Index

3M 40, 48
3P program 40

A/S Biotechnical Jordrens 338–9
A/S Dioteknisk Jordrens 335
abatement measures, effectiveness of 97
Abernathy, W. J. 45
Abidjian 356
absorption bands 557
academic communities 34–5
acceptable daily intake 387
accidents 149, 472, 473, 474
accounting 85, 94, 95–6
see also environmental accounting; physical input-output accounting
acid rain potential 127–8, 134
acidification 153–4, 249, 259
Acosta, J. J. 102
activity impact assessment 158
Adams, R. N. 324
Adriaanse, A. 26, 65, 91, 214, 331, 365, 405, 477
goals and definitions of industrial ecology 7, 9
material flow accounting 260, 266
material flow analysis 84, 88, 89, 307, 309
material flows due to mining and urbanization 352, 353, 358
sustainable resources and materials management 288, 292
Adriatic Sea 254
advance disposal fees 523–3
AES power plants 348
Africa 62, 353, 371, 375, 502, 566
Agenda 21 489, 490, 495
Agren, G. I. 249
agriculture 264, 267, 271–2, 274–6, 282–4, 287, 313
animal feedstuffs 331, 338
Australia 312, 321
cereals and fodder crops 327
farm-gate balances 423, 431
farming and breeding 30
material flow analysis 307, 356, 357
metal flows and accumulation 385
seeds and fibers 262
sustainable resources and materials management 294, 295, 299
system dynamics model 369
United Kingdom 325, 326, 332
agroecosystems 28
agronomy 16–18
agrosystems see heavy metals in agrosystems
Ahmed, I. 13
AEA 446–7
air 262–3, 331
Akimoto, Y. 33
Alberti, M. 482–3
Alcamo, J. G. 7, 554, 559, 560
ALCOA 55, 57
Alfsen, K. 180
Algeria 391
Allenby, B. R. 34, 37, 60–9, 75, 311, 394, 445–53, 469, 566–71
automotive systems 432, 434
goals and definitions of industrial ecology 3, 4, 7, 13
green design 460, 465
alliances 526
allocation procedure 142–3
Alloway, B. J. 421
Aloisi de Lardarel, J. 37
Altenpohl, D. G. 368
Altman, R. 29
aluminum 205, 207, 212, 261, 313, 426
green design 459, 461, 462
scarce metals and energy technologies 395, 397
sustainable resource and materials management 292, 294
system dynamics model 366, 370, 379, 381
aluminium-kombinat 50–1, 52
Amazon 353
Amazonia 87, 89
American Electronics Association 446, 447
anchor tenant model 348
Anderberg, S. 12, 27, 31, 74, 83, 322, 382, 383
substance flow analysis 92, 93, 97
Andersen, F. M. 182
Anderson, A. 28
Anderson, B. A. 391–404
Anderson, J. N. 21
Anderson, P. 63, 314, 568
Andres, R.J. 560
Andrews, C.J. 6, 14, 477, 487, 542–53
Angel, L.C. 470
anhydrite 328
animal feedstuffs 331, 338
Annema, J.A. 93, 365
Antarctic 251, 559
anthroposphere 318
antimony 410
antitrust 69
Anzovin, S. 463
Aplin, G. 313, 319
Appliance Recycling Centers of American Inc. 526
applied general equilibrium models 178, 179, 181, 183, 184
aquatic toxicity potential 123, 127–8, 133, 134
Arctic 252
Argote, L. 374
Aristotle 70
Arnold, F.S. 530
Arrow, K.J. 178, 223
arsenic 81, 207, 382, 410
Arthur, B.W. 399, 401
Arthur D. Little 34–5
Asagoff, M. 64
asbestos 205, 207
Ashford, N.A. 36
Asia 66, 255, 368, 492, 566
Asmaes Power Station 335, 336, 337, 338, 339, 342, 344
AsNewProgram 525
ASPEN simulator 117, 120–1, 124, 134
asphalt 262, 264, 272, 285–7, 356
asset:
 natural 169–70
 specificity 550
Assmuth, T.W. 81
Aston, A.R. 355, 357
AT&T 57, 58, 452
Atlantic Development Board 58
atmosphere-ocean general circulation models 554, 558, 559, 561, 562–4
attractor points 218–19, 220
Audi 462
audio entertainment 445, 450
Australia 311–22
 agricultural inputs 313
 automotive systems 433
 climate and topography 319
 economic characteristics 320–1
 energy inputs 314–15
 forestry inputs 313
Great Barrier Reef 254
Greens 320
industrial metabolism 24
inputs 312
life cycle assessment as management tool 537
material flows 87, 89, 179, 318, 319, 357, 363
materials stocked in anthroposphere 318
methodology 311
mineral inputs 313–14
national material intensity 319
outputs 316–17
political/legal characteristics 320
population and urban structure 320
public opinion and will to act 320
purpose of case study 311
toxic outputs 318
transport inputs 315–16
urban solid waste 318
Austria 27, 297, 332, 389, 405
extended producer responsibility 522, 523
material flows 80, 83, 86, 260, 357
Ausubel, J.H. 3, 7, 8, 9, 33, 34, 35, 75, 384, 444
automotive sector 209, 465, 528
automotive systems 432–44
environmental performance assessment 1920–99 434–41
life cycles 434
technology system 432–4
urban transport systems 441–4
Auyt, R. 35, 204, 209
Avoidance of Packaging Waste Ordinance 522
Axtell, R. 401
Ayers, E.E. 22
Ayers, L.W. 93, 122, 204, 260, 352, 365, 421, 471
 Australia 318, 322
 material flow analysis 81, 82, 83, 85
 physical input-output accounting 102, 113
 scarce metals and energy technologies 398, 400
Ayers, R.U. 44–59, 185–201, 214, 352, 421, 471, 511, 533, 566
cleaner production 37, 41
environmental accounting and material flow analysis 166, 171
goals and definitions of industrial ecology 6, 7, 9, 11
governance, laws and regulations 67
history of industrial ecology 27, 28
industrial metabolism 16, 24–5
industrial metabolism and misuse of metaphors 67, 73, 75
life cycle assessment 138
material flow accounting 260, 262–3, 311, 312, 316, 318, 322
material flow analysis 79, 81, 82, 83, 85, 86, 179, 180
metal flows and accumulations 382, 383, 384
metal use 365, 377
physical input-output accounting 102, 110–12, 113
process analysis and approach 114, 122, 123, 124
scarce metals and energy technologies 298, 400, 401
spatial planning 477, 485
substance flow analysis 91, 92, 93, 96, 98, 100
transmaterialization 204
Azapagic, A. 142
Azar, C. 99, 151, 155, 166, 384, 391, 392
Azar, J. 449
Baas, L. 37
Baccini, P. 27, 91, 97, 312, 314, 321, 421, 465
material flow accounting 79, 83, 85
Bach, M. 299
Baden-Württemberg 102
Badfer, H.-P. 85, 97
balance indicators 85, 89–90
Balkau, F. 488–96
Ball, T.C. 364
Baltic Sea 254, 292, 567, 569
Bangladesh 382
Banks, R.D. 345
barite 207
barium 410
Barnett, H.J. 186, 210, 228–9, 377, 395, 401
Barron, J.B. 86
Barry, R.G. 566
Bartelmus, P. 165–76, 304
Barth, M. 465
Barton, J.R. 544
BASF 254, 416
Basic Environment Plan 301
Basic Principle of Industry Ecology 237
Basler 138
Bateman, B. 347
Bates, M. 21
batteries 393, 394, 395, 397, 399, 411
green design 460, 461, 463, 464
information industry 448, 449
Battjes, J.J. 370, 375, 381, 560
Batty, M. 486
Bauer, G. 96
Bauer, M. 432
Baumann, H. 534
bauxite 354
Becher, O. 337
behavioral incentives 486
behavioral innovations 545
Behmanesh, N. 409–10
Behrendt, H. 299
Behrenfeld, M. 567
Belgium 29–31, 216, 522
Bell, A. 357, 362, 363
Benardini, O. 370
Bendersky, D. 465
Benetton 58
Bengtsson, M. 155
Benyus, J.M. 6
benzene production 118–22, 127–8, 132–6
Bergbäck, B. 96, 97, 98, 383, 384, 389
Bergkamp, L. 68
Bergman, L. 179
Berke, P. 485
Berkes, F. 61, 567, 569
Berkhout, F. 7, 214, 324, 530, 532
Berko-Boateng, V. 449
Berkshire-Hathaway 58
Berman, M. 63
Bern, L. 470
Bernardini, O. 35, 369
beverage containers 139
Bevington, R. 465
Bhopal 149
Bidwell, R. 80, 83
Bieard, J.W. 65
Bijker, W.E. 401
Billen, G. 29, 30, 31, 312
Binder, M. 217, 321
Bing, F.C. 17
Binswanger, H.P. 242
biocompatibility 485–6
biodiversity 489
biological analogy of industrial ecology 4–6
biology 16–18
biomass 47–8, 194, 293, 294
United Kingdom 325, 326, 327, 329, 332
biosphere 27, 28, 93
Bishop, P.L. 458
bismuth 207
Bjorklund, A. 7
Black, F. 179
Black Sea 254
Blair, J.P. 476
Blakey, A. 548
Blok, K. 217
Blum, W.E.H. 421
BMW 528
Boardman, R. 320
BOD 304
Bodman, D. 450, 451, 452
material flow analysis 79, 82, 83
substance flow analysis 91, 93, 99
Bruvoll, A. 179, 181, 182, 183
Bryan, D. 320
bubble economy 232, 233, 239, 242, 243, 310
Buchert, M. 298
buffering capacity 422, 426, 429
Building Research Establishment 466
Buitenkamp, M. 288
Bullard, C.W. 228
Burall, P. 459
Burniaux, J.M. 179
Burns, A.F. 205
Burnside Industrial Park (Canada) 58
Burzacchini, A. 300
Busch, K.-F. 29
business communities 34–5
Business Council for Sustainable Development of the Gulf of Mexico 347
business cycles 220
business-to-business (B2B) 451, 452
business-to-consumer (B2C) 451
Butcher, S.S. 249
by-product synergy 347

Cabezas, H. 123
cadmium 12, 81, 205, 299, 357, 410, 448
green design 461, 463
heavy metals in agrosystems 421, 422–3, 424, 425, 426, 428, 429
metal flows and accumulation 383, 385, 386, 387, 388, 389
paradox 400–1
poisoning 382
scarce metals and energy technologies 394, 396, 397, 398, 400, 401, 402

Cahill, S. 449
Cahill, H. 81
Cairncross, F. 65
calci um 429
Caldeira, K. 567
Calmenson, D.W. 486
Campbell, S. 478
Campbell, S. 478
Canada 58, 347
automotive systems 433
Environmental Information Center (Nova Scotia) 495
extended producer responsibility 522, 523
governance, laws and regulations 66
green design 460
industrial estates as model ecosystems 491
Post 527
spatial planning 478
system dynamics model 371
technology policy 235

Robert U. Ayres and Leslie W. Ayres - 9781840645064
Downloaded from Elgar Online at 12/13/2018 01:07:07PM
via free access
Cantlon, J.E. 123

capacity per utility service unit: system efficiency, location and design 392–3

capital 190–1, 195, 199, 225, 234, 240–3

-labor ratio 45

maintenance 171–2, 174–6

-output ratio 374

share 188–9

United Kingdom 325
car exhausts 421
carbon 81–2, 232–3, 238, 249, 250–2, 257, 564–5

biogeochemical cycles 259

budget 560–2

-oxygen cycle 49

see also carbon dioxide; decarbonization
carbon dioxide 82

climate change 555, 556, 557, 558, 559, 560, 562, 563

Data and Information Assessment Center 560

denmark 337, 342

earth systems engineering and management 566, 567

energy flows: efficiency and dematerialization 187

industrial metabolism 25

information industry 448

material flow analysis/accounts 262, 303, 304, 307, 310

scarce metals and energy technologies 391

sustainable resource and materials management 291, 297
technology policy 237, 239, 242

United Kingdom 332
carcinogens 463

Carlson, R. 158

Carnahan, J.V. 7

Carnot, S. 71, 75

Caro, R.A. 487

Carpenter, B. 566

Carra, J.S. 544

Carraro, C. 179
cars 299, 459–63

see also automotive sector

Carter, A. 469

categorization scheme 263
category indicator 158

causal factors 489

causality 190

cause-and-effect chain 152, 153, 554, 559

Cawrse, D.C. 226

CCP project 306

cellular telephone re-use 502–4

cement 214, 347, 464, 556, 560

Cendrero, A. 352

Centre de recherche et d’information socio-politiques 29
ceramics 205, 207, 356
cereals and fodder crops 327

