Index

academic research
 business research 128–9
 exploitation 122
 industrial applications 128
academic spin-offs 135–7
Academy–Industry Liaison Program 204–5
accountability, of universities 126
actions, clustering process 27, 102t, 144–6, 180
adoption policies, Mexico 198t
aeronautic cluster, Basque Country 233–5
Aeronautic Cluster ACA 234–5
Albacom 94
alignment see sociotechnical alignment
Anglo Saxon universities 127
Argentina
 competitiveness 250
 see also university/enterprise linkages
Association of Electronic and Information Technology Industries of the Basque Country 229
attitudes, to university systems 126
Auto Parts and Components Class (APC) 72
automobile industry, Mexico 72–6
Automotive Cluster Working Group 226–7
Automotive Industry Components Cluster 227–8
Backus & Johnson 256
Basque Country
 aeronautic cluster 233–5
 automotive cluster 226–8
 business knowledge cluster 239–40
 cluster definition 217
 collaboration agreements 224
 Competitiveness Program 218–20
 electric goods cluster 235–7
 energy cluster 237–8
 environment industries cluster 231–3
 Industrial Technology Plan 220–2
 INTEK Program 225
 machine tools industry cluster 230–1
 Port of Bilbao cluster 238–9
 results, cluster policy 242
 Science and Technology Plan 222–4
 sociotechnical constituencies 240–2
 statistical data 243–6
 telecommunications cluster 228–9
 Basque Technology Network 224–5
 best practice, telematics development 115
biotechnology
 Cuba 175–82
 university/enterprise linkages 155–65
 books, innovative inputs 162
Brazil
 competitiveness 250
 see also university/enterprise linkages
business focus, ICT industry, Rome 97
Business Knowledge Cluster 239–40
business networks, Scotland 39–40
Business Process Reengineering with Object-oriented Methodology for Information System Engineering
 see TBP/PROMISE
business research 128–9
business service centers, Peru 275–7
business structure, Peru 258, 259f
CAPITALS 108t
Center of Genetic Engineering and Biotechnology (CIGB) 176–7
chance, Progetto Link 143
Chile, see university/enterprise linkages
CICERO 106t
Cittadella, Pisa 141
CITExcell 277–9
CITEMadera 279

291
Index

CITES 273, 274, 277–83
Cluster Technology Committees 220
Cluster Technology Plan 229, 231, 233, 236–7
clustering
depth and sustainability of 33–5
diamond of alignment 27–33
sociotechnical alignment 24–6
see also electronic clustering
clusters see industrial clusters; multimedia clusters; scientific-productive clusters
codification, of knowledge 59
collaboration 124
collaboration agreements 224, 241
Colombia, see university/enterprise linkages
companies
ICT industry, Rome 94, 95, 96
knowledge-based activities 126–7
Progetto Link 144
competition policies, Mexico 198t
Competitive Advantage of Nations, The 217
competitiveness 248–9
asymmetry of information 190
ICT industry, Rome 97
international 249–50
Italian companies 129
knowledge networking 65
Latino America 250–83
Porter’s determinants 17–18
Competitiveness Program 218–20, 226, 228, 230
COMPOLYC 259
Comunidad Portuaria de Bilbao 239
CONACYT 197, 204
CONCYTEC 261
CONFIEP 259
consensual alignment 25
Consensus Committee for Competitiveness, Innovation and Quality (MECIC) 268
constituency-building
Eurolaboratorio 101–19
Lazio region 88–101
Rome, theoretical framework 86–8
Scottish Enterprise 36
constituents’ perceptions, goals, actions and resources
clustering process 27
Cuba 180
Eurolaboratorio 102t
Progetto Link 144–6
constitutive unity, policymaking 192
contract research 137–8
control, of resources 123–4
cooporation
diffusion of innovation 64
economic, Cuba 170
inter-enterprise, Peru 259
technological, Latin America 70
cost-structure, Scottish 43
Council on Competitiveness 125
Council of Science and Technology see CONCYTEC
crisis areas, science and technology parks 133
Cuba
biotechnology and pharmaceutical cluster 175–82
economy 169–70
scientific and productive clusters 217
technological innovation 168
Technological Innovation System 171–4
cultural factors, Scottish electronic clustering 42, 48t
Cultural Information Computer Exchanged and ROUTed see CICERO
demand conditions
CTIS biotechnological/pharmaceutical SPC 178–9
Lazio ICT sector 98–9t
national competitiveness 18
Progetto Link 142–3
Scottish electronics 46
demand-side approach, university/enterprise linkages 156, 158–61
depressed areas, science and technology parks 133
depth
clustering processes 33–5
electronic clustering, Scotland 37–40
Design of Policy Instruments 261
diamond of alignment 27–33
CTIS biotechnological/pharmaceutical SPC 180–1
Index

