Index

adaptation 60, 63, 65–6
Africa
economic decline 231
Fynbos vegetation 6, 152–80
characteristics 153–5
control of invasive aliens 174–80
ecological–economic impact of
invasions 157–74
invasion by alien plants 155–7
invasive species in African lakes 183–205
fish introductions 183–95, 204
water weeds 195–204, 205, 218
mango mealybug (Rastrococcus
invadens) control 215–16, 218
tropical rain forests 138–48
distribution and ecology of
Maesopsis eminii 140, 141–5
existence values 145–7
Agee, M. 66
agriculture 230
habit disturbance and 23, 25
impact of rabbits on 118, 129–30
invasive species and 1–2
weed invasions see weed invasions
of Australian farming systems
AIDS/HIV 32, 36
Akerlof, G.A. 52
Akinyemiju, O.A. 202
Albert, Lake 190
Alimi, T. 202
Anaman, K.A. 5
anchovy fisheries, case study of
introduction of Mnemiopsis leidyi
in the Black Sea 71, 79–89, 231–2
Anderson, I. 117, 119, 120, 132
Anderson, L.G. 214
Anderson, R.M. 36
Andrew, M.H. 119
Annal, G. 94
Argentina 56
Asgari, S. 121
Auld, B.A. 94, 95, 209, 222
Auld, T.D. 119
Australia 209, 212, 218
infectious diseases in 32
rabbits in 117, 118–19
myxomatosis in 119–20, 131
rabbit calicivirus disease (RCD) as
control agent 120–30, 131–3
weed invasions see weed invasions
of Australian farming systems
Axelrod, D.I. 142
bacteria 32
Balinsky, B.I. 141
Bangsund, D.A. 5
Barlow, N.D. 122
Becker, G. 57
bees 163–4, 170–71
Bell, N. 139
Bellingham, P.J. 139
benefit–cost analysis see cost–benefit
analysis
Benin 197
Bensted-Smith, R. 145
Beverton, R.J.H. 85
Bikangaga, S. 198, 201, 202
Binggeli, P. 138, 140
biocontrol see control methods
biodiversity
conservation policies 238
Convention on Biological Diversity
(CBD) 3, 59
economic valuation of 4
existence values 146–7
Fynbos vegetation 152, 153, 171–2
invasive species and loss of 1–2, 17, 58
tropical rain forests 138, 139–40
Bishop, R.C. 76
Black Sea, Mnemiopsis leidyi case study
71, 79–89, 231–2
The economics of biological invasions

Boardman, A.E. 146
Bolivia 32
Bossi, E.L. 157
Bowman, D. 97
Boycott, J.A. 32
Braithwaite, R.W. 123
Brazil 32
Brennan, J.P.M. 143
Breysiers, S. 62
Bridgeman, D.H.M. 170
Bright, C. 2
Brown, G. 76
Brown, V.K. 2
Bruenig, E.F. 146
Bruton, M.N. 185
buchu 159, 162
Bunday, A. 188
Burdon, J.J. 31
Burgers, C.J. 169, 170
Burnet, M. 32, 34

Caddy, J. 79
Cameroon 6
Canada 217
Carey, J. 61
Carlton, J. 57, 60
Caswell, H. 19
Cattlin, P.C. 123, 128
Central Intelligence Agency (US CIA) 20
Chapman, R.A. 167
Chitanwamba, D.B.R. 186, 187, 188
cholera 35, 45
Clark, C.W. 76, 81, 82, 83
climate zones
Africa 141–2
biological invasions and 19, 25
Climex 220
Clout, M. 17
Cociasu, A. 85
cognitive dissonance 52
Cohen, A. 5, 57
comb-jelly (Mnemiopsis leidyi) case study 71, 79–89, 231–2
Commonwealth Agricultural Bureau International (CABI) xiii
Commonwealth Scientific and Industrial Research Organization (Australia CSIRO) 94, 118, 119, 120, 122, 123, 131, 212