CFCs 68, 82, 214, 297, 438, 459, 555

chain requirement 195

Chakravorty, S.L. 355

champion (entrepreneur) 535–6

Chang, D. 122, 134, 136, 416, 418, 420

Chang, S.J. 226

Chaparral Steel 347

Chapman, P.F. 365, 374, 375

characterization factor 156, 157, 158

charcoal 185

chemicals 91, 160

accidents 473

manufacturing 413–14, 415–20, 465

simulators 124

Chen, X. 87, 89, 352, 358

Chernobyl 66

Chertow, M.R. 7, 8, 334–48, 483, 546

Chesshire, J. 213

Chevron 40

Chicago school 20

China

automotive systems 432

biogeochemical cycles 252, 255, 257

earth systems engineering and management 566

governance, laws and regulations 61

industrial estates as model ecosystems 490, 492

industrial metabolism 22

materials flow 87, 89, 352, 354, 356, 358

scarce metals and energy technologies 397

spatial planning 478

system dynamics model 371

chlorine 82, 147, 299, 413, 415–20, 463

Christensen, J. 338, 342

Christensen, L.R. 45, 234

Christensen, N.L. 73

Christensen, P. 532, 533, 535, 536, 537, 539

Christensen, V. 343, 344

Christoff, P. 323

Christy, F.T. Jr 186

chromium 81, 205, 207, 292, 381, 410, 463

Churchill, W. 71

Cisco 450

‘City Beautiful’ movement 482

Civil Engineering Research Labs 466

Clark, C.W. 226

Clark, J.P. 204

Clark, K.E. 94, 97

Clark, T. 234
Clark, W.C. 33, 566
clay 327, 328, 353, 354, 422
Clay, P. 364
cleaner production 11, 36–43
discussion 41–3
history 37–8
operational pathways 39–41
principles 38–9
Clegg, A.J. 447
Clements, F.E. 17
Cleveland, C.J. 9, 187, 211, 254, 324, 395
Cleven, R.F.M.J. 387
Clift, R. 6, 14, 142
climate 25, 319
see also simple climate models
climate change 66, 230, 489
see also integrated modeling approach for climate change; Kyoto Protocol
closed-loop 385, 459
recycling 394, 403
closed-loop supply chains 497–509
consumer electronics re-use 505
industrial remanufacturing 500–2
management 505–8
re-use of consumer electronics 502–4
refillable containers 497–500
Cloud, P. 28
Club of Rome 185, 210
CML 142
coal 185, 217, 255, 261
Australia 313, 314
brown 354
Denmark 335, 337, 339
hard 292, 294
material flows 307, 354, 359
pyrolysis in the gas stream (PYGAS) 52
scarce metals and energy technologies 398
sustainable resource and materials management 291
United Kingdom 327, 328, 331
Coale, K.H. 567
COALPLEX 55, 56
Coase, R.H. 470
cobalt 205, 207, 398, 399
Cobb, C. 166
Cobb-Douglas production function 199, 200
cocoa 295
coffee 295
Cohen, N. 451, 495
Cohen-Rosenthal, E. 483
Cohon, J. 125, 449
coke ovens 46–7
Cole, D.J.A. 28
Collins, R. 356
Colombia 87
Comella, P. 345
commercialization 244
Common, M.S. 222
common ownership model 57–8
Commonwealth of Independent States 371
communication, importance of 539–40
community relations 469
Community Strategy for Waste Management 289
companies, roles of 8
compartment models 153
competition, perfect 225
complexity 99
computable general equilibrium models 177–9, 180, 183
computer-integrated manufacturing 46
computers 463–4
ConAccount network 79, 288
concentration 555–8
concrete 356, 389, 464
Connell, J. 314
Conrad, J.M. 226
Conrad, S.H. 465
Conroy, M.M. 485
conservation criterion 228
Consoli, F. 139
constraint method 125, 126, 132
construction and demolition waste 351, 356–7, 465
construction industry 264, 270, 274, 280–2, 298, 369
Australia 321
green design 464, 466
material flow analysis 310
United Kingdom 328, 331, 332
consumer:
electronics 502–4
re-use 505, 508
goods 331
organisms 17
price index 210–11
-to-business (C2B) 451
-to-consumer (C2C) 451
consumption 205, 213
indicators 89
contracting costs 342
Cooper, R. 61, 62
Cooper, W. 3
copper 81, 205, 207, 212, 261, 566
heavy metals in agrosystems 421, 422–3, 424, 425, 426, 429
material flows 307, 354
metal flows and accumulation 382–90 passim
scarce metals and energy technologies 394, 395, 397, 398, 399, 400, 401
sustainable resource and materials management 292, 294
system dynamics model 366, 375, 381
wastes as raw materials 408–9, 410
CopyMagic 500–1
corporate image 468
Cosgrove, T.H. 52
Cossu, R. 544
cost 235
-benefit analysis 149, 152, 153, 154, 155, 160, 170
model 127
technology-related 235
Costa Rica 175
Costanza, R. 187
Côté, R.P. 35, 36, 58, 483
Cottrell, F. 20
country size 63
covenants, conditions and restrictions 484
Crommentuijn, T. 387
Crompton, P.L. 221
Cronon, W. 446, 453, 568
 crude oil 240, 261, 294, 327, 328, 338, 356
Cullen, A.C. 130
culture/cultural dimensions 20–1, 64, 432, 433, 450, 452, 568
Curlee, T.R. 461, 462
Cvetkovic, R. 418
Daimler, G. 46
Dalhousie University, Nova Scotia 58
Daly, H.E. 16, 20, 102, 104, 105, 111, 214, 230
damage valuation 170–1
damn 320
D’Arge, R.C. 102
Darwin, C. 71, 217
Dasgupta, P. 185
Dasmann, R.F. 29
data bank 117
David, P.A. 401
Daviden, P.N. 481
Davidson, C.I. 421
Davies, C.W. 364
Davies, H.W.E. 481
Davies, R. 449
Davies, T. 449
Davis, G.A. 8, 522
Davis, S.C. 393
Daxbeck, H. 357
DDT 214
De Bary, H.A. 335
de Boo, W. 422
de Bruyn, S.M. 209–22
de Haan, F.A.M. 421, 422
de Haan, M. 171
de Marco, O.G.L. 86, 89, 352
De Simone, L.D. 9
de Vries, B. 365–81
de Vroey, M. 325
Dean, J. 205
Debreu, G. 178, 187
decarbonization 9, 232, 452
DeCicco, J.M. 123
decomposers 17, 484–5
Decter, S. 548, 550
Defeyes, K.S. 374
definition of industrial ecology 3–10
deforestation 566
degree of feedback or circularity 109
degree of interdependence 109–10
degree of linearity 109–10
delay model 98
Dell Computers 452
Dellink, R.B. 181, 182, 183, 184
demand 223
DeMarco, C. 315
dematerialization 8–9, 80, 171–4, 202, 203–4, 394, 452, 464
Australia 312, 319, 322
strong 213, 220
United Kingdom 323, 330–1
see also dematerialization and rematerialization; energy flows: efficiency and dematerialization
dematerialization and rematerialization 209–22
continuation of dematerialization 213–15
evolutionary perspective 215–21
historical trends 210–13
den Elzen, M.G.J. 554–65
Denayer-DeSmet, S. 83
Denison, E.F. 45
Denmark 63, 102, 216, 389, 422–3, 522
life cycle assessment as management tool 532, 533, 535, 536
material flows 86, 87, 356
spatial planning 478, 479, 480, 481
see also Kalundborg
deposit refund schemes 522
deposition 424
Deppe, M. 483
Derr, M. 432
Descartes, R. 73
design:
for disassembly 304, 306
and engineering 570–1
for environment 7–8, 9, 139, 304, 446–7, 521, 529
Index

Dubai 490, 491
Jebel Ali Free Zone Authority 495
Duchin, F. 14, 94, 183, 365, 374
dumping 543
dupont 40
Durney, A. 311–22
Durning, A.T. 322
Duvigneaud, P. 83
dvoarak, P. 460
DYNABOX 384, 385
dynamic balance 424, 425, 431
dynamic modeling 94, 97–8, 390
dynamic simulators 117
Dynamic Soil Composition Balance model 384, 385
dynamics 384
e-business 453
e-commerce 445, 446, 451, 452, 520
earth moving 266, 293, 360–1, 364
earth systems engineering and management 451, 566–71
design and engineering 570–1
governance 570
theory 569–70
East Asia 254, 256, 371
Eastern Europe 45, 63, 232, 233, 370, 371
ECCO model 298
Eco-Budget method 299
eo-effectiveness 347
eo-efficiency 8–9, 288, 347, 485, 488, 539
environmental accounting and material flow analysis 173–4, 175
material flow analysis 80, 83
eco-industrial parks and symbiosis 483–4
Eco-Management Audit Scheme 469, 470, 539
Eco-Park 58–9
ecodesign see design for environment
ecological analogy 6
ecological anthropology 20–1
ecological considerations 124–30
ecological health 149
ecological risk indicators 123
‘ecological rucksacks’ 291, 322, 400–1
material flows 88–9, 307, 309, 352, 353, 356
ecology 16–18
economic:
characteristics 320–1
considerations 124–30
development 295–6
evaluation 155
growth 172–4, 220, 232, 233
input-output 87, 298
modeling see material flow analysis and economic modeling

design (cont.)
for refurbishment to design for disassembly and recyclability 447
‘Design for X’ 446
Desrochers, P. 29
Dethlefsen, V. 38
detoxification 79–80
DfX screens 469
Diamond, J. 566, 567, 568
diamonds 353
dichloromethane 463
dietz, F.J. 322
dioxins 302
dichloromethane 463
Dietz, F.J. 322
directional 307
Dixon, P.B. 179
Doern, B. 320
Donovan, C.T. 465
dose-response models 153
dosi, G. 217, 401
Douglas, I. 118, 324, 351–64
dow Chemical 40, 48, 494
Dowlatabadi, H. 567
down-scaling 423
Downs, A. 478
downstream dominance 111
Drake, E. 567
Dreistadt, R. 71
Driving Force-Pressure-State-Impact-Response 87
D(SC)B model 389
Duany, A. 478, 480
Index

objectives 127, 128
scarcity 229
sectors 96
transition 369
economy 93
- environment distinction 93–4
- environment integration 94
ecoparks 412
ecosystem:
 artificial 28
 biological 34
 ecology 6
 industrial 33, 34
 management 73
typology 5
see also industrial ecosystem; industrial estates as model ecosystems
ecotoxicity 387–8, 389
EDGAR (Emission Database for Global Atmospheric Research) 560
Edmonds, R.L. 354
Edwards, D. 481
efficiency 40–1
 improvement 39
 indicators 90
 revolution 323
see also energy flows: efficiency and dematerialization
egalitarian scenario 376–7, 378
Eggert, R.G. 203, 209
Egypt 87, 356
Ehrenfeld, J.R. 3, 6, 8, 13, 35, 74, 114, 334–48
Einig, K. 83
Einstein, A. 71
Eisen, M.D. 449
Eisenberg, A. 70, 72
Elazar, D. 477
electric drive vehicles 391–4, 397, 398, 399, 400, 401
electricity 185, 193–4, 195, 199, 201, 347, 461
 Australia 320
 Denmark 348
 energy flows: efficiency and dematerialization 197
electronics industry 446, 447, 463, 465, 502–4, 513
Ellickson, B. 178
emissions 232, 555–7
 reductions 383
empirical models 154
employee health and safety 469
employment/gross domestic product 218
end-of-life 434, 439, 440, 521, 525, 526, 528, 529
end-of-pipe 301, 332, 382, 457, 460
endogenous economic growth 195–201, 217
Energo-Chemical PYREG site (ENEChem) 52–4
energy 32, 214, 241, 324
 automotive systems 433
 carriers 309
 consumption 232, 237, 303, 310
 crisis 237
dematerialization and rematerialization 218–19, 220, 221
dependency 238
efficiency 233, 234–8, 240–3, 245, 320, 345
 flows 19, 418
flows: efficiency and dematerialization 185–201
 background 185–6
 exergy 186–7
 exergy efficiency and waste 191–5
 exergy as factor of production 190–1
 exergy, role of in growth 187–90
technological change and endogenous economic growth 195–201
information industry 452
intensity
dematerialization and rematerialization 217
 equations 374–5
 system dynamics model 376, 377
life cycle assessment 139
prices 242, 244
supply sector 298
technology 240, 242, 243
United Kingdom 331
use 462–3
see also material constraints on technology evolution: scarce metals and energy technologies
Engels, F. 18, 19, 138, 568
engineering:
 science 150
 social 569
 technical 569
Enquête Kommission 289, 299, 315, 320
entertainment and content industry 445–6
Environment Agency of England, Wales and Northern Ireland 356
environmental accounting and material flow analysis 150, 165–76
 physical and monetary accounting 166–72
 results and policy analysis 172–6
 sustainability assessment 165–6
environmental assets 167, 169
environmental burden system 123
environmental conservation bureau 32
environmental cost accounting 150, 335
environmental damage indices 123
environmental impact 124, 127, 130, 136
 Australia 313
automotive systems 433
dematerialization and rematerialization 211
green design 458
indices 128, 135
life cycle assessment 139
potential 125, 126, 132–3
projected 129
uncertainty 134
environmental impact assessment 149, 150,
 152, 153, 154, 160, 490
environmental indicators and accounting 304
Environmental Information Center (Nova Scotia) 495
environmental initiatives 494–6
environmental Kuznets curve 173, 222, 368
environmental management systems 469, 530,
 539
environmental objectives 125, 128
Environmental Performance Indicators 304, 539
Environmental Product Declarations 533, 539
Environmental Protection Agency 27, 52, 55,
 447
Air Pollution Prevention and Control Division 466
governance, laws and regulations 60
green design 463, 464
municipal solid waste management 544
remanufacturing and state of the art 510
Risk Management Programs for Chemical Accidental Release Prevention (the Rule) 472, 473
Toxic Release Inventory 262
environmental risk assessment 138, 141–2,
 144–5, 147
environmental sciences 71–5
environmental subsystem see biosphere
environmentally-adjusted net capital formation 168, 172, 174, 175
environmentally-adjusted net domestic product 168–9, 172, 174, 304
environmentally-adjusted value added 167,
 172
Eple, D. 374
equation oriented simulators 117
equivalency models 154
Erdmenger, C. 300
Eriksson, K.-E. 187
Erkman, S. 6, 27–35, 74, 490
erosion 291, 293, 294, 295
Escobar, A. 322
ESPROMUD 352