Progetto Link 144–50
Scottish electronics 48–9t
diamond of competitiveness 17–18
diffusion, of innovations
changes in 123
cooperation 64
see also knowledge diffusion
dirigist model, science and technology
parks 132
doctorates, Peru 257, 258f
domestic environment, SIPAN 273
DROKASA 256
eco-industry, Spain 232
economic approach, analysis of innovation 2
economic development 56–7
economic opportunities, science and
research 125
economies
Cuba 169–70
knowledge networks 63
knowledge-based 57, 58, 59–60
Lazio 90–1
Mexico 208
Rome 92–3
see also knowledge economy
economies of scale, knowledge net-
works 63
education
competitiveness 273–4
Latin America 252
Lazio 90
Mexico 208
Scotland 46–7
see also higher education
electric goods cluster, Basque Country
235–7
Electrical Goods Cluster of the Basque
Country (ACEDE) 236
electronic clustering, Scotland 35–50
capabilities 26
concluding remarks 45–50
cultural factors 42
depth of 37–40
development of 15
governance 42
organizations 40–1
overview 36–7
shaping 41–2
social consensus and policy instru-
ments 44–5
structural positioning, global
economy 42–4
Energy Cluster of the Basque Country
237–8
entrepreneurs
Scottish 42
spin-off companies 137
evironment industries cluster, Basque
Country 231–3
environmental management, Peru 261
EQUALITY 106t
equilibrium approach, science and
technology policies 188–9
ETHOS 108t, 111, 114
Eurolaboratorio 85
alignment conditions 102–4t
birth, vision and early successes
104–5
conclusions 119–20
constituency-building 88, 101–2
European projects 106–9t
inter-organizational crisis 110
intra-organizational crisis 109–10
political governance 118–19
Rome I 111–14
Rome II 115–18
telematics strategy making 110–11
Europe, university systems 127
European projects, Eurolaboratorio 105,
106–9t
European Telematics Horizan
tal Observatory Service see ETHOS
evolutionary approach, technological
innovation 3, 4, 189–91
evolutionary path, universities 125–9
exchange attitude 124
expertise, management of 1, 5–6
exploitation, university research 122
exports
with high technological contents
251t
Mexico automobile industry 73
Extending Quality Urban service for
Added-value Living using Interac-
tive Telematics systems see
EQUALITY
external environment, innovation and
competitiveness 271–3
external sources, innovation 157t, 158–61
externality
knowledge flows 64
market failures 189, 190
factor conditions
CTIS/biotechnological/pharmaceutical SPC 177–8
Lazio–Rome 98t
national competitiveness 18
Progetto Link 142
Scottish electronics 46
Fiat 130–1
financial resources, university research 126
financial sector
Cuba 177–8
Lazio–Rome 98t
Progetto Link 142
Scottish electronics 46
financial tools, SIPAN 281–3
firm strategy
competitiveness 65–6
Cuba 180
innovative process 61–2, 156–7
Lazio–Rome 97, 100t
national competitiveness 17–18
Progetto Link 143
Scottish electronics 47
firms
growth and competitiveness of 1
knowledge generation, Mexico 204–5
management of expertise 5–6
and NSI 62
focalized technology policies 265, 266
footwear, CITEcal 277–9
foreign direct investment (FDI)
Cuba 170
Latin America 69–70
Scottish electronics 36, 37–9, 41, 43, 44, 50
formal linkages, university/enterprise 160, 163
Forum for Science and Technology 171–2
furniture, CITE 279
GAMESA 233
gatekeeping 158
global economy, Scottish electronics 42–4, 48–9t
globalization
production and knowledge 66–76
technological spillovers 123
Gloria 256
goals, clustering process 27, 102t, 144–6, 180
governance
clustering process 28
constituency-building 23
Cuba 181
Eurolaboratorio 88, 102–3t, 104t, 118–19
Progetto Link 143, 147
Scottish electronic clustering 42, 45, 49
gross domestic product (GDP)
Cuba 169
Lazio 90
Mexico 208, 209f
patents and R&D 58–9
growth strategies, ICT industry, Rome 95–6
health care, Cuba 174
Heber Biotec 176
hierarchical system, innovation and competitiveness 270f
higher education, Peru 257, 258f
horizontal technology policies 265–6
human resources, Cuba 173–4
import substitution model 194, 197, 251
incentives
clustering and strategic alliances 65
innovation, Latin America 67–72
increasing returns, knowledge networks 63
INDECOPI 261
individuals, tacit knowledge 61
indivisibilities, market failures 189
Industria de Turbo Propulsores 234
Industrial Association Confindustria 90
industrial classes, Mexico automobile industry 72–3
industrial clusters
Basque Country 217–40
development of competitive 15
macro level, innovation 1–2
Index

