Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Components of the research reported in each chapter</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Temporal classification of exposure</td>
<td>32</td>
</tr>
<tr>
<td>2.2</td>
<td>Major determinants of variability of human responses</td>
<td>33</td>
</tr>
<tr>
<td>2.3</td>
<td>Summarizing dose-response quantification</td>
<td>35</td>
</tr>
<tr>
<td>2.4</td>
<td>The four steps of risk assessment in the United States</td>
<td>41</td>
</tr>
<tr>
<td>2.5</td>
<td>Uncertainty and modifying factors used in environmental risk assessment</td>
<td>44</td>
</tr>
<tr>
<td>2.6</td>
<td>Problems in using risk assessment results in economic analysis</td>
<td>48</td>
</tr>
<tr>
<td>2.7</td>
<td>Results of economic analysis of residential lead standards</td>
<td>51</td>
</tr>
<tr>
<td>3.1</td>
<td>Epidemiological endpoints selected for the study</td>
<td>59</td>
</tr>
<tr>
<td>3.2</td>
<td>Socio-economic characteristics of the survey sample and the Vigo population</td>
<td>64</td>
</tr>
<tr>
<td>3.3</td>
<td>Summary statistics on WTP</td>
<td>65</td>
</tr>
<tr>
<td>3.4</td>
<td>Regression analysis of WTP responses</td>
<td>67</td>
</tr>
<tr>
<td>3.5</td>
<td>Monetized PM<sub>10</sub> pollution health damage functions</td>
<td>68</td>
</tr>
<tr>
<td>3.6</td>
<td>Estimated morbidity costs of PM<sub>10</sub> pollution in Vigo</td>
<td>69</td>
</tr>
<tr>
<td>4.1</td>
<td>Main source(s) of response functions used in 18 economic studies of ozone effects on agriculture</td>
<td>82</td>
</tr>
<tr>
<td>4.2</td>
<td>Processes and characteristics of crop plants that may be affected by ozone</td>
<td>92</td>
</tr>
<tr>
<td>5.1</td>
<td>Estimates of regression coefficients included in the final logistic regression model</td>
<td>110</td>
</tr>
<tr>
<td>5.2</td>
<td>Mean WTP for alternative recovery/damage scenarios</td>
<td>110</td>
</tr>
<tr>
<td>5.3</td>
<td>Present value of aggregate economic benefits of SO<sub>2</sub> abatement</td>
<td>111</td>
</tr>
<tr>
<td>6.1</td>
<td>Correct and incorrect classification of fish damage by class</td>
<td>128</td>
</tr>
<tr>
<td>6.2</td>
<td>WTP for increased fish stocks</td>
<td>133</td>
</tr>
<tr>
<td>6.3</td>
<td>Reasons for zero WTP to open-ended survey</td>
<td>134</td>
</tr>
<tr>
<td>7.1</td>
<td>Estimated clean-up costs for a variety of contamination sources</td>
<td>141</td>
</tr>
<tr>
<td>7.2</td>
<td>Sites where ownership is known</td>
<td>142</td>
</tr>
<tr>
<td>7.3</td>
<td>Socio-economic characteristics of survey samples</td>
<td>151</td>
</tr>
<tr>
<td>7.4</td>
<td>Perceived level of danger and estimated price effects of site remediation</td>
<td>153</td>
</tr>
<tr>
<td>8.1</td>
<td>Example of an impact matrix</td>
<td>164</td>
</tr>
<tr>
<td>8.2</td>
<td>Composition of municipal solid waste</td>
<td>166</td>
</tr>
</tbody>
</table>
Tables

8.3 Concentrations of substances detected in landfill biogas 167
8.4 Landfill leachate composition 167
8.5 Pollutants emitted to the atmosphere during combustion of biogas 168
8.6 Emission levels from municipal waste incineration 169
8.7 Classification of emissions into impact categories considered 170
8.8 Pollutants inventoried of option 2 and respective weighting factors 171
8.9 Environmental impact of five municipal waste management options 172
9.1 Nitrogen balances in 1995 181
9.2 Nitrogen balance of agriculture in the Netherlands in 1995 182
9.3 Comparison of nitrogen surpluses of regular dairy farms with farms that operate under a sustainable management scheme, 1995 187
10.1 Correlation matrix for crop-level variables in the arable farm model 209
10.2 Chemical-level correlations 209
10A.1 Scoring system for the indicator 214