121–24