and NSI 17–18
NSI and sociotechnical constituencies 18–33
industrial decline areas, science and technology parks 133
industrial districts, science and technology parks 133
industrial liaison offices 134–5
industrial policy
Basque Country 240–2, 242
Instruments, Mexico 196, 197
industrial research
benefit of university research 128
globalization of 67
Italy 91–2, 130
Industrial Technology Plan 218, 220–2
industrialization, Latin America 194–5
industry
Cuba 169–70
Italian 130–1
Lazio-Rome 90–1, 93–4, 100t
Mexico 203–4, 205
Peru 260t
see also automobile industry
influences, sociotechnical alignment 25–6
informal linkages, university/enterprise 160, 161, 163
information
diffusion of 60
distinguished from technology 61
information and communications technology (ICT), Rome 94–101
information society 59
INFOSIEM 283
Infostrada 94
infrastructural dimension, science and technology parks 132
innovation
categories of 2–3
competitive advantages 248–52
diffusion 64, 123
ICT industry, Rome 97
Italian companies 92
Latin America 67–72
Peru 254–5
policy, Peru 264–9
systemic approach to 1
universities as external source of 158–61
see also national innovation systems; technological innovation
innovative inputs
biotechnology, Latin America 161–5
firm level 156–8
Institutional Environmental Strategic Plan 261
institutional frameworks, innovation 68
Institutions
National Researchers System 212
science and technology, Peru 273–4
intangibles 66
integrated system, innovation and competitiveness 270f
INTEK Program 225
inter-industry differences, cluster formation 20
inter-organizational crisis,
Eurolaboratorio 110
inter-organizational level
constituency-building 28, 29f, 30
sociotechnical alignment 24–6
inter-organizational relationships
cluster sustainability 33–5
Cuba 180
Lazio-Rome 100t
Peru 259
Progetto Link 143
Scottish electronics 47
SIPAN 273
interaction
between social constituents 21–4
technologies/constituencies 30–1, 103t, 148–9, 181
interfaces, SIPAN 274–5
internal sources, innovation 156, 157t
international competitiveness 249–50
internationalization process 65–6, 77
Roman electronic companies 96
intra-organizational crisis,
Eurolaboratorio 109–10
intra-organizational level, constituency-building 28, 29f, 30
INVEMA 231
inventors, knowledge 61
Italy, role of universities 129–50
contract research 137–8
industrial liaison offices 135
Lazio 92
Index

Progetto Link 138–50
research marketing 134–5
science and technology parks 132–4
spin-off companies 135–7
see also Lazio

know-how 59
know-what 59
know-why 59
knowledge
different kinds 59
economic approach to innovation 2
economic performance 58–9
as finished product 127–8
inventors 61
management of expertise 6
public good nature of 191
scientific 159, 199
knowledge capital 33
knowledge diffusion
automobile industry 74
economic process 60
knowledge economy 122–5
knowledge generation
Mexico 203, 204–5
SIPAN 273–4
systemic nature of innovation 207
Knowledge and Innovation Program
199, 203, 204
knowledge networks
automobile industry 74
benefits of innovation 63–4
clustering 33, 35
economic improvement 57
economics of 65–6
and innovation systems 63, 76–7
institutions 126
Scottish electronic clustering 37,
39–40, 41–2, 43
knowledge society 126
knowledge-based activities 126–7
knowledge-based economies
distinguishing knowledge 59–60
economic improvement 57
terminology 58