Congo
fish introductions in 194
water hyacinth in 196
Connell, J.H. 19
Conrad, J.M. 81
control methods 228
control of invasive aliens in Fynbos vegetation 174–80
evaluation in 208–21
ex-ante evaluations 209–14, 233–7
non-economic effects 215–16
social cost–benefit analysis (SCBA) 214–15
infectious diseases 39–50
cure 43–5
economic growth 45–7, 53–4
individual adaptive behaviour 47–9, 54
population movement 49–50
vaccination 35, 39–42, 51, 53
rabbit calicivirus disease (RCD) as control agent 120–30, 131–3
water weeds 201–4, 218
weed invasions of Australian farming systems 107–9
Convention on Biological Diversity (CBD) 3, 59
Conway, G.R. 215, 216
Cooke, B.D. 119, 120, 122, 130
Cooke, S. 197, 200, 201, 202, 203, 218
Coote, B.G. 94, 95
cost–benefit analysis 209–14, 233–7
rabbit calicivirus disease (RCD) as control agent 122–30
social cost–benefit analysis (SCBA) 214–15
Costanza, R. 165
Cousens, R. 95, 109
Cowin, P.E. 118
Cowling, R.M. 152, 159, 160, 162, 171, 172, 178
Cowx, I.G. 190, 191
Cox, M. 131
Cranston, R. 217
Crawley, M.J. 19
Crocker, T. 58, 62, 63
Cronk, Q.B. 139
Cruickshank, R. 32, 33, 34
cryptogenic species 60
Cullen, J.M. 215, 216, 217, 218
Czech, B. 1
Daily, G. 6
Dale, I.R. 144
DANIDA 145
Davey, B. 31, 34, 35
de Finetti, B. 59
de longh, H.H. 191, 193, 194
de Kroon, H. 95
Deacon, J. 166
Dean, W.R. 156, 175, 177
DeBach, P. 209, 216
degnbol, P. 185
Delfino, D. 40, 47
Devine, R. 2
Dickens, W.T. 52
Dincer, A.C. 79, 87
direct use values 159–66
diseases
control of 39–50
economics of 4–5
see also infectious diseases as
biological invasions
disturbances see habitat disturbances
Douglas, G.W. 118
Dowling, P.M. 97
Doyle, C. J. 95
Drake, J.A. xiii, 70
dread 234–7
Drèze, J. 59
du Vair, P. 234
Dudgeon, D. 57
Duff, J.P. 120
Dunn, A.M. 129
economic activities
biological invasions and 18, 19, 23, 25, 26–7, 229–31
control of infectious diseases and
economic growth 45–7, 53–4
data on 20, 22
habitat disturbances and 19–20, 26
impact of rabbit calicivirus disease
(RCD) 128–30
economics of biological invasions 3–7, 62–3, 227–9
economic activities and 18, 19, 23, 25, 26–7, 229–31
economic factors affecting vulnerability to biological invasions 17–27
evaluation of biological control
methods 208–21
benefit–cost analysis 209–14
ex-ante evaluations 217–20
limitations of social cost–benefit
analysis (SCBA) 214–15
non-economic effects 215–16
fish introductions in African lakes 193–5
Fynbos vegetation 164–5, 166, 170–71, 173–4
theoretical model 71–8
case study of Mnemiopsis leidyi in
the Black Sea 71, 79–89, 231–2
water hyacinth control 201–4
ecosystems
Fynbos vegetation 166–70
impact of rabbit calicivirus disease
(RCD) on 122–8
invasive species and 2, 6
Egging, W.J. 144
Egypt
infectious diseases in 37
water hyacinth in 196, 203
Ehrlich, I. 57
Eloff, P.J. 170
Elton, C. 56
endogenous risk theory 56, 58–62
implications for biological invasions 62–6
epidemiological process 35–8
Etter, R.J. 19
existence values
Fynbos vegetation 172–3
tropical rain forests 145–7
externalities 6–7, 17, 27, 51
Faden, R.B. 142
Federal Register (US) 62
Fenner, F. 120, 131
Fenton, R. 143
fertility control 132
FINNIDA 145
fish
case study of introduction of
Mnemiopsis leidyi in the Black
Sea anchovy fisheries 71, 79–89, 231–2
The economics of biological invasions