Essex University: Institute for Social and Economic Research 324
ethics 313, 568
Ethyl Corp 57
ethylene 415, 416
dichloride 415
Euler condition 196, 199
eurocentrism 566, 568
Europe 33, 312, 317, 319, 321, 324, 329
biogeochemical cycles 254, 256
cleaner production 37, 40
closed-loop supply chains 497, 502
earth systems engineering and management 566
energy flows: efficiency and dematerialization 192
environmental accounting and material flow analysis 171
extended producer responsibility 528
governance, laws and regulations 62, 63, 66, 67
green design 460, 463
industrial estates as model ecosystems 495
information industry 447
life cycle assessment 147, 530, 537, 538
material flows due to mining and urbanization 357
metal flows and accumulation 382
municipal solid waste management 543
returns to scale and scope 45
scarce metals and energy technologies 391
spatial planning 480, 485, 487
system dynamics model 371
technology policy 232, 233
wastes as raw materials 419
see also Eastern Europe; European; sustainable resource and materials management in Germany and Europe
European Commission 150, 289, 466
European Community 522
of Coal and Steel 30
Directive 357
European Environment Agency 289
European Union 450, 477, 519, 533
material flow analysis 80, 89
risk analysis 469, 470, 472
sustainable resource and materials management 288, 289, 292, 293, 294, 295
eutrophication 249, 254, 257, 259
Evans, A.M. 359
Ewerhart, G. 170, 208
excavation see earth moving
exergy 123, 171, 186–7
chemical 191, 192
efficiency and waste 191–5
as factor of production 190–1
finished 191, 197
raw 191
role of in growth 187–90
export-processing zones 490
exports 260, 313, 322, 325, 357
extended producer responsibility 306, 521–9
alliances in American white goods sector 526
industrial consortium in automotive sector 528
internalization of control processes over product life cycle 524
longer-term perspective 523–4
new business development in furniture industry 525–6
short- and long-term perspectives 522–3
symbiotic network of companies 524–5
value adding in the information technology sector 527
feedback mechanisms 185, 186, 188, 232, 332, 521
External control of production 524
Exporting 306
extended producer responsibility zones 306, 521–9
alliances in American white goods sector 526
industrial consortium in automotive sector 528
internalization of control processes over product life cycle 524
longer-term perspective 523–4
new business development in furniture industry 525–6
short- and long-term perspectives 522–3
symbiotic network of companies 524–5
value adding in the information technology sector 527

ExternE project 150
EXXON 40
Factor 4 to 10 80, 172, 174, 288
Fainstein, S.S. 478
FAIR (Framework to Assess International Regimes) model 554
family and community ties 341
Far East 502
farm-gate balances 423, 431
Farrow, S. 228, 229
Farvar, M.T. 29
Fathi-Afshar, S. 418
Faustmann, M. 226
Febre-Domene, L.A. 254
Federal Statistics Office 288
Federated American Engineering Societies: Committee on Elimination of Waste in Industry 29
feedback mechanisms 185, 186, 188, 232, 332, 521
Feenstra, J.F. 97
Fehringer, R. 82
Femia, A. 86
Fenzl, N. 87, 89
Ferrer, G. 510–20
fertilizers 261, 309, 313, 326, 338
heavy metals in agrosystems 421, 424, 425, 426, 429, 430, 431
metal flows and accumulation 385, 386, 389
scarce metals and energy technologies 398, 400
see also phosphates
Feynman, R.P. 71
Fiat 528, 536
Fichtner, W. 300
Field, B. 228, 229
Fifth (environmental) Action Programme (Decision No. 2179/98/EC) 80
Fiksel, J. 458, 459
Finkbeiner, M. 437, 537
Finland 216, 422–3, 522, 532
material flow analysis 80, 86, 89
sustainable resource and materials management 292, 294, 295
first commodity stage 261
Fischer-Kowalski, M. 6, 16–26, 91, 138, 324
Fischhoff, B. 14, 486
Fischman, L.L. 35, 203, 204
Fisher, A.C. 225, 229
fisheries 264, 272, 321
Fishman, R. 480, 482, 483, 486
Flekseder, H. 96
Fleischmann, M. 497, 507
Flemings, M.C. 204
Fletcher, W.W. 91
Florida University: Center for Construction and Environment 466
flow group impact assessment 158
flows 12
processed 267, 268, 269
see also material flow; substance flow
flu gas desulfurization 52
'fluff' 460, 461
Flux 181, 384
fly ash 347, 389, 464
fly-tipping 356
Flynn, P. 166
Flyvbjerg, B. 480
Folke, C. 61, 567, 569
Folsome, C.E. 28
Foo, G. 446
food 263, 545
Food and Agriculture Organization 191, 357
Foran, B. 89
Ford, A. 97
Ford Foundation: 'A Time to Choose' 238
Ford, H. 45, 46, 437, 520
Ford Motor Company 437, 438, 440, 461, 520
Fordism 325
foreign resource requirements 294–5
Forester, T. 369
forestry 181, 299, 307, 312–13, 327, 331
logging 320
material flow accounting 261, 264, 267, 271, 274–6, 282–4, 287
material flows due to mining and urbanization 356, 357
United Kingdom 325, 326
Index

former Soviet Union 45, 64, 66, 257, 370
Mendeleiev Institute of Chemical Technology 29
spatial planning 479, 480, 481, 486
technology policy 232, 233
Forsell, O. 179
Forward, G. 347
forward-looking analysis 9
fossil fuels 187, 194, 232, 274
biogeochmical cycles 249, 254, 259
climate change 556, 560
earth systems engineering and management 566
heavy metals in agrosystems 421
material flow analysis 307
metal flows and accumulation 389
scarce metals and energy technologies 391
sustainable resource and materials management 291, 292, 293, 294, 297
United Kingdom 324, 325, 326, 328, 329, 331, 332
Foster, J.B. 18, 19
Fraanje, P.J. 97–8
France 27, 28, 61, 235, 295, 495, 522
life cycle assessment as management tool 534, 541
spatial planning 477, 478, 479, 481
Francis, C.G. 416
Frank, R.H. 13
Frankl, P. 140, 530–41
Frede, H.-G. 299
free-rider attitudes 171
Freeman, C. 401
Freeman, P.K. 471
Frey, H.C. 130
Friedman, F.B. 470
Friedman, R.M. 567
Friege, H. 87, 289
Frisell, M.J. 426
Frosch, R.A. 49, 75, 209, 341, 375, 403, 430, 510
cleaner production 37, 42
goals and definition of industrial ecology 3, 6
history of industrial ecology 28, 33–5
Fu, Y. 126, 127, 132
fuel 263, 274
cells 393, 395
switching 232, 233, 238, 239
see also petroleum
Fuji 498
full time equivalents 472
Fullerton, A.B. 33
Fullerton, D. 179
functionalist tradition 20
furniture industry 525–6
Fussler, C. 9
G-Cubed model 179
GaBi 299
Gaia metaphor 72
Gallagher, R. 566
Galli, R. 35, 369, 370
gallium 205, 207, 294, 396, 397–8, 399
Gallopoulos, N.E. 3, 33–5, 37, 49, 209, 430
Gandy, M. 543, 544, 545, 552
Gardener, G. 80
Gatenby, D.A. 446
Gawel, E. 171
Geddes, P. 19–20
Geiser, K. 11, 42
GEMIS 299
general economic equilibrium 223
General Electric 57
General Equilibrium Environment Model (GREEN) 179
General Motors 57
generalized waste reduction (WAR) algorithm 123–4, 125, 127
genetically modified organisms 147
Geographical Information Systems 413–14, 429
geographical scales 402, 403
goography 476
gology 21–3
Georgescu-Roegen, N. 16, 28, 102, 105, 113, 187
gothermal brines 400
Gerd, J. 322
Gerhold, S. 86
germanium 207, 397, 398, 399
Germany 29, 311, 332, 337, 343
automotive systems 432–3
Communist Party (SED) 29
dematerialization and rematerialization 214, 219
Duales System Deutschland 335, 523
environmental accounting and material flow analysis 173, 174
extended producer responsibility 522, 525
Federal Agency for Geoscience and Raw Materials 292
Federal Office for Building and Regional Planning 299
Federal Statistics Office 297
Geological Association 28
governance, laws and regulations 64
industrial estates as model ecosystems 494
life cycle assessment as management tool 531, 532, 533, 534, 537
material flow accounts 260
material flow analysis 80, 83, 86, 87, 89, 302, 304, 309
material flows due to mining and urbanization 352, 358, 363
Ministry for Education and Research 299
municipal solid waste management 543
Ordinance on the Avoidance of Packaging Waste 522
physical input-output accounting 102, 105–10, 112–13
returns to systems integration 46–7, 48
Rhine basin 83
scarce metals and energy technologies 391
spatial planning 477, 478, 479, 481
technology policy 235
wastes as raw materials 405
see also sustainable resource and materials management in Germany and Europe
Gertler, N. 3, 35, 114, 335
Gertsakis, J. 521–9
Getz, W. M. 229
Ghana 174, 175
Giarini, O. 35
Gibbs free energy minimization 124
Gibbs-Dühem equation of thermodynamics 412
Gibson, T. L. 432
Giedion, S. 46
Gielen, D. 82
Gilbert, A. J. 97
Gilovich, T. 13
Girardet 352
Glasy, G. P. 399
glass 91, 545
Gleiß, A. 96
Gleick, P. H. 66
Glenck, E. 83, 87, 357
global biogeochemical cycles 249–59
carbon 250–2
human interference 259
nitrogen 252–5
phosphorus 256–9
sulfur 255–6
Global Business Network 35
Global Change Institute 37
Global Environmental Technology Program 32
global warming 234, 314, 402, 558
biogeochemical cycles 249, 252, 259
potentials 127–8, 133, 134, 147
goal and scope definition phase 140
goals of industrial ecology 10–14
Godbold, D. L. 256
Godlewka, A. 322
Goedkoop, M. J. 145, 154
gold 295, 314, 353, 354, 366, 399, 408
Gold Fields Mineral Services of London 353
Goldeberg, J. 213
Goldhar, J. D. 46
Goldstein, H. A. 486
Goldstein, N. 548
Gooch, J. W. 465
Goonan, T. G. 351
Gordon Conference on Industrial Ecology 567
Gordon, R. B. 365, 375
Gordon, S. L. 547
Gorin, D. R. 229
Gotoh, S. 301
Gottschick, M. 300
Gould, L. H. 179, 183
government, laws and regulations 60–9, 570
government structure and culture 63–4
specific legal issues 67–9
local 547
procurement regulations 68
Govind, S. 9
Govindasamy, B. 567
Gowdy, J. M. 217
Greenland 251, 559, 566
Greenpeace 41
Greenfield, J. 28
gross domestic product 22, 274, 321, 330, 450, 464, 523, 537