Labor Training Fund 275–7
laboratories, Scuola Superiore 147
Latin America
changes in economies 57

competitiveness 250–2
incentives, innovation and networking
67–72
R&D, firm level 158
science and technology policy design
193–5
transfer of technology offices 155
university/enterprise linkages 160,
161–5
see also Mexico; Peru
Lazio
economic and industrial structure
90–1
general characteristics 89–90
research and technology development
91–3
restructuring 91
Roman economy 92–3
lean production model, Scottish
electronics 38, 39
learning
cluster/NSI development 33
innovation systems 16
process of 59–60
leather and footwear, CITEccal 277–9
legislation
clustering process 28
interaction, social constituents 23
liberalization
acquisition of technology 71–2
science and technology policy,
Mexico 197–9
technical capacities 77
transition to, Mexico 196–7
local consultancies, inputs from 162–3
Local Enterprise Companies (LECs),
Scotland 44–5
local initiatives, replicating 149–50

Machine Tool Experimental Institute
231
machine tools industry cluster, Basque
Country 230–1
macro level
Eurolab constituency-building 119
innovation 1
innovation, Peru 268
MAGICA 107t
manufacturing, Scottish electronics 36,
43

Roberto López-Martínez and Andrea Piccaluga - 9781781952795
Downloaded from Elgar Online at 01/25/2019 05:31:29AM via free access
Index

Manufacturing and Assembly of Motor Vehicles (MAMV) 72, 74
manufacturing poles, science and technology parks 133
maquiladora operations 70–1
maritime sector, Basque Country 238–9
market failures
generic sources 189, 190
policy measures 187, 188
market orientation, universities 135
market standards, interaction, social constituents 23–4
markets, ICT industry, Rome 95
master's degrees, Peru 257, 258f
maturity, of technology clustering 27
Cuba 181
Eurolaboratorio 102t
Progetto Link 146–7
medium-sized companies, Roman electronics 95–6
meso level, innovation 2
Peru 268–9
Mexico
automobile industry 72–6
economic activity 208
education 208
foreign direct investment 70
National Researchers System 212
population 208
productivity 250
science and technology policies absence of 187
conclusion 206–8
elements connectivity 203–5
elements of the system 203
liberalization period 197–9
problematic aspects 199–202
studies 195–6
system performance 205–6
transition to liberalization 196–7
scientific research subsystem 208, 209f, 210f, 211f
micro level
Eurolab constituency-building 119
innovation 1
innovation, Peru 269
micro-macro approach, synthesis of 2
microfluidics, Scuola laboratories 147
Ministry of University and Scientific and Technological Research see MURST
MINTOUR 107t
MIRTI 107t
MIRTO 106t, 109
misalignment 25
mission
Peru NSI 265–7
university institutions 135
MITINCI 261, 277
Models of Industrial Relations in Telework Innovation see MIRTI
Mondragón Corporación Cooperativa (MCC) 235
Multimedia AGent-based Interactive Catalogues see MAGICA
multimedia clusters development of 24
diamond of alignment 29f
Scottish capabilities 26
Multimedia Information Network for TOURism see MINTOUR
Multimedia Interaction with Regional and Transnational Organizations see MIRTO
multinational enterprises (MNEs), Latin America 68, 69–70
MURST 146, 149
National Council of Science and Technology see CONACYT
national factors, innovation systems 17
national innovation systems (NSI)
16–17, 249
clusters and sociotechnical constituencies 18–33
conceptualizations 4
development of competitive 15
industrial clusters 17–18
Italy 130–1
macro level 1–2
nature of 60–3
Peru see Peru
research work 5
science and technology policies 192–3, 203–6
see also clustering; NSI cluster
diamond; STC/NSI approach
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Network of Service Centers</td>
</tr>
<tr>
<td>275–7</td>
</tr>
<tr>
<td>National Researchers System</td>
</tr>
<tr>
<td>211f, 212</td>
</tr>
<tr>
<td>National Survey of Demographic</td>
</tr>
<tr>
<td>Dynamics 208</td>
</tr>
<tr>
<td>nationality, innovation process 62</td>
</tr>
<tr>
<td>nature</td>
</tr>
<tr>
<td>of innovation 2–3</td>
</tr>
<tr>
<td>of NSI 60–3</td>
</tr>
<tr>
<td>nature of technology</td>
</tr>
<tr>
<td>clustering process 27</td>
</tr>
<tr>
<td>Cuba 181</td>
</tr>
<tr>
<td>Eurolaboratorio 102t</td>
</tr>
<tr>
<td>Progetto Link 146–7</td>
</tr>
<tr>
<td>network model, science and technology</td>
</tr>
<tr>
<td>parks 132–3</td>
</tr>
<tr>
<td>networks see Basque Technology</td>
</tr>
<tr>
<td>Network; knowledge networks; university/enterprise linkages</td>
</tr>
<tr>
<td>non-integrated system, innovation and competitiveness 270f</td>
</tr>
<tr>
<td>nonalignment 25</td>
</tr>
<tr>
<td>Northern Europe, university systems 127</td>
</tr>
<tr>
<td>NSI/cluster diamond 18–26, 32</td>
</tr>
<tr>
<td>CTIS biotechnological/pharmaceutical SPC 177–80</td>
</tr>
<tr>
<td>Eurolaboratorio 102–4</td>
</tr>
<tr>
<td>Lazio-Rome ICT 97–101</td>
</tr>
<tr>
<td>Progetto Link 141–3</td>
</tr>
<tr>
<td>Scottish electronics 46–7t</td>
</tr>
<tr>
<td>Oferta Tecnológica 234</td>
</tr>
<tr>
<td>Omnitel ProntoItalia 94</td>
</tr>
<tr>
<td>opponents, innovative policy 140</td>
</tr>
<tr>
<td>optimal cycle, globalization 69</td>
</tr>
<tr>
<td>organizations</td>
</tr>
<tr>
<td>knowledge generation, Mexico 204–5</td>
</tr>
<tr>
<td>Scottish electronic clustering 40–1, 47</td>
</tr>
<tr>
<td>tacit knowledge 61</td>
</tr>
<tr>
<td>university research systems 127</td>
</tr>
<tr>
<td>outcomes</td>
</tr>
<tr>
<td>innovation 3</td>
</tr>
<tr>
<td>knowledge networks 77</td>
</tr>
<tr>
<td>partnerships, strategic 66</td>
</tr>
<tr>
<td>population, Mexico 208</td>
</tr>
</tbody>
</table>
Index