fish introductions in African lakes 183–95, 204
determinants of 185
economic implications 193–5
general effects 185–6
Nile perch 56, 186–90, 204
Tanganyika cluiped 190–93, 204
tilapiine species 186–90, 204
water weeds and 198, 199, 202
Fisher, R.A. 111
Fitter, A. 61, 234
flower industry 160–62, 172
Food and Agricultural Organisation (FAO) 20, 183, 220
forests
impact of rabbits on 119
tropical 138–48
distribution and ecology of *Maesopsis eminii* 140, 141–5
existence values 145–7
Fourie, T.G. 172
Freckleton, R.P. 95, 111
Friis, I. 140, 145
Frith, H.J. 119
Fuller, H.E. 130
Fuller, J.L. 139
fungi 33
Fynbos vegetation 6, 152–80
characteristics 153–5
control of invasive aliens 174–80
justification 176–80
methods, costs and strategies 174–6
ecological–economic impact of invasions 157–74
invasion by alien plants 155–7
gastro-enteritis 32
General Agreement on Tariffs and Trade (GATT) 230–31
genetic information, costs of loss of 5–6
Geoffard, P.Y. 39–40
Ghana 197
Gibson, L.M. 130
Global Biodiversity Assessment 237–8
Global Environmental Facility 238
Global Invasive Species Project (GISP) xiii-xiv, 2–3
Glowka, L. 1
Gonzalez-Andujar, J.L. 112
Goodall, A. 117
government and the state, need for regulation for infectious diseases control 50–53, 54
Graham, C.R. 119
Greathead, A.H. 208
Greathead, D.J. 208, 209, 216
Gréboval, D.F. 186
Greenway, P.J. 143, 144
Greer, G. 217
Griffiths, M.W. 208
Grimes, A. 139
Grosholz, E. 61
Group of Experts on the Scientific Aspects of Marine Environment Protection (GESAMP) 79, 81, 89
Groves, R.H. 94
Grundy, T.P. 212
GTZ 145
habitat disturbances
biological invasions and 19, 23, 25, 26, 227, 237
rainforests 139, 140, 145
economic activities and 19–20, 26
Haines, Y. 61
Halle, N. 143
Hamilton, A.C. 140, 142
Hannesson, R. 76
Hansen, J.R. 214
Hardy, A. 33
Harris, C.K. 194
Harris, C.M. 144
Harris, P. 217, 220
Harvey, Y.B. 141
Hastings, A. 61
Henzell, R. 118, 129
Heywood, V. 2, 4, 5, 227
Higgins, S.I. 5, 157, 165, 170, 172, 175, 176, 177
Hill, G. 195, 201
Hill, J. 63
Hilton-Taylor, C. 153
Hirsch, S.A. 5
Hirshleifer, J. 61
HIV/AIDS 32, 36
Holling, C.S. 2
Holmes, P.M. 178
Homewood, K.M. 140
honey 163–4, 170–71
honeybush tea 159, 162, 172
Index