Index
Index

gross domestic product (cont.)
dematerialization and rematerialization 214, 215, 219, 222
energy flows: efficiency and dematerialization 188, 189, 190, 197, 199
environmental accounting and material flow analysis 166, 169, 172, 174
material flow analysis 90, 310, 359
sustainable resource and materials management 295, 296, 298
system dynamics model 368, 370, 371, 375
technology policy 232, 233, 235, 238, 239
transmaterialization 203, 204, 205
and unemployment 218
gross national product 109, 199, 240, 370
Grossman, G.M. 183, 222
Grossmann, D. 300
growth 205, 297–9
growth engines 185, 186
rates 229
see also economic growth
Gruber, H.E. 71
Grübler, A. 7, 33, 400, 445, 452, 567
governance, laws and regulations 61, 62, 64, 67
Gruenspecht, H.K. 470
GuhaThakurta, S. 487
Guile, B.R. 449
Guinée, J.B. 94, 100, 382–90, 421, 422, 429
Gulati, R. 343
 Gunderson, L.H. 61, 567, 569
Gupta, S.M. 7, 460, 461
Gussow, D. 27
Gyproc Nordic East 335, 337, 338, 342
gypsum 328, 337
Haber, S. 29, 254
Haberl, H. 82
Hackler, J.L. 560
hafnium 207
Hagen, P.E. 68
Hahn, E. 320
Hahn, F. 223
Haight, R.G. 229
Haimes, Y. 470–1
Hall, C.A.S. 27, 28, 74
Hall, D.C. 228, 229
Hall, J.V. 228, 229
halocarbons 555, 557
halons 297
Halstead, T. 166
Hammersley sequence sampling 132
Hancock, G.F. 465
Hannon, B.M. 187, 240
Hansen, E. 81, 84, 91, 96, 389
Hanson, J.A. 28
Hanssen, O.J. 532, 533, 534, 539
Harner, M. 21
Harrington, T. Jr 7
Harris, M. 21
Harris, R.F. 421
Harrison, A. 171
Harrison, K. 8
Harrison, M. 493
Har, S.L. 8
Hartog, R. 481
Hartwell, R.V. 68
harvesting waste 262
Harvey, D. 63, 453, 568
Harvey, L.D. 554, 555–6, 557, 558, 559
Hasselman, K. 554, 558
Hauschild, M. 154
Hawken, P. 49
Hayami, Y. 193
Hays, S.P. 29
hazard identification 149, 470, 471
hazardous substances 468
hazardous waste 321, 407–9, 525
Heal, G. 185, 228
Healey, P. 480
health and safety 469
heat 195
Heaton, G.R. 345
heavy engineering 236
heavy metals in agrosystems 421–31
scales of analysis 422–6
sustainability indicators 427–9
sustainable management 429–30
Hebbert, M. 481
 Hedermalm, P. 447
hedonic analysis 150
Hegel, G.W.F. 158, 160
Heijungs, R. 92, 96, 142, 156, 384, 385
Hellsten, M. 226
Helpman, E. 183
Henderson, H. 166
Hendricks, C.H. 376
Hendrickson, C. 141, 457–66
Henrion, M. 130
Herman Miller Inc 525
Herman, R. 9, 35, 209, 217
Herriges, J.A. 150
Herzog, H. 567
Heston, A. 370
Hewlett-Packard 517–19
hibernating stocks 98
Hicks, C. 522
Hicks-neutral progress 182
‘hidden flows’ 324
material flow accounts 262–4, 266–7, 275, 277, 309, 359
material flow analysis 88–9, 307
material flows due to mining and urbanization 352, 353, 354, 356, 358, 359
sustainable resource and materials management 291, 292, 294, 295, 297
Hildenbrand, W. 178
Hill, P. 171
Hill, R. 345
Hinterberger, F. 171, 172, 184
Hirohara, M. 481
Hirschkorn, J.S. 38, 42
Hoagland, P. 399
Hobbes, T. 72
Hobbs, G. 356
Hodges, C.A. 397
Hodgson, G.M. 27
Hodgson, R. 324
Heegeland, T. 179
Hoffman, C. 27
Hoffman, L. 156
Hoffrén, J. 88
Hofmann, C. 27
Huang, S.-L. 357
Hudson-Raritan Basin 74
Huele, R. 92, 98, 100
Hughes, T.P. 401, 569
Hui, G. Jr 552
Huijbregts, M.A.J. 385
Human Development Index 169
human health 149
human toxicity potential by exposure 123, 127–8, 129, 133, 134
human toxicity potential by ingestion 123, 127–8, 129, 133, 134
Humphreys, D. 35, 203, 204, 205
Humphries, R. 364
Humpstone, C. 28
Hunkuler, D. 537, 538
Hunt, E.K. 325
Hunt, R.G. 138, 142
Hunt, T. Jr 523
Huppes, G. 98, 142
Hur, T. 540
Hurdelbrink, R.J. 204
Husar, R.B. 93
Hutchinson, E.G. 28
Hutterman, A. 256
Hüttler, M. 6, 324
Hüttler, W. 6, 83, 87, 324
Hwang, C.L. 124
HYDE database 560
hydrochloric acid 415, 416, 419
hydrodealkylation 118–20, 124, 127–8, 129, 132
hydrogen peroxide 463
Ibenholt, K. 177–84
IBM 57, 58
ICI 123
Ierfino, L. 348
IIASA 391
IMAGE 2 554, 555
IMAGE 2.1 557, 559, 560, 561
immobile stocks 93
impact:
assessment method 158
categories 158
evaluation 149–61
data documentation and reporting 157–8
goal and scope formulation 151–2
indicators, selection of 152–3
technical system indicators and impact indicators 153–4
types and evaluation 154–6
uncertainty and sensitivity 156–7
indicator 158, 160
see also environmental impact
imports 260, 275, 307, 309, 357
Australia 313, 322
United Kingdom 325, 326
impulse response functions 558, 559, 561, 563–4
in-use performance 440, 441
incineration 421
income 218, 221, 222
incremental change 13–14
India 371, 468, 478, 540
material flows due to mining and
urbanization 352, 355, 356, 358
indicators 99–100
robust 146
indium 394, 396, 397, 398, 399, 400, 401
indivisibility 548–9
Indonesia 174, 175, 495
industrial consortium in automotive sector 528
industrial ecosystems 44–59
integrated 49–50
returns to scale and scope 44–6
returns to systems integration 46–8
industrial estates as model ecosystems 488–96
environmental initiatives 494–6
management options 492–4
sustainable development objectives 489–92
industrial metabolism 16–26, 27–35
Australia 311
Belgium 29–31
biology, agronomy and ecology 16–18
business and academic communities 34–5
cleaner production 37
collective 17
dematerialization and rematerialization
209
earlier attempts 27–9
individual 17
Japan 31–3
material flow accounts 261, 263
metal flows and accumulation 384
and misuse of metaphors 70–5
hidden message of metaphors in
environmental science 73–5
use of metaphors in environmental
sciences 71–3
value of metaphors 70–1
physical input-output accounting 102
scarce metals and energy technologies 395
Scientific American 33–4
social sciences 18–23
societal 19, 20
socioeconomic 25
substance flow analysis 99
United Kingdom 323, 324, 326, 331–3
industrial minerals 264, 270
industrial networks 299–300
industrial re-use 3
industrial remanufacturing 500–2, 507–8
Industrial Revolution 29, 566
industrial structure 238
Industrial Structure Council 32
industrial transformation 306
industrial wastes 302
Industry-Ecology Working Group 32
inexcludability 548
inflows 386
information industry 445–53
design for environment 446–7
infrastructure operations 447–9
service dimension 449–53
information service provider environmental life
cycle 448
information technology sector 527
informational regulation 470
infrastructure 262, 331, 447–9
Inoue, H. 33
input-output analysis with environmental
extension 303–4
input-output model 177–9
input-output tables 19–20, 305, 324, 325
inputs:
data 559–60
dematerialization and rematerialization
210
heavy metals in agrosystems 424, 425, 426,
427, 430
indicators 88–9
industrial metabolism 24–5
material flow accounts 260, 261, 263, 267,
351
metal flows and accumulation 389
sustainable resource and materials
management 289–91
Toxic Release Inventory 262
United Kingdom 325, 330
see also physical input-output accounting
INSEAD 27
Institute of Electrical and Electronics
Engineers 447
institutional paradigm 220, 221
institutional structures 218
institutionalization 534–7
Integrated Development Plan for Car
Components 536
integrated modeling approach for climate
change 554–65
carbon budget 560–2
concentration and radiative forcing 557–8
emissions and concentration 555–7
global carbon cycle 564–5
global mean temperature increase and sea
level rise 559
input data 559–60
radiative forcing and global mean
temperature increase 558–8
Index

temperature response functions of atmosphere-ocean general circulation models 562–4
Integrated Product Policy 533
Integrated System of Environmental and Economic Accounting 169, 170, 172, 304
integration 38–9, 569
horizontal 525, 551
vertical 57, 525, 551
Intel Corp. 463
intensity of use 202–8 passim, 212–13, 218, 220, 369–71, 373, 375–9
interdependency 547
interdisciplinarity 7
intergenerational equity 64
Intergovernmental Panel on Climate Change 146–7, 376, 377, 461, 554–6, 558, 560, 563–4
Intermodal Surface Transportation Efficiency Act (1991) 465
internal combustion engines 185
internalization of control processes over product life cycle 524
International Cleaner Production Information Clearing House 37
International Declaration on Cleaner Production 37
International EcoBalance Conference 303
international harmonization 146–7
International Human Dimension Program 306
International Institute for Applied Systems Analysis 27, 74
International Institute for Iron and Steel 375
International Research and Technology Corporation 28
International Standardization Organization 139–40, 144, 148, 150–1, 154, 303, 530, 538
International Standards Organization:
2000 153
9000 470
14000 160, 304, 459, 465, 469, 470, 495, 539
14001 304, 494
14040 139, 156, 533
14041 142–3, 533
14042 143, 150, 153, 155
14047 150
14048 158
Internet 445, 449–50, 451, 452, 453, 474, 476
Interstate Highway Act (1956) 483
intragenerational equity 64
inventory analysis phase 141
inverse manufacturing 304
IPAT equation 8, 9
Ireland 522
Iron Age 202
iron ore 187, 205, 207, 212
Australia 313
earth systems engineering and management 567
green design 459
heavy metals in agrosystems 426
material flow analysis 307, 354
scarce metals and energy technologies 395
sustainable resource and materials management 294, 298
system dynamics model 366–8, 370–3, 375–6, 378, 381
United Kingdom 326, 327, 328
Irving, P.M. 256
Isaacs, J.A. 7, 460, 461
Isacsson, A. 86, 89
Isard, W. 476
isocyanate 417
Italy 102, 235, 295, 341, 477, 522, 566
life cycle assessment as management tool 531, 533, 534, 540
material flow analysis 86, 89, 352
ITT 38
Jablonski, D. 566
Jack, A. 355, 364
Jackson, T. 6, 14, 35, 36–43
Jacobs, J. 487
Jacobsson, S. 392
Jaffé, A.B. 469
Jaffé, P.F. 27, 74
Jager, D.T. 97
Jager, J. 566
Jahnke, R.A. 257
Jain, R. 407–8
Jänicke, M. 209, 214, 215, 222, 296, 320, 321, 323
Japan 332, 347
cleaner production 37
dematerialization and rematerialization 214
Economic Planning Agency 304
Environment Agency 304
Environment Management Association for Industry 303
environmental accounting and material flow analysis 172–3, 175
extended producer responsibility 522, 528
governance, laws and regulations 64, 66
green design 460
industrial metabolism 31–3
keiretsu 58, 343
life cycle assessment as management tool 537, 538, 540
Robert U. Ayres and Leslie W. Ayres - 9781840645064
Downloaded from Elgar Online at 12/13/2018 01:07:07PM
via free access
Japan (cont.)
material flow accounts 260
material flow analysis 86, 89, 352, 358, 363
Minamata Bay 382
returns to scale and scope 45
Science and Technology Agency 306
spatial planning 479, 481
sustainable resource and materials management 294, 297
system dynamics model 371
technology policy 232–45
 Ministry of International Trade and Industry and energy efficiency research and development 234–8
sustainable development 244–5
 technology as substitute for energy 238–44
wastes as raw materials 405
see also material flow analysis in Japan
Jéjé, L.K. 353
Jelinek, M. 46
Jelinski, L.W. 510
Jenkins, R.R. 552
Jensen, A. 530, 532, 533, 535
Jensen, M. 432–44
Jepsen, D. 300
Jevons 217
Jiménez-Beltrán, D. 87
Johansson, A. 70–5, 178
Johansson, K. 96
Johnson, R. 567
Johnsson-Sheehan, R.D. 70–1
Jolly, J.H. 365
Jones, C.G. 28
Joos, F. 557
Jorgenson, D.W. 179, 239
Joshi, S. 460
Journal of Cleaner Production 36, 42
Journal of Industrial Ecology 35, 36
Joyce, J. 187, 240
justice type of approach 152
Jutinen, A. 89

k dimensions 132
K-Mart 58
Kaiser, J. 567
Kakizawa, Y. 432–44
Kalagnanam, J.R. 123, 132
Kalundborg (Denmark) 3–4, 12, 58, 334–48, 404
 actors 346
 among firms co-located in defined ‘eco-industrial park’ 340
 among firms organized ‘virtually’ across broader region 341
 among local firms not co-located 340–1
basic economics 345–6
continuing change 338–9
historical evolution 335–8
industrial estates as model ecosystems 494
industrial metabolism 74
integrated industrial ecosystems 50
organizational arrangements and transaction costs 342–3
pollution prevention vs symbiotic flows 346–7
process analysis approach 114
regulatory context 344–5
spatial planning 483
technical factors 343–4
underlying dynamics of symbiotic evolutions 341–2
waste exchanges 340
within facility, firm or organization 340
Kandelaars, P.A.A.H. 101, 181, 182, 183, 184
Kanoh, T. 35
Karlsson, S. 11, 391, 394, 400
Kassakian, J.G. 461
Katterl, A. 102
Kaufmann, R.K. 190
Kava, Y. 303
Keckler, S.E. 414
Keith, D.W. 567
Kekulé 71
Kemp, W.B. 21
Kennedy, D. 156
Kenya 356
Keoleian, G.A. 8, 432, 434, 437
Kerr, R.A. 567
Keuning, S.J. 171
Keynes, J.M. 20
Kimbrough, D.E. 411
Kimrua, M. 347
King, R. 547
Kippenberger, C. 292
Kirakossian, G. 29
Kirby, J.R. 458
Kirmann, A.P. 178
Kitsuse, A. 487
Klassen, R.D. 468
Kleijn, R. 79, 81, 82, 92, 93, 96, 98, 100, 400
Klein-Goldewijk, K.C.M. 370, 375, 381, 560
Kleinendorfer, P.R. 467–75
KLEM models 179
Kling, C.L. 150
Kneese, A.V. 27, 86, 91, 102, 138, 180, 214, 311, 312
industrial metabolism 16, 24–5, 26
Index