Port of Bilbao Cluster 238–9
postgraduate programs, Peru 257, 258f
power relations
sociotechnical alignment 25–6
STCs 22–3
privatization, of universities 137
problem solving activities, innovation 60–1
production
automobile industry, Mexico 75–6
expense of globalization 66
globalization, Latin America 68–72
of knowledge 122–5
Progetto Link 138–50
PROMPEX 261, 277
propriety, of resources 123–4
Protocolo Eléctrico 237
public knowledge, innovative activities 61
public research centers, Mexico 204
public research organizations 125
public sector
CTIS biotechnological/pharmaceutical SPC 178–9
Lazio ICT sector 98–9t
Progetto Link 142–3
Scottish electronics 46–7
publications, innovative inputs 162
realignment 25
regional innovation 207
regulation, diffusion of innovation 64
related and supporting industries
CTIS/biotechnological/pharmaceutical SPC 179
Lazio-Rome 99–100t
national competitiveness 18
Progetto Link 143
Scottish electronics 47
research
economic opportunities 125
marketing 134–5
NSI 5
system, universities 124, 127–9
see also contract research; industrial research; scientific research
research and development (R&D)
Basque Country 225, 243–6t
correcting market failures 189
Cuba 173, 179
globalization 67
growth GDP 58–9
in-house 157
Italy 130
knowledge and technology 61
Latin America 195
Lazio 91–3, 97, 99–100t
Mexico 204, 208, 210f, 212
Peru 255, 266
pharmaceutical companies 159
Progetto Link 143
riskiness of 66
Scottish electronics 43, 44, 47
technological knowledge 191
researchers
accredited, NRS 212
foreign, innovative inputs 163
personal contact with 162
resources
clustering process 27, 102t, 144–6, 180
constituency-building process 22
propriety and control of 122–3
see also financial resources; human resources
restructuring, Lazio 91
risk-averse culture, businesses, Scotland 42
Rome, constituency-building, telematics 85–119
Rome I
impact of 114–15
telematic activities 111–14
Rome II
networking process 115
strategy-making process 116–18
Rome Telematics Strategy see Rome II
science policies, industrialized countries 193
science and technology
institutions, SIPAN 273–4
Peru 255–7
science and technology parks 132–4
Science and Technology Plan 218, 222–4, 241
science and technology policies
design, Latin America 193–5
equilibrium approach 188–9
evolutionary approach 189–91

