List of tables

8.1 Types of material flow-related analysis 81
8.2 Economy-wide material balance with derived indicators 86
10.1 Components of the input and output sides of a PIOT and scheme of a PIOT with five components 103
10.2 A physical input–output table for Germany, 1990 106
10.3 Production account of the German PIOT, 1990 108
10.4 Filtered triangularized PIOT 110
11.1 Process simulation tools 118
11.2 Sample results for the HDA flowsheet simulation 121
11.3 The potential environmental impact categories used within the WAR algorithm 123
11.4 Potential environmental impact indices for the components in the HDA process 128
11.5 Uncertainty quantification in environmental impacts indices for the components in the HDA process 134
12.1 Impact categories for life cycle impact assessment 144
14.1 Indicators of non-sustainability 165
17.1 US materials groupings, end uses and periods of peak intensity of use 207
18.1 Annual world growth rates in the consumption of refined metals 212
20.1 Comparison of paths in attaining development in major countries/regions in the world, 1979–88 233
20.2 Trends in the ratio of government energy R&D expenditure and GDP in G7 countries, 1975–94 235
20.3 Trends in Japanese government energy R&D expenditure and MITI’s share 236
20.4 Factors contributing to change in CO₂ emissions in the Japanese manufacturing industry, 1970–94 238
20.5 Trends in change rate of R&D expenditure and technology knowledge stock in the Japanese manufacturing industry, 1970–94 241
20.6 Factors contributing to change in energy efficiency in the Japanese manufacturing industry, 1970–94 243
20.7 Factors contributing to change in energy R&D expenditure in the Japanese manufacturing industry, 1974–94 244
22.1 List of commodities by sources and sub-groups for the USA 264
22.2 Hidden and processed material flows in the USA, 1975–96 266
22.3 Sources of physical goods in the US 269
22.4 List of commodities, by sources and sub-groups, for the world 275
22.5 Global and US use of physical goods, by source category, 1996 276
22A.1 Processed flows for physical goods in the USA, 1900–96 278
List of tables

22A.2 Physical goods derived from metals and minerals in the USA, 1900–96 280
22A.3 Physical goods derived from renewable organic forest and agricultural sources in the USA, 1900–96 282
22A.4 Physical goods derived from non-renewable organic sources and plastics in the USA, 1900–96 285
22A.5 World use of materials for physical goods 1972–96 287
23.1 Domestic material flow balance for Germany, 1996 290
23.2 Ratios of hidden flows to commodities for the EU-15 in 1995 294
23.3 Net addition to stock indicating the physical growth rate of the economy 297
25.1 Final consumption of energy fuels, by sector in Australia, 1992 315
25.2 Transport characteristics in Australia 316
25.3 Waste generation in Australia 317
25.4 Greenhouse gas emissions in Australia from anthropogenic sources, 1991 317
25.5 Natural resources in Australia, 1990 319
26.1 Yearly average materials input to the UK economy over six decades 325
26.2 Relative change of average materials input to the UK economy 326
26.3 Average domestic extraction of materials for five-year periods in the UK, 1937–97 327
26.4 DMI per capita, GDP and population in the UK over six decades 330
26.5 Relative change in DMI per capita, GDP and population in the UK over five decades 330
26.6 A comparison of the material consumption in several industrial economies 332
27.1 Chronology of Kalundborg development 337
27.2 Waste and resource savings at Kalundborg 339
28.1 Totals of materials moved by the main types of extractive industry, infrastructure development and waste creation activities in selected countries 358
28A.1 Global mineral production and associated earth materials movement, 1995 360
28A.2 Estimated total annual production and stockpiles of waste materials in the UK, by sector 362
28A.3 Summary of controlled waste in England and Wales, production and disposal 363
28A.4 Sludge production and disposal methods in a selection of countries 363
28A.5 Earth removal during some major tunneling and civil engineering projects in the UK 364
29.1 Model results in 2100 for three scenarios plus the egalitarian nightmare 377
29A.1 Global consumption data (primary and secondary) for abundant metals and metals of medium abundance 381
30.1 Global production rates of some metals for the period 1980–92 383
30.2 Transition period for risk ratios for cadmium, copper, lead and zinc in the Netherlands 389
31.1 Indication of the material-constrained stock for selected technologies 393
31.2 Current and historical extraction compared to the reserves 396
31.3 By-product values in zinc ore 398
List of tables

32.1 A representative sampling of sources of data on industrial wastes and emissions in the USA 406
32.2 Percentage of metals in hazardous wastes that can be recovered economically 410
32.3 Partial listing of non-chlorinated chemical products that utilize chlorine in their manufacturing processes 418
32.4 Partial list of processes that produce or consume hydrochloric acid 419
32.5 Processes for reducing chlorine use in chemical manufacturing 420
33.1 Net heavy-metal accumulation for some European soils 423
33.2 Static Cd, Cu, Pb and Zn balances for arable farming systems at the Nagele experimental farm 425
33.3 Sustainability indicators of four arable farming systems 428
36.1 World motor vehicle production 460
36.2 Evaluation of attributes for fuel–engine combinations relative to a conventional car 462
37.1 Accidents reported in RMP*Info by chemical involved in the accident, 1994–99 473
37.2 Consequences of accidents during the reporting period 474
38.1 Comparisons of physical planning characteristics 479
38.2 Comparisons of planning contexts and institutional frameworks 481
40.1 Characteristics of closed-loop supply chains for refillable containers 499
40.2 Characteristics of closed-loop supply chains for industrial remanufacturing 502
40.3 Characteristics of supply chains for consumer electronics re-use 505
40.4 Key distinctions between closed-loop supply chains 506
40.5 Keys to success: industrial remanufacturing closed-loop supply chains 507
40.6 Keys to success: consumer electronics closed-loop supply chains 508
41.1 Factors differentiating repair, remanufacturing and recycling 512
43.1 Possible uses of LCA in companies 531
44.1 Actor by life cycle stage 547
44.2 Economic characteristics of municipal solid waste industry segments 549
45.1 Components of the global carbon dioxide mass balance, 1980–89, in terms of anthropogenically induced perturbations to the natural carbon cycle 556
45.2 Components of the carbon budget (in GtC/yr), 1980–89, according to the IPCC and model simulations for the carbon balancing experiments 561