<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hood, G.M.</td>
<td>123, 128, 129</td>
</tr>
<tr>
<td>Hostetler, S.W.</td>
<td>142</td>
</tr>
<tr>
<td>human behaviour</td>
<td></td>
</tr>
<tr>
<td>biological invasions and 231–3</td>
<td></td>
</tr>
<tr>
<td>see also habitat disturbances</td>
<td></td>
</tr>
<tr>
<td>Human Development Report 230</td>
<td></td>
</tr>
<tr>
<td>hygiene, infectious diseases and 34–5</td>
<td></td>
</tr>
<tr>
<td>Iles, T.C.</td>
<td>85</td>
</tr>
<tr>
<td>immunocontraception</td>
<td>132</td>
</tr>
<tr>
<td>import duties</td>
<td>25</td>
</tr>
<tr>
<td>India</td>
<td>32</td>
</tr>
<tr>
<td>indirect use values</td>
<td>166–71</td>
</tr>
<tr>
<td>infectious diseases as biological invasions 31–54</td>
<td></td>
</tr>
<tr>
<td>control mechanisms</td>
<td>39–50</td>
</tr>
<tr>
<td>cure</td>
<td>43–5</td>
</tr>
<tr>
<td>economic growth</td>
<td>45–7, 53–4</td>
</tr>
<tr>
<td>individual adaptive behaviour</td>
<td>47–9, 54</td>
</tr>
<tr>
<td>population movement</td>
<td>49–50</td>
</tr>
<tr>
<td>vaccination</td>
<td>35, 39–42, 51, 53</td>
</tr>
<tr>
<td>epidemiological process</td>
<td>35–8</td>
</tr>
<tr>
<td>nature of infectious diseases 31–4</td>
<td></td>
</tr>
<tr>
<td>need for regulation</td>
<td>50–53, 54</td>
</tr>
<tr>
<td>information problems</td>
<td>52</td>
</tr>
<tr>
<td>International Council for Science (ICSU)</td>
<td>3</td>
</tr>
<tr>
<td>International Union for the Conservation of Nature (IUCN)</td>
<td>xiii</td>
</tr>
<tr>
<td>islands, biological invasions and 1, 19, 25, 26, 139, 229–30</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
</tr>
<tr>
<td>infectious diseases in 34, 37</td>
<td></td>
</tr>
<tr>
<td>rabbit calicivirus disease (RCD) in 120</td>
<td></td>
</tr>
<tr>
<td>Itzehi-tezhi, Lake</td>
<td>191, 194, 195</td>
</tr>
<tr>
<td>Jackson, P.B.N.</td>
<td>190</td>
</tr>
<tr>
<td>Joffe, S.</td>
<td>197, 200, 201, 202, 203, 218</td>
</tr>
<tr>
<td>Johnston, M.C.</td>
<td>142</td>
</tr>
<tr>
<td>Jones, R.</td>
<td>95, 98, 99, 101, 108, 109, 112</td>
</tr>
<tr>
<td>Jordan, N.</td>
<td>94</td>
</tr>
<tr>
<td>Julien, M.H.</td>
<td>208</td>
</tr>
<tr>
<td>Kane, S.</td>
<td>65</td>
</tr>
<tr>
<td>Kapasa, C.K.</td>
<td>190, 191</td>
</tr>
<tr>
<td>Kareiva, P.</td>
<td>4, 57, 61</td>
</tr>
<tr>
<td>Karenge, L.</td>
<td>190, 192</td>
</tr>
<tr>
<td>Kariba, Lake</td>