Roberto López-Martínez and Andrea Piccaluga - 9781781952795
Downloaded from Elgar Online at 01/25/2019 05:31:29AM via free access
<table>
<thead>
<tr>
<th>Scientific and Technological Policy Committee</th>
<th>seeCOMPOLCYT</th>
</tr>
</thead>
<tbody>
<tr>
<td>scientific-productive clusters 171–2, 174–5</td>
<td></td>
</tr>
<tr>
<td>biotechnology and pharmaceutical</td>
<td></td>
</tr>
<tr>
<td>175–82</td>
<td></td>
</tr>
<tr>
<td>Scotland, electronic clustering</td>
<td>see</td>
</tr>
<tr>
<td>electronic clustering</td>
<td></td>
</tr>
<tr>
<td>Scottish Electronics Forum (SEF) 40–1, 44</td>
<td></td>
</tr>
<tr>
<td>Scottish Enterprise (SE) 36, 44, 45, 49</td>
<td></td>
</tr>
<tr>
<td>Scuola Superiore Sant’Anna, Progetto Link 138–50</td>
<td></td>
</tr>
<tr>
<td>SENER 234</td>
<td></td>
</tr>
<tr>
<td>shaping, Scottish electronic clustering</td>
<td>36, 41–2</td>
</tr>
<tr>
<td>SIPAN</td>
<td></td>
</tr>
<tr>
<td>business service centres 275–7</td>
<td>conclusion 283–5</td>
</tr>
<tr>
<td>external environment 271–3</td>
<td>interfaces 274–5</td>
</tr>
<tr>
<td>system structure 269–7</td>
<td>small and medium-sized enterprises (SMEs)</td>
</tr>
<tr>
<td>Lazio 90–1, 92, 98</td>
<td></td>
</tr>
<tr>
<td>Scottish electronics 37, 38, 39–40</td>
<td>small and micro enterprises (SmEs)</td>
</tr>
<tr>
<td>business service centres 275–7</td>
<td></td>
</tr>
<tr>
<td>social consensus, Scottish electronic</td>
<td>clustering 44–5, 49t</td>
</tr>
<tr>
<td>clustering</td>
<td></td>
</tr>
<tr>
<td>social constituents, interaction between</td>
<td>21–4, 140</td>
</tr>
<tr>
<td>21–4, 140</td>
<td>society, university systems 126</td>
</tr>
<tr>
<td>Society for the Management of Purchases 231</td>
<td></td>
</tr>
<tr>
<td>sociotechnical alignment</td>
<td>clustering 24–6</td>
</tr>
<tr>
<td>clustering</td>
<td>micro level, innovation 1</td>
</tr>
<tr>
<td>see also diamond of alignment</td>
<td></td>
</tr>
<tr>
<td>sociotechnical constituencies (STC) Basque Country 240–2</td>
<td></td>
</tr>
<tr>
<td>macro-macro level approach 2</td>
<td></td>
</tr>
<tr>
<td>NSI and cluster approaches 18–33</td>
<td></td>
</tr>
<tr>
<td>science and technology policies 193</td>
<td></td>
</tr>
<tr>
<td>technological innovation 5</td>
<td></td>
</tr>
<tr>
<td>software industry, Scotland 47</td>
<td></td>
</tr>
<tr>
<td>Sogedac España 227</td>
<td></td>
</tr>
<tr>
<td>sources, of innovation 3, 156–8</td>
<td></td>
</tr>
<tr>
<td>Southern Europe, university systems 127</td>
<td></td>
</tr>
<tr>
<td>Spain, clusters 217</td>
<td></td>
</tr>
<tr>
<td>see also Basque country</td>
<td></td>
</tr>
<tr>
<td>Spanish Association of Machine Tool</td>
<td></td>
</tr>
<tr>
<td>Manufacturers (AFM) 230–1</td>
<td></td>
</tr>
<tr>
<td>specialization, of knowledge 60, 76</td>
<td></td>
</tr>
<tr>
<td>spending, in Scotland 36–7</td>
<td></td>
</tr>
<tr>
<td>spin-off companies, academic 135–7</td>
<td></td>
</tr>
<tr>
<td>spontaneous model, science and technology</td>
<td></td>
</tr>
<tr>
<td>parks 132</td>
<td></td>
</tr>
<tr>
<td>state, role of, Peru 259–61</td>
<td></td>
</tr>
<tr>
<td>State Science and Technology Councils 207</td>
<td></td>
</tr>
<tr>
<td>steel industry, Latin America 74–5</td>
<td></td>
</tr>
<tr>
<td>Strategic Telematics Developments in the City of Rome see Rome 1 strategies</td>
<td></td>
</tr>
<tr>
<td>networking and alliances 66</td>
<td></td>
</tr>
<tr>
<td>NSI, Peru 265–7</td>
<td></td>
</tr>
<tr>
<td>see also firm strategy</td>
<td></td>
</tr>
<tr>
<td>structural positioning, Scottish electronic</td>
<td>clustering 42–4, 48–9t</td>
</tr>
<tr>
<td>clustering</td>
<td>sub-process, industrial clusters 21</td>
</tr>
<tr>
<td>IT industry</td>
<td>supplier-customer relations, ICT</td>
</tr>
<tr>
<td>Rome 96</td>
<td>industry, Rome 96</td>
</tr>
<tr>
<td>supply policies, Mexico 198t</td>
<td>supply-side approach, university</td>
</tr>
<tr>
<td>knowledge production 155</td>
<td></td>
</tr>
<tr>
<td>sustainability</td>
<td>clustering processes 33–5</td>
</tr>
<tr>
<td>industrial strategy 15</td>
<td></td>
</tr>
<tr>
<td>Sweden, university research system 127</td>
<td></td>
</tr>
<tr>
<td>SWOT analysis, Peru 261–4</td>
<td></td>
</tr>
<tr>
<td>system failures</td>
<td>policy design 193</td>
</tr>
<tr>
<td>STC/NSI approach 6</td>
<td></td>
</tr>
<tr>
<td>systemic approach, innovation 1</td>
<td></td>
</tr>
<tr>
<td>tacit knowledge 59, 61</td>
<td></td>
</tr>
<tr>
<td>target constituents’ perceptions and</td>
<td></td>
</tr>
<tr>
<td>pursuits</td>
<td>clustering process 29–30</td>
</tr>
<tr>
<td>Cuba 181</td>
<td></td>
</tr>
</tbody>
</table>
Index

