List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Typology of ecosystems</td>
</tr>
<tr>
<td>1.2</td>
<td>The elements of industrial ecology seen as operating at different levels</td>
</tr>
<tr>
<td>1.3</td>
<td>Industrial ecology conceptualized in terms of its system-oriented and application-oriented elements</td>
</tr>
<tr>
<td>5.1</td>
<td>Conceptual diagram of an aluminum kombinat</td>
</tr>
<tr>
<td>5.2</td>
<td>Lignite-burning power plant modified via PYREG</td>
</tr>
<tr>
<td>5.3</td>
<td>Systems integrated with ENECHEM with additional plant for xylite processing</td>
</tr>
<tr>
<td>5.4</td>
<td>Hypothetical process–product flows for COALPLEX</td>
</tr>
<tr>
<td>6.1</td>
<td>Evolution in international governance systems</td>
</tr>
<tr>
<td>8.1</td>
<td>Economy-wide material flows</td>
</tr>
<tr>
<td>9.1</td>
<td>A substance life cycle for copper in the Netherlands, 1990</td>
</tr>
<tr>
<td>11.1</td>
<td>A conceptual framework for a process analysis approach to industrial ecology</td>
</tr>
<tr>
<td>11.2</td>
<td>The process flowsheet for the production of benzene through the hydrodealkylation of toluene</td>
</tr>
<tr>
<td>11.3</td>
<td>ASPEN representation of the HDA process</td>
</tr>
<tr>
<td>11.4</td>
<td>A generalized multi-objective optimization framework</td>
</tr>
<tr>
<td>11.5</td>
<td>Approximate Pareto set for the HDA process multi-objective optimization (case 1: diphenyl as a pollutant)</td>
</tr>
<tr>
<td>11.6</td>
<td>Approximate Pareto set for the HDA process multi-objective optimization (case 2: diphenyl as a by-product)</td>
</tr>
<tr>
<td>11.7</td>
<td>Probabilistic distribution functions for stochastic modeling</td>
</tr>
<tr>
<td>11.8</td>
<td>The multi-objective optimization under uncertainty framework</td>
</tr>
<tr>
<td>11.9</td>
<td>Uncertainty quantification in environmental impacts indices for the case study</td>
</tr>
<tr>
<td>11.10</td>
<td>Approximation of Pareto set for the uncertainty case</td>
</tr>
<tr>
<td>11.11</td>
<td>Relative effects of uncertainties on different objectives</td>
</tr>
<tr>
<td>12.1</td>
<td>Technical framework for life cycle assessment</td>
</tr>
<tr>
<td>12.2</td>
<td>Two ways of defining system boundaries between physical economy and environment in LCA</td>
</tr>
<tr>
<td>12.3</td>
<td>Allocation of environmental burdens in multiple processes</td>
</tr>
<tr>
<td>13.1</td>
<td>An impact evaluation combining scenarios for technique, environment and human attitudes</td>
</tr>
<tr>
<td>13.2</td>
<td>Different types of characterization models</td>
</tr>
<tr>
<td>13.3</td>
<td>Relations between emissions and impacts may vary owing to location and other circumstances</td>
</tr>
<tr>
<td>13.4</td>
<td>The aggregated impact value is linearly dependent on all input data</td>
</tr>
<tr>
<td>13.5</td>
<td>Conceptual data model of impact evaluation</td>
</tr>
</tbody>
</table>
14.1 Material flow accounting 168
14.2 SEEA: flow and stock accounts with environmental assets 169
14.3 Annual TMR per capita for the USA, the Netherlands, Germany, Japan and Poland 173
14.4 Environmentally adjusted net capital formation in per cent of NDP 175
16.1 The Salter cycle growth engine 188
16.2 The ratio f plotted together with B, total exergy and W, waste exergy – USA, 1900–98 194
16.3 Fuel exergy used for different purposes – USA, 1900–98 195
16.4 Breakdown of total exergy inputs – USA, 1900–98 196
16.5 Index of total electricity production by electric utilities (1900 = 1) and average energy conversion efficiency over time – USA, 1900–98 197
16.6 Exergy intensity (E/Y) plotted against f and the Solow residual, $A(t)$ – USA, 1900–98 198
16.7 Cobb–Douglas production function, USA, 1900–98 200
16.8 Technical progress function with best fit A: USA, 1900–98 201
17.1 Materials group indices of intensity of use 208
18.1 Three-year moving averages of prices of zinc relative to the consumer price index in the USA 211
18.2 The ‘intensity of use’ hypothesis and the influence of technological change 213
18.3 Developments in aggregated throughput 215
18.4 Developments in the throughput index 216
18.5 Steel intensities in the UK, 1960–95 218
18.6 Energy intensities in the UK, 1960–97 219