<td>190, 191–3, 194, 195</td>
</tr>
<tr>
<td>Kawasaki, K.</td>
<td>19, 72, 73, 74</td>
</tr>
<tr>
<td>Kean, J.M.</td>
<td>122</td>
</tr>
<tr>
<td>Kenya</td>
<td></td>
</tr>
<tr>
<td>fish introductions in 188</td>
<td></td>
</tr>
<tr>
<td>tropical rainforest in 141</td>
<td></td>
</tr>
<tr>
<td>Kalaniski, M.</td>
<td>5</td>
</tr>
<tr>
<td>Kideys, A.E.</td>
<td>79</td>
</tr>
<tr>
<td>Kivu, Lake</td>
<td>191, 192, 194–5</td>
</tr>
<tr>
<td>Knowler, D.</td>
<td>77, 87</td>
</tr>
<tr>
<td>Kolding, J.</td>
<td>190, 192</td>
</tr>
<tr>
<td>Kovaliski, J.</td>
<td>120, 128</td>
</tr>
<tr>
<td>Krausman, P.R.</td>
<td>1</td>
</tr>
<tr>
<td>Krutilla, J.V.</td>
<td>146</td>
</tr>
<tr>
<td>Kudhongania, A.W.</td>
<td>186, 187, 188</td>
</tr>
<tr>
<td>kwashiorkor</td>
<td>34</td>
</tr>
<tr>
<td>Kyoga, Lake</td>
<td>186–8, 190, 199</td>
</tr>
<tr>
<td>lakes</td>
<td>183–205</td>
</tr>
<tr>
<td>fish introductions 183–95, 204</td>
<td></td>
</tr>
<tr>
<td>determinants of 185</td>
<td></td>
</tr>
<tr>
<td>economic implications 193–5</td>
<td></td>
</tr>
<tr>
<td>general effects 185–6</td>
<td></td>
</tr>
<tr>
<td>Nile perch 56, 186–90, 204</td>
<td></td>
</tr>
<tr>
<td>Tanganyika cichlid 190–93, 204</td>
<td></td>
</tr>
<tr>
<td>tilapiine species 186–90, 204</td>
<td></td>
</tr>
<tr>
<td>water weeds 195–204, 218</td>
<td></td>
</tr>
<tr>
<td>control of 199–204, 218</td>
<td></td>
</tr>
<tr>
<td>distribution in Africa 196–7</td>
<td></td>
</tr>
<tr>
<td>physical impact 197–9</td>
<td></td>
</tr>
<tr>
<td>Langdale-Brown, I.</td>
<td>144</td>
</tr>
<tr>
<td>Lange, R.T.</td>
<td>119</td>
</tr>
<tr>
<td>Law, R.</td>
<td>4, 111</td>
</tr>
<tr>
<td>Lawton, J.H.</td>
<td>2, 4</td>
</tr>
<tr>
<td>Le Maitre, D.C.</td>
<td>167, 175</td>
</tr>
<tr>
<td>Le Roux, A.</td>
<td>153</td>
</tr>
<tr>
<td>Leather, S.R.</td>
<td>31</td>
</tr>
<tr>
<td>Leidy, R.A.</td>
<td>185</td>
</tr>
<tr>
<td>Leitch, J.A.</td>
<td>5</td>
</tr>
<tr>
<td>Lenghaus, C.</td>
<td>130</td>
</tr>
<tr>
<td>leprosy</td>
<td>39</td>
</tr>
<tr>
<td>Lever, C.</td>
<td>117, 118, 119</td>
</tr>
<tr>
<td>Levin, S.A.</td>
<td>111</td>
</tr>
<tr>
<td>Leys, A.R.</td>
<td>97</td>
</tr>
<tr>
<td>Liebhold, A.M.</td>
<td>5</td>
</tr>
<tr>
<td>Light, T.</td>
<td>61</td>
</tr>
<tr>
<td>Lintell Smith, G.</td>
<td>95</td>
</tr>
<tr>
<td>Lodge, D.M.</td>
<td>19</td>
</tr>
</tbody>
</table>