Knoebel, B.R. 226
Ko, J. 215, 217
Kodak 498–9, 506, 507
Koenig, A. 83
Koenig, H.E. 123
Kohler, N. 83, 87, 298
Koike, K. 302
Kolodeznikova, A. 479, 481
Kondo, Y. 303–4
Konica 498
Konisky, D.M. 449
Korea 175, 522, 538, 540
Institute of Science and Technology 50–1
Kranendonk, S. 313
Kratena, K. 102
Kraus, M.E. 513
Krautkraemer, J.A. 229, 395
Kreislaufwirtschaft Act (1994) 289
Krikk, H. 497
Krueger, A.B. 222
Kuckshinrichs, W. 299
Kuhn, M. 102
Klümmel, R. 199, 240
Kunreuther, H.C. 470, 471
Kuznets, S. 205
Kyoto Protocol 66, 179, 493
Kyoto Treaty 252

labor 188–9, 190–1, 195, 199, 225, 234, 240–3, 325
Labson, B.S. 221
Labys, W.C. 35, 202–8, 209, 213
Lahner, T. 83, 87, 357, 384
Lahoni, P.R. 204
Lake, D. 452
land use changes 259
Landes, D.S. 212
landfill 307, 386, 399, 545, 549, 550
Landsberg, H.H. 212
Lane, M. 322
Lange, G.-M. 183, 365, 374
Langford, H.D. 7, 33
Lankey, R. 464
large-scale sustainable technologies 401–2
Larson, E.D. 204, 209
Lasky-type relationship 374
Lassen, C. 91, 96, 389
Lasseur, C. 28
Latesteijn, H.C. 376
Latin America 370, 371
Latin hypercube sampling 131–2
Lave, L.B. 400, 432, 437, 441, 457–66, 470
Lavoisier, A. 91
laws see governance, laws and regulations
Lawson, N. 324, 351–64
Le Corbusier 486
leaching 98, 424, 425–6, 427, 429, 430, 431
lead 81, 181, 207, 261, 313, 366, 381
earth systems engineering and management 566
green design 461, 463
heavy metals in agrosystems 421, 422–3, 424, 425, 426
information industry 448, 449
metal flows and accumulation 383, 385, 386, 387, 388, 389
poisoning 382
scarce metals and energy technologies 394, 395, 396, 397, 398, 399, 400
wastes as raw materials 410, 411
Leccese, M. 482, 483
Lee, T. 33
Lefohn, A.S. 255
legal characteristics 320
Lenikan, J. 91
Lenox, M. 343
Lenseen, N 314
Leontief inputs-outputs analysis 464
Leontief, W.W. 94, 138, 204, 303
less developed countries 232, 233
Lesser, J.A. 183
Levine, S.H. 6, 399, 403
Lexmond, T.M. 425, 430
Li, J. 354
liability 469
Lickerman, J. 166
Lidgren, K. 544
Liebig, J. 17, 18
Liedtke, C. 83, 167, 322
Liesegang, D. 299
life cycle assessment 6, 138–48, 299, 303, 434–7, 469
definition and applications 139–40
extended producer responsibility 529
history 138–9
information industry 446
material flow analysis 82, 83
model parameters 144–5
municipal solid waste management 547
streamlined 437, 438, 439
technical framework 140–4
uncertainty 145–7
see also life cycle assessment as management tool
life cycle assessment as management tool 530–41
communication, importance of 539–40
different analysis approaches 533–4
from product to system approach 539
general observations 537
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>life cycle assessment as management tool (cont.)</td>
<td></td>
</tr>
<tr>
<td>institutionalization</td>
<td>534–7</td>
</tr>
<tr>
<td>link with other management tools</td>
<td>538–9</td>
</tr>
<tr>
<td>main uses and current level of application</td>
<td>530–3</td>
</tr>
<tr>
<td>multi-stakeholder approach</td>
<td>540–1</td>
</tr>
<tr>
<td>open issues and possible solutions</td>
<td>538</td>
</tr>
<tr>
<td>life cycle carbon dioxide emission</td>
<td>303</td>
</tr>
<tr>
<td>life cycle costing</td>
<td>150</td>
</tr>
<tr>
<td>life cycle energy</td>
<td>303</td>
</tr>
<tr>
<td>life cycle impact assessment</td>
<td>142, 150, 152, 153, 154, 155, 160</td>
</tr>
<tr>
<td>life cycle interpretation</td>
<td>144</td>
</tr>
<tr>
<td>life cycle inventory</td>
<td>142, 434, 437</td>
</tr>
<tr>
<td>life cycle perspective</td>
<td>203</td>
</tr>
<tr>
<td>life expectancy</td>
<td>169</td>
</tr>
<tr>
<td>Liferst, R.</td>
<td>3–15, 74, 523, 545</td>
</tr>
<tr>
<td>lignite</td>
<td>291, 294, 296–7, 354</td>
</tr>
<tr>
<td>limestone</td>
<td>307</td>
</tr>
<tr>
<td>‘Limits to Growth’</td>
<td>185, 210</td>
</tr>
<tr>
<td>Lind, R.C.</td>
<td>224, 227, 228</td>
</tr>
<tr>
<td>Lindemann, R.L.</td>
<td>17</td>
</tr>
<tr>
<td>Linden, H.R.</td>
<td>14</td>
</tr>
<tr>
<td>Lindfors, L.G.</td>
<td>154</td>
</tr>
<tr>
<td>Lindgren, K.</td>
<td>99, 166</td>
</tr>
<tr>
<td>Lindqvist, T.</td>
<td>545</td>
</tr>
<tr>
<td>linear flows of resources</td>
<td>13</td>
</tr>
<tr>
<td>linear models</td>
<td>153, 154</td>
</tr>
<tr>
<td>LINEX function</td>
<td>199</td>
</tr>
<tr>
<td>Liss, P.S.</td>
<td>255</td>
</tr>
<tr>
<td>literacy</td>
<td>169</td>
</tr>
<tr>
<td>lithium</td>
<td>207, 396, 397, 398, 399, 400</td>
</tr>
<tr>
<td>Lo, F.-c.</td>
<td>481</td>
</tr>
<tr>
<td>Lober, D.J.</td>
<td>449</td>
</tr>
<tr>
<td>locally undesirable land use</td>
<td>485, 486</td>
</tr>
<tr>
<td>lock-in</td>
<td>401, 402, 403</td>
</tr>
<tr>
<td>lock-out</td>
<td>402</td>
</tr>
<tr>
<td>Locke, J.</td>
<td>72</td>
</tr>
<tr>
<td>Lofstedt, R.E.</td>
<td>470</td>
</tr>
<tr>
<td>Lohm, U.</td>
<td>27, 74, 93, 96, 97, 98, 383, 477</td>
</tr>
<tr>
<td>London Group</td>
<td>167</td>
</tr>
<tr>
<td>loop closing</td>
<td>4</td>
</tr>
<tr>
<td>Lösch, A.</td>
<td>476</td>
</tr>
<tr>
<td>Loske, R.</td>
<td>288</td>
</tr>
<tr>
<td>Lotka, A.</td>
<td>91</td>
</tr>
<tr>
<td>Lovelock, J.E.</td>
<td>72</td>
</tr>
<tr>
<td>Lovelock’s Gaia</td>
<td>255</td>
</tr>
<tr>
<td>Lovins, A.B.</td>
<td>238, 462</td>
</tr>
<tr>
<td>Lowe, A. I.</td>
<td>449</td>
</tr>
<tr>
<td>Lowe, E.A.</td>
<td>29, 35, 42</td>
</tr>
<tr>
<td>LTV</td>
<td>58</td>
</tr>
<tr>
<td>lubricants</td>
<td>272, 285–7</td>
</tr>
<tr>
<td>Lucas, R.E.</td>
<td>183</td>
</tr>
<tr>
<td>Luhmann, N.</td>
<td>67</td>
</tr>
<tr>
<td>Luks, F.</td>
<td>171, 172</td>
</tr>
<tr>
<td>Lund, R.T.</td>
<td>510</td>
</tr>
<tr>
<td>Luton, L.S.</td>
<td>546, 551</td>
</tr>
<tr>
<td>Lutz, B.</td>
<td>311</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>522</td>
</tr>
<tr>
<td>Lyons, K.</td>
<td>486</td>
</tr>
<tr>
<td>Maag, J.</td>
<td>81</td>
</tr>
<tr>
<td>McCormick, K.</td>
<td>482, 483</td>
</tr>
<tr>
<td>McCoy, M.</td>
<td>416</td>
</tr>
<tr>
<td>McDonald’s</td>
<td>58</td>
</tr>
<tr>
<td>McDonough, W.</td>
<td>347</td>
</tr>
<tr>
<td>MacGregor, D.</td>
<td>374</td>
</tr>
<tr>
<td>Machado, J.A.</td>
<td>87, 89</td>
</tr>
<tr>
<td>Mackay, D.</td>
<td>94, 97</td>
</tr>
<tr>
<td>Mackenzie, F.T.</td>
<td>249</td>
</tr>
<tr>
<td>Mackenzie, J.A.</td>
<td>249</td>
</tr>
<tr>
<td>McKibbin, W.J.</td>
<td>179</td>
</tr>
<tr>
<td>McLaughlin, C.P.</td>
<td>468</td>
</tr>
<tr>
<td>McLaughlin, D.H.</td>
<td>22</td>
</tr>
<tr>
<td>McLaughlin, M.J.</td>
<td>430</td>
</tr>
<tr>
<td>MacLean, H.L.</td>
<td>432, 441</td>
</tr>
<tr>
<td>Maclennan, D.</td>
<td>479</td>
</tr>
<tr>
<td>McMichael, F.C.</td>
<td>75, 457–66</td>
</tr>
<tr>
<td>McNulty, P.</td>
<td>469</td>
</tr>
<tr>
<td>macroeconomic level</td>
<td>176</td>
</tr>
<tr>
<td>Maddison, A.</td>
<td>369</td>
</tr>
<tr>
<td>Mäenpää, I.</td>
<td>86, 89</td>
</tr>
<tr>
<td>MAGiCC</td>
<td>557</td>
</tr>
<tr>
<td>magnesium</td>
<td>381, 429</td>
</tr>
<tr>
<td>Magstadt, T.M.</td>
<td>477, 544</td>
</tr>
<tr>
<td>el Mahdi, A.</td>
<td>87</td>
</tr>
<tr>
<td>maintenance valuation</td>
<td>170</td>
</tr>
<tr>
<td>Mäkela-Kurutto, R.</td>
<td>423</td>
</tr>
<tr>
<td>Malenbaum, W.</td>
<td>35, 203, 204, 209, 212–13, 214, 215, 368</td>
</tr>
<tr>
<td>Malthus, T.</td>
<td>210</td>
</tr>
<tr>
<td>management options</td>
<td>492–4</td>
</tr>
<tr>
<td>managerial systems</td>
<td>469–70</td>
</tr>
<tr>
<td>Manchester School of Geography</td>
<td>324</td>
</tr>
<tr>
<td>Manfield, E.</td>
<td>233, 234, 544</td>
</tr>
<tr>
<td>Mangan, A.</td>
<td>347</td>
</tr>
<tr>
<td>manganese</td>
<td>205, 207, 292, 381, 398, 399</td>
</tr>
<tr>
<td>Mangin, C.R.</td>
<td>206</td>
</tr>
<tr>
<td>‘Man's Role in Changing the Face of the Earth’ conference</td>
<td>21</td>
</tr>
<tr>
<td>Manthy, R.S.</td>
<td>265</td>
</tr>
<tr>
<td>manufacturing</td>
<td>236–45 passim, 299, 320–1, 369, 438–41</td>
</tr>
<tr>
<td>manure</td>
<td>263, 309, 385, 424, 430</td>
</tr>
<tr>
<td>marble</td>
<td>355</td>
</tr>
<tr>
<td>Marchetti, C.</td>
<td>13, 35</td>
</tr>
<tr>
<td>marginal cost of production</td>
<td>44</td>
</tr>
<tr>
<td>marginal extraction cost</td>
<td>228</td>
</tr>
<tr>
<td>marginalisation</td>
<td>224</td>
</tr>
</tbody>
</table>
Index