18.7 Steel intensities in the Netherlands, 1960–95 220
18.8 Energy intensities in the Netherlands, 1970–96 221
20.1 Trends in production, energy consumption and CO$_2$ discharge in the Japanese manufacturing industry, 1955–94 237
20.2 Trends in factors and their magnitude contributing to change in CO$_2$ emissions in the Japanese manufacturing industry, 1970–94 239
20.3 Trends in technology knowledge stock of energy R&D and non-energy R&D in the Japanese manufacturing industry, 1965–94 241
20.4 Factors contributing to change in energy efficiency in the Japanese manufacturing industry, 1970–94 243
20.5 Factors contributing to change in energy R&D expenditure in the Japanese manufacturing industry, 1974–94 245
21.1 Global carbon cycle 251
21.2 Global nitrogen cycle 253
21.3 Global sulfur cycle 256
21.4 Global phosphorus cycle 258
22.1 The materials cycle 261
22.2 Processed flows for physical goods in the USA, 1900–96 268
22.3 Processed flows for physical goods in the USA, 1900–96 (log scale) 269
22.4 Physical goods derived from metals and minerals in the USA, 1900–96 270
22.5 Physical goods derived from renewable organic forest and agricultural sources in the USA, 1900–96 271
List of figures

22.6 Physical goods derived from non-renewable organic sources in the USA, 1900–96 272
22.7 Plastic and non-renewable organic physical goods in the USA, 1900–96 273
22.8 World use of materials for processed physical goods, 1970–96 276
23.1 Composition of TMR in the European Union, selected member states and other countries 293
23.2 Trend of GDP and DMI in member states of the European Union, 1988–95 295
23.3 Temporal trends of selected per capita material output flows in Germany (West Germany 1975–90, reunited Germany 1991–96) for the period 1937–97 296
23.4 Industrial ecology operating at three levels 334
23.5 Industrial symbiosis at Kalundborg, Denmark 336
23.6 World mineral production and total ‘hidden flows’ for the 12 commodities producing the largest total materials flows at the global level 354
24.1 Frameworks of environmentally extended physical input–output tables 305
24.2 Materials balance for Japan, 1990 308
26.1 A physical net balance of foreign trade activities for the UK economy 329
27.1 Industrial ecology operating at three levels 334
27.2 Industrial symbiosis at Kalundborg, Denmark 336
27.3 World mineral production and total ‘hidden flows’ for the 12 commodities producing the largest total materials flows at the global level 354
28.1 Stocks and flows in the metal model for iron/steel and MedAlloy 367
28.2 Model relationships within the metal model 368
28.3 Intensity of use hypothesis 369
28.4 IU curve for iron/steel and MedAlloy use in 13 global regions 371
28.5 Model results, 1900–2100: (a) consumption; (b) secondary production fraction; (c) price; (d) ore grade; (e) energy consumption 372
30.1 Emissions of heavy metals in the Netherlands, 1990, and steady state 386
30.2 Human toxicity risk ratios for cadmium, copper, lead and zinc in the Netherlands, 1990, and steady state 387
30.3 Aquatic ecotoxicity risk ratios for cadmium, copper, lead and zinc in the Netherlands, 1990, and steady state 388
30.4 Terrestrial ecotoxicity risk ratios for cadmium, copper, lead and zinc in the Netherlands, 1990, and steady state 388
31.1 Metal abundance in the Earth’s crust and in society 396
31.2 The Sherwood Plot 407
31.3 Flow of industrial hazardous waste in treatment operations 408
31.4 Concentration distribution of copper in industrial hazardous waste streams 409
31.5 Concentration distribution of zinc in industrial hazardous waste streams 410
31.6 Optimal supply network for waste re-use in the Bayport Industrial Complex 414
31.7 Chlorine flows in combined vinyl chloride and isocyanate manufacturing 417
31.8 A summary of chlorine flows in the European chemical industry 419
32.1 Development of cadmium input and soil content, leaching and offtake rates in the conventional arable farming system 425
32.2 Development of copper input and soil content, leaching and offtake rates in the conventional arable farming system 426
32.3 The automotive technology system: a schematic diagram 433
32.4 The life cycle of the motor car, and the processes that occur during that cycle 435