Charles Perrings, Mark Williamson and Silvana Dalmazzone - 9781781008645
Downloaded from Elgar Online at 09/18/2019 02:37:46AM via free access
The economics of biological invasions

Lomé Convention 231
Lonsdale, W.M. 227, 229, 235
Loomis, J. 234
Lotka, A.J. 39
Lövei, G.L. 17
Lovett, J.C. 140, 141, 145
Low, A.B. 152, 153, 157
Lubulwa, G. 209, 216
MacIsaac, H. 56
Mack, R.N. 1, 94
McMeniman, S. 209, 216
Maesopsis eminii, distribution and ecology of 140, 141–5
Malan, D.G. 155
malaria 32
Malawi 185
water hyacinth in 197, 203
mango mealybug (Rastrococcus invadens) control 215–16, 218
Marais, C. 170, 177
market failure 238
Marsden, J.S. 212, 216
Marshall, B.E. 192, 193, 194
Martens, C. 165
May, R. 36, 146
Maywald, G.F. 220
McCann, K. 139, 146
McConnell, K.E. 146, 147
McDaniels, T. 234
McDowell, C. 153
measles 32, 34, 35
Melnyk, M. 139
Melville, A.R. 209
Mexico 32
migration, infectious disease and 35, 49–50
Mims, C.A. 33
mitigation 59, 60, 63, 64–5, 66
Mittelstaedt, M. 7
Mittermeier, R. 139
Mix, A.C. 142
Mnemiopsis leidyi case study 71, 79–89, 231–2
Moll, E.J. 153, 157
monopoly, infectious disease control and 53
Mooney, H.A. 17
morality of biological controls 130–31
Moran, D. 4, 5
Morgenstern, O. 59
Mortimer, A.M. 109
Morton, J.K. 142
Moyle, C. 185
Moyle, P. 61
Msangi, T.H. 145
Munasinghe, M. 157
Munro, R. 131
Mutge, G. 120, 122, 131
Mwasha, L.V. 140
Myers, K. 118
Myers, N. 139, 140, 152
myxomatosis 31, 119–20, 131
Nabugabo, Lake 187–8, 190
National Academy of Sciences (US NAS) 62
Neiring, W.A. 227
New Zealand 132, 212, 217
Newsome, A.E. 123, 129, 130
Nicholas, D.A. 129
Nietzsche, B.S. 96
Nigeria, water hyacinth in 197, 202–3
Nile perch (Lates niloticus) 56, 186–90, 204
Noble, J.C. 96
non-cooperative behaviour 52
Nowak, R. 117, 119, 128
Ochumba, P.B.O. 188
Office of Technology Assessment (US OTA) 5, 70
Oguta-Ohwayo, R. 186, 188, 199
opportunity cost 4
option values 171–2, 173
Pacala, S.W. 111
Pandey, S. 94, 95, 98
parasites 32–3
Parker, I.M. 2
Parkes, J.P. 132
Parrish, D.W. 4, 5, 231
Pech, R.P. 123, 128, 129
Perings, C.A. 6, 77
Perry, J.N. 112
pest control 208
economics of 4–5
rabbit calicivirus disease (RCD) as control agent 120–30, 131–3
Peters, C.M. 139
Phillipson, T. 39–40
Pimentel, D. 5
Pitcher, T.J. 185, 188, 193, 194, 195
plague 31, 32, 35, 37, 45, 47, 49
Pokras, E.M. 142
polio 34
pollination 163–4, 170–71
Poole, W.E. 118
prediction of biological invasions 4 probabilities 60
Prodanov, K. 85, 87
protection premium 63
protozoa 33
public opinion
 on existence values 146–7
 on rabbit control 130–31
Pyšek, P. 19
rabbits 117–33
 impact in Australia 118–19
 myxomatosis in 31, 119–20, 131
 rabbit calicivirus disease (RCD) as control agent 120–30, 131–3
 costs and benefits 122–30
 impact on ecosystems 122–8
 impact on industry and commerce 128–30
rain forests see tropical rain forests
Ramsey, B.J. 129
Ratcliffe, F.N. 120
Raven, P.H. 142
reaction-diffusion models 61
Rebelo, A.G. 152, 153, 157, 163
recreational use value 165–6
Rees, M. 111
Rejmánek, M. 19, 61, 156
research 61
Reynolds, J.E. 186, 193
Richardson, D.M. 61, 152, 155–6, 159, 160, 162, 166, 167, 171, 172, 173
Rio Convention on Biological Diversity (CBD) 3, 59
risk reduction strategies 56–67
implications for invader 62–6
Robinson, D. 33
Robinson, T. 121
Rodgers, W.A. 140
Room, P. 195
Ross, J. 120, 131
Ruckelshaus, W. 62
Ruffo, C.K. 140
Ruitenbeek, H.J. 6
Rwanda 194
Sagoff, M. 146, 147
Samples, K.C. 76
Sandler, T. 232
Saunders, G. 121
Savage, L. 59
Schindler, D.W. 2
Scientific Committee on Problems of the Environment (SCOPE) xiii, 3
Scott, D.F. 166
Scott, G. 172
Settle, R.F. 214
Sharov, A.A. 5
Shea, K. 95
Sheil, D. 140
Sheppard, A. 97
Sheppard, R.L. 217
Shigesada, N. 19, 25, 72, 73, 74
Shogren, J. 57, 58, 59, 62, 63, 65
Short, J. 118
Simmons, F.J. 209, 216
Simmons, P.J. 40, 47
Skellam, J.G. 111
smallpox 32, 37, 45, 50
Smith, C.S. 228, 234, 235, 236
Smith, J. 144
social cost–benefit analysis (SCBA), limitations of 214–15
social valuation 61
Soulé, M. 57
sour figs 159, 162
South Africa
 Fynbos vegetation 6, 152–80
 characteristics 153–5
 control of invasive aliens 174–80
 ecological-economic impact of invasions 157–74
 invasion by alien plants 155–7
 Ströbele, W.J. 76
 Sudan 197
 Sutherst, R.W. 220
 Sweden 34
The economics of biological invasions