marginalism 231
market driven system 519, 520
market valuation 170
Markham, A. 382
Marland, G. 560
Marsh, G.P. 21–2, 566
Marshall, A. 185
Martin, S.A. 35
Martinàs, K. 166, 401
Martínez-Alier, J. 19
Marx, K. 18, 19, 138, 188, 453, 568
Mass Balance Club 324
mass balance principle 91, 96, 214
mass production 45
Masser, I. 478, 481
material balance conditions 122
material constraints on technology evolution:
 scarce metals and energy technologies 391–404
 capacity per utility service unit: system
 efficiency, location and design 392–3
 implications for industrial ecology 403–4
 implications for policy and strategy 403
material recovery system efficiency 394–5
net metal intensity 393–4
scale of constraints 391–2
scarce metals availability 395–400
secondary resources and competition for metal 399–400
sequestration, ‘ecological rucksacks’ and cadmium paradox 400–1
sustainable technology trajectories 401–2
material cost 514
material and energy flow information system 288
material flow accounting (MFA) 91, 166–7, 168, 172, 260, 266, 297, 299, 302, 304, 323, 324, 325
material flow accounting: United States 260–87
data and methodological issues 261–3
global patterns 274–6
global use of materials for physical goods 287
physical goods 267–74
physical goods derived from metals and minerals 280–2
physical goods derived from non-renewable
 organic sources and plastics 285–7
physical goods derived from renewable
 organic forest and agricultural sources 282–4
processed flows for physical goods 278–80
total material flows 263–7
material flow analysis 23–6, 79–90
 attribution to sectors, activities and functions 87
 balance indicators 89–90
 consumption indicators 89
 economy-wide 86–7
 efficiency indicators 90
 heavy metals in agrosystems 426
 input indicators 889
 life cycle assessment 138
 metal flows and accumulation 383
 metals 365
 output indicators 89
 procedure and elements 85
 Type Ia 81–2
 Type Ib 82
 Type Ic 82
 Type IIa 82–3
 Type IIb 83
 Type IIc 83–4
 United Kingdom 333
 usage 84
see also environmental accounting and material flow analysis
material flow analysis and economic modeling 177–84
economic modeling 178–9
economical and physical data converting 182
integration 179–82
prices 183–4
rebound 183
technological development 182–3
material flow analysis in Japan 301–10
 background 301–2
domestic hidden flows 309
environmental indicators and accounting 304
geographical and historical background 306–7
input-output analysis with environmental
 extension 303–4
international comparison 309
life-cycle analysis/assessment 303
material flow accounting 302
material inflows 307
material outflows 307–9
recent trends 309–10
material flows 19, 28, 31, 515
 Australia 312, 313, 319, 321
 from foreign trade 328–30
 industrial metabolism 22, 23, 26
 processed 266
 spatial planning 484
 wastes as raw materials 405, 411, 418
material flows due to mining and urbanization
controlled waste 363
earth removal 364
informal and unrecorded mining activity
materials budgets at urban and regional levels
methodological debate
mineral production
minerals extraction including hidden flows
sludge production and disposal
urban materials flows
waste flows
waste materials
material flush-out
material input per service unit
material intensity
material loops closing
material transformation system deficiencies
material use and re-use
materials
balance problem
consumption
cycles
efficiency
extraction
loops closing
management see sustainable resource and materials management
Matheny, A.R.
Matthews, J.T.
Matos, G.R.
Matsumo, Y.
Matthews, E.
Matthews, H.S.
Maurer, J.
maximum permissible addition
maximum permissible concentration
maximum utility
Maxson, P.
Mayer, J.R.
Meadows, D.H.
measurements, new
mechanical work
mechanistic models
MedAlloy
Median Latin hypercube sampling
Melkonian, R.G.
Melosi, M.
Menerey, D.
mercury
poisoning
metaIMAGE
metabolic processes
metabolism:
metal
national
urban
see also industrial metabolism
Metallgesellschaft
metals
calibration
concerned egalitarians
consumption data
crucial model equations
demand
long-term loop: learning and depletion
primary production
production
secondary production
dematerialization and rematerialization
material flow accounts
material flow analysis
municipal solid waste management
primary
secondary production
sustainable resource and materials
management
United Kingdom
use between 1900 and 1990
wastes as raw materials
see also heavy metals in agrosystems;
motor constraints on technology
metabolic processes
metals flows; precious metals
metals flows and accumulation
case studies
methods, models and indicators
risk management
metaphors see industrial metabolism and misuse of metaphors
methane gas
Mexico
United Kingdom
Gulf of
Meyer, B.
Meyers, J.
Index

Microelectronics and Computer Technology Corporation 447
Middle East 66, 370, 371, 502
Miller, D.H. 91
Miller, G.T. Jr 335, 356
Miller, M.H. 228
Milspec 68
Milstandard 68
Milstein, M.B. 8
Milton, J.P. 29
minerals 194, 228, 266, 275, 280–2, 312
dematerialization and rematerialization 210, 211
inputs 313–14
material flow accounts 264–5, 268, 269, 270, 274, 276, 278–82, 287
material flows due to mining and urbanization 351, 360–1
sustainable resource and materials management 292, 293, 294, 295
transmaterialization 204, 205
United Kingdom 324, 325, 326–7, 328, 329, 332–3
mining 262, 266, 299, 309, 320, 328, 356, 421
see also material flows due to mining and urbanization
Ministry of Culture and Education 306
Ministry of International Trade and Industry 31–2, 233, 234–8, 244, 303
Miranda, M.L. 486, 552
Misra, K.B. 41
Mitchell, B.R. 324
Moavenzadeh, F. 465
modeling 85
Molander, U. 96
Moldan, B. 87
Moll, H. 365, 370
Moll, S. 298
molybdenum 205, 207
Mönch, H. 321
monetary input-output table 103–4
monetary values 169
monitoring costs 342
Monsanto 40
Mont, O. 14
Monte Carlo method 131, 132, 146
Montreal Protocol 66, 493
Moody, R. 314
Moolenaar, S.W. 100, 421–31
Moonlight Project 32, 237–8
Moore, S.J. 318, 322
Moore’s Law 449
Morehouse, E.T. Jr 68
Morelli, N. 521–9
Morgan, L.H. 19, 20
Morgan, M.G. 130
Moriguchi, Y. 79–90, 301–10
Morocco 257
Morris, D. 13
Morse, C. 186, 210, 228–9, 377, 395, 401
Moses, R. 487
Mosier, D.L. 374
Motley, E.P. 52
Mowery, D.C. 233
Mudd, G. 314
Mueller, M.J. 229
Mulder, P. 92
Muller, D. 314
multi-level government 477
multi-objective optimization 124–30
under uncertainty 130–6
multi-stakeholder approach 540–1
multidisciplinarity 7
multiple processes 142
multisectoral growth model 178–9, 180–1
Mumford, L. 21
municipal solid waste 301, 307
municipal solid waste management 542–53
current practices 544–6
governmental intervention 548–51
historical background 542–3
implementation lessons 551–2
political economy perspective 544
political structure 546–8
Munn, R.E. 33
Murphy, C. 542, 543
Murphy, R. 21
Muukkonen, J. 86, 89
Myers, R.A. 227
N-shaped curve 215, 216, 218, 220, 221, 222
n-values 131–2
Nagelhout, D. 182
Nakamura, S. 304
Nakicenovic, N. 9, 33, 35, 205, 400
Nannon, B.M. 227
National Academy of Engineering 34
National Academy of Science 34
National Institute of Standards and Technology 466
National Research Institute for Metal 306
natural fibers 274
natural gas 47, 233, 255, 272, 285–7, 294, 320
material flows 264, 356
United Kingdom 327, 328
natural resources 319
natural science 150
NCR 58
Nebbia, G. 113
Needham, B. 481
Index

Neef, E. 16, 23
negligence 469
Nelson, R.R. 401
Nemerow, N.L. 28
neoclassical economics 185, 188, 217, 218
neofunctionalism 21
Nepal 478
net addition to stock 89–90, 291, 297, 298, 310
net domestic product 168, 174, 175
Netherlands 332
dematerialization and rematerialization 214, 216, 218–19, 220, 221
environmental accounting and material flow analysis 173
extended producer responsibility 522, 523
governance, laws and regulations 63, 64, 65
heavy metals in agrosystems 422–3, 424, 430
life cycle assessment 143, 534
material flow accounts 260
material flow analysis 80, 86, 89, 181, 302, 309, 352, 358
metal flows and accumulation 383, 385, 386, 387, 388, 389, 390
National Accounting Matrix including Environmental Accounts 171
spatial planning 478, 479, 481
sustainable resource and materials management 294, 297
Netting, R.M. 21
new business development 525–6
New Earth 21 32
New Energy Development Organization 32
New Sunshine Program 32
New Urbanist movement 482
Newcombe, K. 24, 355, 357
Newman, C. 502
nickel 205, 207, 212, 292, 339, 354, 381, 448
scarce metals and energy technologies 394, 395, 396, 397, 398, 399, 400
wastes as raw materials 410, 411
Nigeria 478
Nijkamp, P. 180
Nilsson, L.J. 209, 213
nitrogen 81, 249, 252–5, 257, 259
climate change 556
dioxide 303
material flow analysis 304
sustainable resource and materials management 291, 299
United Kingdom 325
nitrous dioxide 555
nitrous oxide 555, 558
Noakai, N. 481
Nobel, C.E. 413–14
Noble, D.F. 568
nodes network 92
Nolan, J.R. 69
Nolan-Haley, J.M. 69
non-energy technology 240, 242, 243
non-governmental organizations 61–2, 238, 288, 470, 541, 568, 570
non-metals 203
non-renewable organics 272, 274, 275, 276, 278–80, 285–7
resources 267, 268, 269
sources 264–5, 272
non-renewable resources 225–6
dependency on 110–11
non-sustainability indicators 165
‘Non-waste Technology and Production’ 28
Noorman, K.J. 14
Norberg-Bohm, V. 7
Norgaard, R.B. 229
normative (prescriptive) analysis 12–13
North America 319, 432
biogeochemical cycles 254, 256
closed-loop supply chains 497, 502
Free Trade Agreement 67, 477
industrial estates as model ecosystems 495
municipal solid waste management 543
risk analysis 470
spatial planning 487
see also Canada; United States
North Sea 254, 292
Norway 182, 522
not in my back yard (NIMBY) 551
Nösttaler, R. 355, 360
Novo Nordisk Novozymes A/S 335, 336, 338, 342
Nriagu, J.O. 91, 421, 477, 566
nu-plex concept 50
nuclear power 147, 238, 402
nutrition habits 331
Nyles, G.D. 178
Oak Ridge National Laboratory 560
Oates, W.E. 477
Oberrnosterer, R. 82, 83, 389
obsolescence 241
O’Carroll, R.E. 382
Océ 501
Oceania 371
Odum, E.P. 17, 32, 74
Odum, H.T. 27, 85, 187
Oerlemans, J. 559
office equipment 465
Office of Management and Budget 465
offtake 424, 425, 426
Ogawa, Y. 233
Ogden, J.M. 401
Index