Eurolaboratorio 103t
Progetto Link 148
target problem
biotechnology 181
clustering process 28–9
Eurolaboratorio 103t
Progetto Link 148
taxonomies
of innovation 3
university/enterprise linkages 159
TBP/PROMISE 107–8t
technical constituents 21, 140
technical standards, interaction, social
constituents 23–4
technical universities 159
tecnological communities, cluster
formation 20–1
technological convergence, Latin
America 74–5
technological innovation
centers see CITES
Cuba 168
evolutionary approach 3, 4, 189–91
growth of firms 1
INTEK Program 225
sociotechnical constituencies ap-
proach 5
technological knowledge 191
Technological Specialization Index 250
technological spillovers, globalization
123
technologies/constituencies, interacting
clustering process 30–1
Cuba 181
Eurolaboratorio 103t
Progetto Link 148–9
technology
clustering process 27, 102t, 146–7, 181
distinguished from information 61
scientific knowledge 199
see also biotechnology; science and
technology
technology fusion 123
Technology Innovation System, Cuba
171–4
Technology Management and Policy
Program 140

Technology Strategy in the Machine
Tools Sector 230
technology transfer 127
Technology Transfer Register 197
Telecities conference 115
Telecom Italia 94
telecommunications
cluster, Basque Country 228–9
Rome 94–101
telecommunications, constituency-building, Rome
85–119
territorial innovation, Progetto Link 141
textiles, CITE 282
timber, CITE 279
tourism, Cuba 169, 170
Training and Technical Assistance
Bonds system 275–7
transfer of technology offices 155
transformation activity, technology
transfer 127
Tuscany 146
uncertainty
innovative solutions 60–1
market failures 189, 190
new multimedia technologies 24
United States
industrial interest, universities 138
university research system 124, 127
university-enterprise linkages 161
universities
evolutionary path 125–9
ICT industry, Rome 97
Italy see Italy
knowledge economy 124–5
Latin America 71, 252
Scottish electronic clustering 41
university/enterprise linkages
biotechnology 155–65
Latin America 251–2
Uruguay, see university/enterprise
linkages
venture capital, ICT industry, Rome
95–6

Wind 94