Tanganyika cluiped (*Limnothrissa miodon*) 190–93, 204
Tanzania, tropical rainforest in 138, 140, 141, 143, 145, 146
Taylor, A.R.D. 196, 198, 199, 200
Taylor, C.J. 144
technology, risk reduction and 63–4
tens rule 60, 70, 234
thatch 159, 162–3
Thomas, T. 94
Thompson, K. 196, 197, 198, 199, 200, 201, 203
tilapiine fish species 186–90
Tilman, D. 139
Tisdell, C.A. 209, 214, 216, 217
Tiver, F. 119
Todaro, M.P. 49
Togo, mango mealybug (*Rastrococcus invadens*) control 215–16, 218
tourism 165–6
trade 25, 26
tropical rain forests 138–48
distribution and ecology of *Maesopsis eminii* 140, 141–5
existence values 145–7
Tu, P.N.V. 76
tuberculosis 32, 34, 35, 43, 49, 50
Turkey, case study of *Mnemiopsis leidyi* in the Black Sea 71, 79–89, 231–2
Turner, J. 185
Turpie, J.K. 165, 166, 172, 173, 179
Twongo, T. 187, 196, 198
Twyford, G. 118
Tyndall-Biscoe, C.H. 118, 132
typhoid fever 34
Uganda, water hyacinth in 201–2, 203
uncertainty 59, 60–61
United Kingdom, infectious diseases in 32, 34, 35, 37, 47, 50
United Nations Environment Program (UNEP) xiii, 79
Food and Agricultural Organisation (FAO) 20, 183, 220
United States of America infectious diseases in 35, 37, 45
invasive species in 1, 56, 209
lead poisoning in 66
use values

direct 159–66
indirect 166–71
valuation

evaluation of biological control methods 208–21
benefit–cost analysis 209–14
ex-ante evaluations 217–20
limitations of social cost–benefit analysis (SCBA) 214–15
non-economic effects 215–16
existence values
Fynbos vegetation 172–3
tropical rain forests 145–7
option values 171–2, 173
problem of 4, 63
social valuation 61
use values

direct 159–66
indirect 166–71
van den Bosch, F. 61
van der Bank, M. 171, 172
van der Merwe, W.J. 170
van Oijen, M. 95
van Wilgen, B.W. 156, 166, 167, 168, 170, 173, 174, 177, 180
van Wyk, B.E. 171, 172
Veblen, T. 56
Veiga, J.P. 128
Verbeke, J. 191
Versfeld, D.B. 155, 156, 157, 168, 175
Vertebrate Biocontrol Cooperative Research Centre (Australia) 117, 119
Victoria, Lake 56, 186–90, 193–4, 199, 203, 238
Villafuerte, R. 121
Vinuela, J. 128
viruses 32–3
Viscusi, W.K. 57
Vitousek, P.M. 17, 19
Voegele, J.M. 215, 216
Volterra, V. 39
von Neumann, J. 59
vulnerability to biological invasions 17–27, 227
analysis 23–5
data on 20–22
Index

theory of 18–20

Wacker, H. 76
Wallace, A. 97
Wallinga, J. 95
Warford, J.J. 231
Warin, J.F. 33
water hyacinth 195–205
control of 199–200, 218
economic implications 201–4
distribution in Africa 196–7
physical impact 197–9
water supply, Fynbos vegetation and 6,
166–70, 176–80
water weed see water hyacinth
Watkinson, A.R. 95, 100, 111
Watts, S. 37, 45, 50
Webb, D.E. 143
weed
case study see weed invasions of
Australian farming systems
water see water hyacinth
weed invasions of Australian farming
systems 94–112
case studies 95–8
key questions 97–8
silvergrass (Vulpia bromoides) 96–7
wild oats (Avena fatua) 96
discussion 109–12
management and economics 107–9
modelling approaches 98–104
 multispecies pasture model 102–4
 single species population dynamics
 98–102
strategic modelling 104–7
Welcombe, R.L. 187
Werger, M.J.A. 144

Weyant, J. 63
Wheeler, S.H. 129
White, D.O. 32, 34
White, F. 141, 144
White, G. 208
White, P.C.L. 122, 128
Whitmore, T.C. 139
Whitten, M.J. 215, 216, 217, 218
Wilcove, D.S. 1
wildflower collection 160–62, 172
Wilen, J. 76
Williams, K. 117, 119, 123, 129
Williams, R. 131
Williamson, M. 1, 2, 4, 19, 60, 61, 70,
72, 185, 186, 195, 227, 228, 233,
234
Willoughby, N.G. 199
Wilman, E.A. 76
Wilson, G.R. 118, 128, 129
Witte, F. 188
Woinarski, J.C.Z. 123
Working for Water project 175, 177,
179–80
World Bank 20, 231
World Health Organization (WHO) 32
yellow fever 34
Young, M.D. 130
Zaitsev, Y.P. 79
Zambia
 fish introductions in 191, 194
infectious diseases in 34
Zavaleta, E. 233
Zimbabwe
 fish introductions in 190, 194
water hyacinth in 203