oil crisis 179, 221, 222, 329
Oldenburg, K.V. 11, 38, 42
Olivier, J.G.J. 560
Olthoorn, C.S.M. 96
Olthoorn, X.A. 97, 98, 384, 385
Onibokun, A.G. 543, 544
open conceptual problems 112–13
opportunity cost 224, 225, 231
Opschoor, J.B. 99, 213, 215, 288
optimal catch 226–7
optimal harvest of trees 226
optimization 124–36
ORANI 179
Orbach, T. 83
Ordway, S.H.J. 22
ore grades 373, 375–6, 377–8
organic materials 263
Organization for Economic Cooperation and Development 37, 169, 255, 302
dematerialization and rematerialization 214, 217
Economics Department 179
extended producer responsibility 521, 522, 523
material flow analysis 80, 87
organizational arrangements 342–3
organizational relationship 347
original equipment manufacture 501, 503, 506, 513
origins analysis 96–7
orimulsion 335, 337, 339, 342
Orlove, B.S. 21
Ormerod, P. 218
Orsenigo, L. 217
Orts, E.W. 470
Osborne, D. 477
Östlund, C. 96
Ostwald, W. 19
Otto, N. 46
outflows 386
outputs:
dematerialization and rematerialization 210
flows to the environment 296–7
heavy metals in agrosystems 424, 427, 429, 430
industrial metabolism 24–5
material flow accounts 260, 262, 263
metal flows and accumulation 389, 390
sustainable resource and materials management 289–91, 292
to air 317
United Kingdom 331
see also physical input-output accounting
overburden 266
overlap effect 558
Owens, J.W. 142
oxygen 325
ozone depletion 66, 317
potential 127–8, 134, 147
substances 489, 493
see also Montreal Protocol
packaging 438
Pacyna, J.M. 421
Page, T. 228
Paley, W. 22
Palm, V. 96
PALME model 495, 496
Pantharei model 298
paper 91, 262, 264, 271–2, 274, 282–4, 356, 545
primary 271, 282–4
recycled 271, 282–4
paradigmatic differences 147
parameter domain 130
Pareto 124
optimality 24
set 127, 129, 132, 134, 136
surface 125, 126, 128
Park, R.E. 20
Parks, P.K. 226
Parry, I.W.H. 183
partial equilibrium 223, 230, 231
Patel, C.K.N. 34, 75
Patel, M. 82
Paul, B. 364
Pauli, G. 29, 43
Pay-As-You-Throw 552
PCBs 214
PDI/TDI 384
Pearce, D.W. 150, 183, 382, 544
Pearson, G. 34
Peck, S. 348
Pedersen, O.G. 86, 87
Perez, L. 465
Perrings, C. 102, 173
pesticides 261, 291, 309, 313, 326, 421, 424
petrochemicals 47, 48, 272, 273
petroleum 48, 185, 233, 264, 272, 285–7, 354
green design 459, 462
scarce metals and energy technologies 398, 400
Petrovic, B. 86
Pettersson, O. 424
Pezzey, J. 166
Phair, M. 464
Philippines 175, 347
Phoenix Design 525
phosgene 416
phosphate 205, 207, 292, 354, 385, 389, 400, 422
phosphorus 81, 256–9, 291, 299, 304, 398, 426
photochemical oxidation potential 123, 127–8, 129, 133, 134
photovoltaics 391–5, 398–402
processed 276, 278–80
physical input-output accounting 102–13
material transformation system deficiencies 110–13
table 102–5
table for Germany 105–10
physical input-output tables 87, 297–8, 304
physical trade balance 90
physiological work 191
phytominning 399
Piasecki, B. 519
Pimentel, D. 295
Pinkerton, R.C. 27
Pioneer 416
Piore, M.J. 341
planning see spatial planning
plastics 91, 181, 205, 214, 264–5, 273, 285–7
green design 460, 461, 463
material flows due to mining and urbanization 356
municipal solid waste management 545
system dynamics model 379
platinum 205, 207, 366, 396, 397, 399
Plaza Agreement 233
Poland 52–3, 89, 173
Industrial Chemistry Research Institute 52
Poldy, F. 89
political characteristics 320
political economy perspective 544
political structure 547–8
Pollutant Release and Transfer Register 302
polluter pays principle 175, 521
pollution 12, 13, 31, 468
biocides and toxics (P, B and T) 469
prevention 42, 43, 346–7, 458
prevention (P2) 11
prevention pays 48
reduction 209
technology policy 236
see also transboundary
polyethylene 207
polymers 262, 274, 394
Pool, R. 569, 570
Popoff, F. 9
Poppe, K.J. 422
population 270, 271, 272, 273, 276, 278–80, 320
Porter, M.E. 345
Portney, P.R. 227, 228
positive (descriptive) analysis 12–13
positive flows 341
potassium 257, 299
Potter, N. 186
Potting, J. 12
pre-manufacture 438, 439, 440, 441
precaution 38–9
precautionary principle 152, 569
precious metals 294, 295, 313
see also gold; platinum; silver
Prescott, B.B. 205
Preston, J.T. 8, 345
prevention 38–9, 289
prices 169, 183–4, 229
Priestley, A.J. 357, 363
prime movers 192, 193
printer/toner cartridges 497–8, 499, 506
probability distributions 130–1
procedural checks 147
process analysis approach 114–37
ecological and economic considerations:
multi-objective optimization problem 124–30
multi-objective optimization framework under uncertainty 130–6
process simulation: ecological perspective 116–22
modeling benzene production 118–22
tools 116–18
thermodynamic and other constraints 122–4
process chain analysis 85, 298–9
process cost 514
process simulators 122
producer organisms 17
Producer Responsibility Act 523
Producer Responsibility Initiative (UK) 522
producer responsibility laws 519
see also extended
product:
acquisition 506, 507, 508, 519–20
delivery 438–9, 440, 441
final 325
finished 329
cycle 205, 524
primary 264
recovery process 515–17
semi-final 325
semi-finished 329
standardization 45
take-back systems 523
United Kingdom 326
use stage 438–9
production 237
aggregate 232
costs 378
factors 198, 234–5, 242
functions 190–1, 195, 200, 240, 241, 242
primary 373
secondary 372
profit 125–6, 127, 128, 129, 130, 133, 134, 225, 227
prognosticated environmental concentration 152, 384
prognosticated no effect concentration 152, 384
Protection of the North Sea Conference 38
PSR 87
public opinion 320
Puerto Rico 358
Punter, J.V. 481
Purcell, N. 482
Purves, W.K. 16
PVC 82, 147, 299, 389
PYREG 52–3
Qiao, L. 87, 89, 352, 358
Qu, G. 354
qualitative dimension 151
Quality of the Environment report 302
Rabe, B.G. 477, 546
Rabl, A. 145
Radcliffe, S.V. 204
Råde, I. 391–404
Radermacher, W. 86, 102, 288, 297
radiative forcing 557–8
radium 408
Raffensberger, C. 38
Rafferty, M. 320
Randers, J. 91, 94
ranking 154
Raper, S.C.B. 554, 557, 559
Rappaport, R. 21
rare earth elements 207, 396, 397
Rathje, W. 542, 543
Raul, A.C. 68
raw materials 324
see also wastes as raw materials
re-use 209, 484, 502–4, 505, 508, 543, 552
real unit cost 229
rebound effects 183, 194, 217
ReCellular Inc 502–4
reclamation 356
RECORD 541
recovery rates 395–9
recycling 3–4, 11
Australia 312, 318, 319, 320
automotive systems 434, 437–8, 439
closed-loop supply chains 497, 504
dematerialization and rematerialization 209
Denmark 340, 345
extended producer responsibility 525, 526, 527, 528
green design 459, 460, 461, 462, 463, 464, 465
loops 408
material flow accounts 264
material flow analysis 304, 306, 356
metal flows and accumulation 382
municipal solid waste management 543, 545, 551, 552
remanufacturing and state of the art 511, 512
scarce metals and energy technologies 395, 399, 400, 403
spatial planning 484, 485
sustainable resource and materials management 289
system dynamics model 373, 374–5, 377
United Kingdom 331
wastes as raw materials 411, 413, 416, 417
Reday-Mulvey, G. 35
Redle, M. 93
Redman, C.L. 476, 566, 567, 568
reductionism 18
Reed, W.J. 226
Rees, W.E. 166, 352
refillable containers 497–500, 506–7
Regan, D.T. 13
regionalism 477
regulations see governance, laws and regulations
regulatory:
barriers 411–12
compliance 468–9
context 344–5
costs 342
systems 469–70
Reijnders, L. 9, 40, 99, 458, 459
Reiner, I. 81
Reinhardt, F. 8
Reiskin, E.D. 7
Rejeski, D. 449, 451
Rejewski, P. 52
releases 12
remanufacturing 484, 497, 529, 543, 552
remanufacturing and state of the art 510–20
economics 513–17
product acquisition 519–20
supply chains 517–19
rematerialization see dematerialization and rematerialization
removal rates by harvest 425
Renault 528
Renberg, I. 566
renewable organics 278–80, 282–4
materials 269, 271
products 271
resources 268
sources 264–5
renewable resources 194, 226–7, 291
Rentz, O. 300
Repa, E.W. 548
repairs 512, 543, 552
Repetto, R. 68, 183
research and development 232, 233–8, 240–5
Resource Conservation and Recovery Act 345, 407–8
resource efficiency 291
resource extraction, optimal 223–31
basic modeling framework 225–7
challenges to theory and models application 227–30
decision making 223–4
history and potential future 230–1
resource flows 4
resource prices 228, 229
resource productivity 173
resource scarcity 229
resource use optimization 11–12
Resources For the Future 186
resources, primary 395–9
resources, secondary 399–400
returns to scale and scope 44–6
returns to systems integration 46–8
reverse logistics 469, 517–19
Revest system 525–6
Rhine Basin 74
Ricardo, D. 210
Richards, D.J. 33, 34, 75, 79
Richards, S.J. 34, 67, 75, 451, 469
Riedel, R. 29
rights 64–5
Rio Earth Summit 489
risk 12, 342, 343, 472
analysis 467–75
epidemiology 471–4
factors underlying 467–9
managerial and regulatory systems 469–70
new frontiers 474–5
technical process 470–1
assessment (RA) 149, 152, 153, 154, 160, 471
communication step 149
estimation step 149
management 389–90, 471, 472
ratio 384–5
reduction 11–12
RMP*Info 472–3
road oil 272, 285–7
Robbins, L. 223
Roberts, F. 365, 374, 375
Roberts, G.B. 314
Roberts, L.G. 450
Roberts, M.C. 204, 368, 370
Rod, S. 9, 74, 75, 91, 92, 312, 382, 383, 421, 477
Rogich, D.G. 260–87
Romer, P. 183, 217
Romm, J. 452
Roome, N. 13
Ros, J. 365
Rosenberg, N. 233
Rosenfeld, A.H. 465
Rosenthal, I. 472, 495
Ross, M.H. 204
Ross, S.M. 422, 424
Rosselot, K.S. 406
Roth, G. 486
Rotmans, J. 376
Rotty, R. M. 560
Roubens, M. 109
Rover 528
Rowe, J. 166
Royal Society of Edinburgh 19
rubber 459
Rubicon 416
Rubik, F. 140, 530–2, 533, 534, 535, 537, 539
Rubin, E.S. 130, 567
Rudd, D.F. 416–18
run-off 426
Russell, C.S. 93, 477
Ruth, M. 7, 9, 223–31, 324, 365, 374, 403
ruthenium 394, 395, 397, 398, 399
rutile 207
Ruttan, V. 193
Ryan, C. 521–9
Ryding, S. 432
S-shaped curve 205
Saari, J. 472
Sabel, C.F. 341
safety, health or environmental impacts 467–8, 469, 470, 471
Sagar, A.D. 42, 403
Sala, O.E.F. 476
Salomons, W. 91, 382
salt 328
Salter cycle 45, 188
Sampat, P. 80
sand and gravel 261, 268, 292, 307, 327, 328, 331
material flows due to mining and urbanization 353, 355, 358
Sand, P.H. 38
Sanders, R.E. Jr 38
Index

Smil, V. 91, 249–59, 566
Smith, A. 44, 178
Smith, D. 530, 533
Smith, N. 322
Smith, V.K. 228, 229, 401
smog 254
snap fits 458
Snow, C.P. 16
Snowden, E. 364
social geography 21–3
social sciences 18–23
social theory 18–20
societal subsystem see economy
Society for Environmental Toxicology and Chemistry 139, 143, 147, 148, 156, 303
Socolow, R.H. 35, 57, 67, 400, 476, 567
goals and definitions of industrial ecology 7, 8, 11
Soddy, F. 20, 187
soils 309, 310, 421, 422, 426
Sokal, A. 72
Sokic, M. 418
solar energy 314
solar radiation 255
solid waste 304, 318, 492–3, 525
management see municipal
Solow, R.M./Residual 185, 186, 198, 199, 200, 201, 224, 239
Song, D. 222
Sorger, G. 29
sorting 154
South Africa 397
South America 375, 397, 502
Southeast Asia 493, 495
Soyez, K. 299
space 151
and function 92
Spadaro, J.V. 145
Spain 216, 337, 358
Spanenberg, J.H. 166, 167, 174, 298
Sparrow, M. 345
spatial planning 476–87
applied utopian endeavors 486–7
behavioral incentives 486
biocompatibility 485–6
decomposers 484–5
definition 477–82
eco-efficiency 485
eco-industrial parks and symbiosis 483–4
geography importance 476
mismatched boundaries 476–7
urban spatial patterns 482–3
Spearritt, P. 315
Spencer, H. 19
Spengler, T. 83
SPINE 158
Spiro, T. 477
Spitz, P.H. 29
Spriensmaa, R. 154
Srivastava, R. 513
Stahel, W.R. 14, 35, 40, 449, 545
Stahmer, C. 86, 87, 102, 104, 288, 297, 304
Standard Oil 57
standardization 46
state of the art see remanufacturing and state of the art
static balance 424
static modeling 94, 96–7
Statistics Norway 179
Statoil 335, 336, 337, 338, 342, 344
steady-state 97, 117, 384–9, 390, 425, 430
steam power 185, 347
steel 30, 48, 214, 268, 298, 399
dematerialization and rematerialization 218–19, 220
green design 460, 461, 464
system dynamics model 367–8, 370–6, 378
Steelcase Inc. 525
Steele, N. 411
Steen, B. 149–61
Steinhart, C.E. 193
Steinhart, J.S. 193
Steininger 343
Stern, J.D. 204
Stern, D.I. 190, 222, 395
Sternbeck, J. 396
Sternberg, E. 482
Sterner, T. 151, 155
Sterr, T. 300
Steurer, A. 86, 312, 324
Steward, J.H. 20–1
Stewen, M. 171, 172
Stiglitz, W.M. 12, 27, 74, 83, 382, 383, 421, 477
Australia 311, 312, 322
substance flow analysis 91, 92
Stiglitz, J.E. 185
Stiller, H. 315
STOCHOME 384
stocks 351
Stollery, K.R. 228
stone 307, 327, 328, 331, 353, 354
Stone Age 202
storage flows 291
Strasser, S. 542, 543, 544
Strassert, G. 102–13
Strebel, H. 299
Strengers, B.J. 365–81
Strong, M. 28
structural changes 215–17, 323
structures 464–6
Struyk, R.J. 479, 481
substance flow analysis 81, 91–101, 141–2, 146, 302
general framework 92
heavy metals in agrosystems 422, 426
life cycle assessment 138
metal flows and accumulation 383–4
quantification 94–8
results interpretation 98–100
system definition 92–4
substance life-cycle 94
substitution 39–40, 43, 224, 231, 369–70, 379
sulfur 249, 255–6, 257, 259
dioxide 297, 303, 400, 448, 560
sulfuric acid 48
Sullivan, J.L. 432, 437
Summers, A.A. 481
Summers, R. 370
Sundström, G. 138
Sunshine Project 32, 237–8
supply 223
chains 467–8, 469, 510–11, 517–19, 529
see also closed-loop supply chains
sustainability 171–2
assessment 165–6
factors 427–8
indicators 123, 427–9
times 428–9
sustainable development 244–5, 489–92
sustainable resource and materials
management in Germany and Europe 288–300
material flow management in Germany 289–92
output flows to the environment 296–7
physical growth of the economy 297–9
resource input flows 292–6
studies on regions and industrial networks 299–300
Suzuki, Y. 365
Sweden 74, 295, 522, 523, 566
Centre for Environmental Assessment of Product and Material Systems 540
Environmental Management Council 539
life cycle assessment 138, 531, 533, 534, 537
Lund University 31
material flow analysis 80, 86, 89
Switzerland 138, 216, 522, 531, 533, 534
Bünztal 83
Federal Institute of Technology (ETHZ) 27
Symbiosis Institute 343
symbiotic networks 524–5
see also Kalundborg (Denmark)
Synder, M.K. 465
System of Integrated Environmental and Economic Accounts 324
System of National Accounts 104, 109, 167, 324
systems:
definition 85
modeling 7
perspective 6–7
Szargut, J. 187
Szilard 71
Taberma, S.O. 447
Tadi, R. 465
Taiwan 522
take-back 526
Taniguchi, M. 347
Tansley, A.G. 17, 29
target plots 437, 440, 441
target questions 85
Tarr, J.A. 81
Tatang, M. 130
taxes 179, 181, 356, 377
Taxinc 181
Taylor, A.C. 130
Taylor, F. 45, 46
Taylor, T.B. 28
Taylorism 57
technical:
change 240
factors 343–4
innovations 545
process 470–1
progress 229
system indicators 153–4
technological:
advances 222
changes 7–8, 195–201, 215–17
curve 213
development 182–3, 369
innovation 9, 239, 323, 476
limitations 412
paradigm 220, 221
processes 204
structures 218
technology 32, 33
automotive systems 432–4
bridging 401–2
cleaner production 42
constrained 401
dead-end 401–2
earth systems engineering and management 568, 569–70
governance, laws and regulations 69
information industry 450, 452
knowledge stock 240, 241, 242
technology (cont.)
 new 370
 policy see Japan
 system dynamics model 374
 transfer 373, 377
 transitional 402
 see also material constraints on technology evolution

Technology and the Environment Program 34
 telecommunications 513
 television 453
 telework 445, 446, 450–1
 Teller, E. 567
 tellurium 396, 397, 398, 399, 400, 401
 temperature increase 558–9, 563, 564
 temperature response functions of atmosphere-ocean general circulation models 562–4
 terminology 99
 terrestrial toxicity potential 127–8, 129, 134
 Texas Industries 347
 textiles 299
 Textron 58
 Thailand 495
 thallium 410
 Thatcher, M. 331
 thermodynamics 412
 constraints 122–4
 laws 20, 231
 models 117
 Thierry, M. 497, 500
 Thomas, M. 123
 Thomas, V.M. 11, 400, 477
 Thomas, W.L.J. 21, 22, 566
 Thompson, M. 376
 Thrän, D. 299
 throughput 214–18, 220–2, 291, 331
 Thurston, D.L. 7
 Tibbs, H. 34–5
 Tickner, J. 38
 Tiessen, H. 257
 tiles 355
 Tilton, J.E. 203–4, 212, 213, 365, 368–9, 376, 395, 397
 timber see forestry
 time 93, 151
 dimension 403
 preference 224, 231
 scales 402
 tin 205, 207, 212, 381
 titanium 205, 207
 Todd, R. 60
 Toktay, B. 497, 506
 Tolbert, P.S. 534
 tolerable daily intake 387
 Toner, G. 320
 top-down approach 87, 423, 533, 536
 Töpfer, K. 289
 topography 319
 total domestic output 89, 90, 309, 310
 total emissions 384
 total material consumption 89, 90, 292
 total material output 89
 total material requirement 84–5, 89, 167, 171–4, 184, 292–4, 307
 material flow analysis 309
 sustainable resource and materials management 289, 295
 Toussaint, F. 31
 toxicity 318, 321, 389, 418, 461, 463–4
 Toyota 393
 tracking of materials 6–7
 trade associations 341
 transaction costs 335, 342–3, 345, 346, 550–1
 transboundary pollution 385, 422
 transformation matrix 109
 transformative change 13–14
 transition period 384–5, 387–8, 389
 transmaterialization 202–8, 209, 214
 background 202–3
 concept 204–5
 dematerialization concept 203–4
 empirical evidence 206–8
 transparency 157
 transport 331, 441–4
 cost 514
 private 441–2, 444
 public 443–4
 transported materials 214
 triangular matrix 109, 110
 Trifunovic, Z. 418
 trust 343
 TRW study 52
 Tu, S.Y. 318, 322
 Tukker, A. 82, 93, 96, 146–7
 Turkey 215, 216
 Turner, B.L. 23, 249, 566
 Turner, R.K. 183
 type I 80, 85
 type Ia 80, 84
 type Ib 83, 84
 type Ic 82
 type II 80, 84, 85
 type IIa 84
 type IIb 82, 84
 type IIc 80, 84
 Tyteca 123
 U-shaped curve 212, 215–17, 221–2, 229, 368, 370
 Udo de Haes, H.A. 12, 91, 138–61, 434
Ulanowicz, R.E. 108
Ulbricht, W. 29
Ulrich, A.H. 265
ultimate origins 96
UMBERTO 299
uncertainty 130–6, 137, 145–7, 152, 156–7
Underhill, J.A. 481, 486
unemployment/gross domestic product 218
unified indicator 124
Union Carbide 468
Union of EcoDesigners 306
unit cost of extraction 229
unit module models 117
United Auto Workers Union 58
United Kingdom 29, 311, 323–33
Building Research Establishment 466
dematerialization and rematerialization 216, 218–19, 330–1
domestic extraction of materials 326–8
empirical application 324–6
environmental accounting and material flow analysis 175
extended producer responsibility 522
Fellowship of Engineering 33
green design 465
information industry 449
life cycle assessment 138, 534
material flow analysis 86
material flows due to mining and urbanization 352, 355, 356, 358, 362, 363, 364
material flows from foreign trade 328–30
metabolic profile: post-industrial pattern 331–3
municipal solid waste management 542–3
Office for National Statistics 324
Producer Responsibility Act 523
spatial planning 479, 480, 481
sustainable resource and materials management 295
technology policy 235
transmaterialization 203
United Nations 359
Conference on Human Environment 28
Development Programme: Human Development Index 166
Economic Commission for Europe 28
Environment Program 28, 34, 36, 139, 146–7, 148, 492
Cleaner Production Program 37, 42
Environmental Management of Industrial Estates 493
Industry and Environment office 37
environmental accounting and material flow analysis 166, 169
Industrial Development Organization 28
material flow analysis 80
System of Integrated Environmental Accounting 167
United States 32, 33, 312, 317, 321, 332, 344
alliances in whitegoods sector 526
Bayport Industrial Complex (Texas) 414
biogeochemical cycles 252, 257
Bruce Energy Center (Ontario) 348
Bureau of Mines 166–7, 212, 267, 375
Chaparral Steel 347
Clean Air Act (1990) 465, 472
cleaner production 37, 42
closed-loop supply chains 498, 500, 501, 502, 505
Congress 24
Constitution 547
Cornell University 55
dematerialization and rematerialization 209, 210–11, 213–14, 216, 219
diversified-portfolio conglomerate 58
Emergency Planning and Community Right-to-Know Act: Toxics Release Inventory 465
energy flows: efficiency and dematerialization 189, 191–4, 196–8, 200–1
environmental accounting and material flow analysis 173
Everglades 567, 569
extended producer responsibility 522, 523
Federal Housing Administration mortgage regulations 483
Geological Survey 205, 267
governance, laws and regulations 60, 61, 63, 64, 65, 66, 68
green design 459, 460, 461, 463
gross domestic product 464
Gulf Coast 416
industrial metabolism 22, 23–4
information industry 447
Interstate Highway Act (1956) 483
Joint Economic Committee 24
life cycle assessment 138, 537
material flow analysis 86, 89, 302, 309
material flows due to mining and urbanization 352, 356, 358, 359, 363
municipal solid waste management 542–3
National Academy of Engineering 4, 27, 49
National Hazardous Waste Survey 407, 409
New York State University 28
Oak Ridge National Laboratory 50
optimal resource extraction 228–9
United States (cont.)
physical input-output accounting 102
Pollution Prevention Act (1990) 343
remanufacturing and state of the art 510, 520
Resource Conservation and Recovery Act 345
returns to scale and scope 45
returns to systems integration 48
risk analysis 473
spatial planning 477–83 passim, 485, 486
Steel 57
Supreme Court 547
sustainable resource and materials management 292, 294, 297
system dynamics model 370, 371, 375
technology policy 232, 233, 235, 238
Texas Industries 347
Texas University 450
transmaterialization 203, 204, 207
wastes as raw materials 405, 411, 412
Yale University 166
see also Environmental Protection Agency; material flow accounting
Uno, K. 174, 304
up-scaling 423
uptake 427, 429, 430, 431, 560
Upton, C.W. 228
uranium 314
urban:
solid waste 318
spatial patterns 482–3
structure 320
transport systems 441–4
urbanization see material flows due to mining and urbanization
US PL 94–580 484
use stage 261, 262
USES-LCA 385
utilitarian approach 152
utility 227
Valdes, R.M. 213
valuation 169–70
value adding in the information technology sector 527
ValuePark 494
van Berkel, R. 11
van de Ven, G.W.J. 430
van den Bergh, J.C.J. 101, 180
van der Linde, C. 345
van der Straaten, J. 322
van der Voet, E. 7, 81, 91–101, 365, 382–90, 421
van Dieren, W. 171
Van Leynseele, T. 511
van Oers, L. 92, 390
van Riemsdijk, W.H. 426
van Tongeren, J. 170
van Vauuren, D.P. 365–81
van Wassenhove, L.N. 497–509, 519
vanadium 205, 207, 339, 396–400, 410
Vanoli, A. 171
Varley, P.M. 355, 364
Vaughan, W.J. 93
Vayda, A.P. 21
Vaze, P. 86, 324, 329
Veiga, M.M. 353
Venezuela 87
Verfaillie, H.A. 80, 83
Verhage, R. 481
Verkuijlen, E. 97–8
Vermeire, T.G. 387
Verschoor, A.H. 40
very large scale integrated chips 459
Vesper, A. 174
Victor, D.G. 392
Victor, T.Y. 183
video 445, 450
Vietnam 354
Vigneron, J. 28
Vince, P. 109
vinyl chloride 415, 416, 417
Visser, C.J.M. 97
Vitousek, P.M. 82, 255, 566
vitrification 390
Vogel, D. 477
Vogely, W.A. 204
volatile organic carbon compounds 438, 555
voluntary agreements/covenants 523
von Bertalanfly, L. 24
von Dünen, J.H. 476
von Weizsäcker, E.-U. 35, 39, 80, 91, 172, 288, 323, 353
dematerialization and rematerialization 209, 214–15
goals and definitions of industrial ecology 9, 13
vonkeman, G.H. 81
Vringer, K. 217
Vu, V. 170
Vulcan Mitsui 416

Wackernagel, M. 166
Waddell, L.M. 35, 204, 205, 206, 207, 209, 213
Wadehra, I. 458
Wagenet, R.J. 423
Waggamon, P.E. 8
Wagner, L.A. 268
Wal-Mart 58
Weser, M. 19
WEC 391
Wedepohl, K.H. 396
Weidema, B.P. 143
Weidner, H. 320
weighting 125, 126, 154–5, 156, 158, 160, 169, 171
Weintraub, B.A. 547
Weiss, E.B. 64
Weitz, K. 35
Welfens, M.J. 35
Wenner-Gren Foundation for Anthropological Research 21
Wenzel, H. 154
Wernick, I.K. 3, 8, 9, 35, 384
Weston, R.F. 365, 374
Westphalia treaties 61
Weyant, J.P. 227, 228
Whalley, J. 179
Whirlpool Corporation 526
White, L.A. 20
White, R. 4, 70, 114
white goods sector 526
Whybark, D.C. 513
Wieringa, K. 214
Wietschel, M. 300
Wigley, T.M.L. 554, 557, 559
Wilburn, D.R. 351
Wilcoxen, P.J. 179
wildlife 264
Wilkhahn 525, 526
will to act 320
Williams, B.A. 546
Williams, D.J. 447
Williams, R.H. 204, 213, 401
Williamson, O. 335, 342–3
willingness to accept 149–50
willingness to pay 149
Wilson, W.H. 482
wind farms 314
Windsperger, A. 83, 85
Winter, S.G. 401
Wireless Foundation 504
Wirke, J. 545
Wirsénius, S. 191
Wisberg, N. 6
Wiseman, J. 320
Wittgenstein, L. 72
Wollast, R. 249
Wolman, A. 16, 23–4, 83, 311, 355
wood see forestry
Wood, C.L. Jr 38
Worell, E. 376
Worhach 116
World Bank 166, 176, 478
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Business Council for Sustainable Development</td>
<td>80, 489</td>
<td>World Health Organization</td>
<td>387</td>
</tr>
<tr>
<td>World Meteorological Organization</td>
<td>147</td>
<td>World model</td>
<td>183</td>
</tr>
<tr>
<td>World Trade Organization</td>
<td>67, 477</td>
<td>Wright, M.</td>
<td>123</td>
</tr>
<tr>
<td>Wrigley, A.E.</td>
<td>324</td>
<td>Wrisberg, N.</td>
<td>139, 530, 538</td>
</tr>
<tr>
<td>Wuppertal Institute for Climate, Environment and Energy</td>
<td>167, 288, 302</td>
<td>Xerox</td>
<td>57, 449, 497–8, 500,</td>
</tr>
<tr>
<td>Yale School of Forestry and Environmental Studies</td>
<td>340</td>
<td>Yang, J.-C.</td>
<td>418</td>
</tr>
<tr>
<td>Yano, M.</td>
<td>303</td>
<td>Yeung, R. U.</td>
<td>254</td>
</tr>
<tr>
<td>Yeung, Y.-m.</td>
<td>481</td>
<td>Yorisaki, T.</td>
<td>478, 481</td>
</tr>
<tr>
<td>Yoshikawa, H.</td>
<td>33</td>
<td>Young, D.M.</td>
<td>123</td>
</tr>
<tr>
<td>yttrium</td>
<td>207</td>
<td>Yun, C.K.</td>
<td>50</td>
</tr>
<tr>
<td>Zaitsev, V.A.</td>
<td>29</td>
<td>Zdravkovic, S.</td>
<td>418</td>
</tr>
<tr>
<td>Zebrowski, M.</td>
<td>52</td>
<td>Zeltner, C.</td>
<td>384</td>
</tr>
<tr>
<td>Zeno’s Paradox</td>
<td>347</td>
<td>zinc</td>
<td>81, 181, 207, 210–11,</td>
</tr>
<tr>
<td>heavy metals in agrosystems</td>
<td>421, 422–3, 424, 425,</td>
<td>metal flows and accumulation</td>
<td>382, 383, 385, 386,</td>
</tr>
<tr>
<td>scarce metals and energy technologies</td>
<td>395, 397, 398, 400, 401</td>
<td>wastes as raw materials</td>
<td>409–10</td>
</tr>
<tr>
<td>Zucker, L.G.</td>
<td>534</td>
<td>Zweibel, K.</td>
<td>393–4</td>
</tr>
</tbody>
</table>