Index

ABG region
 car kilometres distribution 26–7
 general characteristics 22, 23
 infrastructure investment programmes 33–5
 mobility patterns 28–31, 32, 33
 road supply 25, 26
 traffic volume 24, 35
 accessibility profile, locations 266
 activities, routine weekly 241, 243–6
 activity behaviour 218–19
 definitions and data source 224
 patterns of 224–5
 thresholds of response 225–7
 activity-based model, travel behaviour 233–63
 activity-related factors, congestion 148–9
 age, impact of telematics on work-related trips 65
 ageing, driving population 146
 aggression, time pressure 221–3
 Alps Railway Crossing 136
 answering machines, work-related trips 70, 71
 Antwerp-Brussels-Ghent see ABG region
 automobiles see cars
 avoidance-avoidance decisions 223
 behavioural responses, congestion and policies 165–9
 behavioural thresholds study 218–31
 activity behaviour 224–7
 behavioural threshold, defined 221–4
 conclusions 230–1
 decision making under congestion 219–21
 driving behaviour 228–30
 Belgium and Brussels
 mobility problems 81–6
 telecommuters/teleworkers
 current numbers 89–92
 prospective numbers 92–9
 telecommuting/teleworking
 alternative to mobility problems 86–7
 conclusions and research needs 105
 form and scope of 87–8
 impact on transport 100–5
 see also ABG region
 Betuwe rail freight 138
 bicycle attributes, by purpose, CA results 209
 bicycles, utilizing potential of 17
 Billion Trips a Day, A 181
 bottlenecks 153, 154, 160
 Bottlenecks in European Infrastructure 160–1
 Brussels see Belgium and Brussels
 building type
 impact of telematics on work-related trips 64, 70, 72
 numbers of work-related trips 61
 bundled deconcentration 5
 business district parking survey 37–51
 car ownership
 distance of travel 58
 Netherlands 10
 Nordic countries 59
 car use
 private vehicles, Brussels 84
 versus public transport 128–33
 carbon dioxide emissions (CO₂)
 Ile-de-France 190
 rail and car travel 134
 road and barge travel 138–9
 urban sprawl 189
 Carmel Center, parking pricing survey 40–51
Travel behaviour

cars
 attributes, by purpose, CA results 207
 cause of congestion 147–8, 149
 emissions 134
 kilometre distribution, class of road 26–7
 traffic, annual growth rate 180
CHASE see Computerized Household Activity Scheduling Elicitor
choice set, travellers facing congestion 167–9
clerks
 devices diminishing work-related trips 71
 numbers of work-related trips 62
commuters, behaviour thresholds 218–31
commuting
 pattern trends, France 183–5
 rate, proximity principle 14, 15
 see also telecommuting/teleworking
compact cities
 historical development 4–5
 lower-than-expected effects 15–16
 motivation behind 4
 policy-behaviour gap 3
comparative studies
 congestion, Europe 157–9, 160–2, 173–4
 road networks 162–4
complementarity, telematics and travelling 73, 76
Computerized Household Activity Scheduling Elicitor (CHASE)
 235–7, 262
conceptual model, activity/travel decisions 233–63
conclusions 262–3
data collection methodology 235–7
model development 237–54
random event simulator 254–61
conference calls, work-related trips 70, 71
congestion see road traffic congestion
contact network, telephone usage study 108–19
costs
 congestion 125, 154–5, 169–70, 175
 housing, Vinex locations 11
 parking management programmes 38
travel 167
cycling 186
data
 geographical analysis, trips 181
 long-distance telephone calls study 112
 transport networks and mobility study 21–2
decision field theory (DFT) 219–20
Decision on Location-linked Subsidies 6–7
decision making, under congestion 219–21
decisions
 scheduling 241, 251–4
to telecommute/telework 95, 99
 delay time, behaviour thresholds 221, 225, 226
deletions, scheduling process 240, 241, 247, 261
demand-side measures, curbing congestion 172
departure time changes, congestion responses 167
DHV/Colquhoun study 159
distance of travel
 average daily travel speed, Finland 58
 mobility patterns 28–30
 public transport 129–31
 ‘do-nothing’ situation, congestion response 167
downtown areas 38
driving behaviour 219
data source 228–9
 thresholds’ definition 228
 thresholds for lane switching 229–30
driving population, congestion 146
Dutch Association of Homeowners 11
ECMT survey, congestion 157, 158
economic factors, congestion 147–8
economic measures, curbing congestion 169–71, 173
education, curbing congestion 173
electronic homeworkers 88
electronic mail, work-related trips 68, 69, 70, 71, 72
employees, reactions to office relocations 268–70
Index

employment distribution, Randstad, Ruhr and ABG region 32, 33
employment location policy, Netherlands 266–7, 276
energy consumption, transport mode 138–9
environmental achievements, rail freight transport 137
environmental quality, PT investment 133–6
Europe, congestion see congestion experts
devices diminishing work-related trips 71
numbers of work-related trips 62
females
activity behaviour 225–6
devices diminishing work-related trips 71, 72
Finland
telecommunications and work-related travelling 55–76
use of information and ICT 79–80
Flanders, rail infrastructure 163
Fourth Memorandum Extra 7
Fourth Memorandum on Spatial Planning 5
Framework Law Areas 6
France, geographical analysis, trips and mobility 180–94
freight
rail transport 136–9
traffic congestion 159
French Road Federation 164
gender
activity behaviour 225–6
impact of telematics on work-related trips 64, 65, 71, 72
number of work-related trips 61
geographical analysis, trips and mobility 180–94
concluding pattern trends 183–5
conclusion 193–4
housing and travel expenses, Ile-de-France 191–3
methodology 181–3
trip geography and traffic calming measures 185–8
urban sprawl and sustainability 188–91
Germany see Ruhr
goal gradient 223
goods see freight
growth-center policy 5
heavy travellers, effect of telematics 63–6
Helsinki, survey on work-related travel 59–73
high-quality public transport system 6, 8, 12, 16
historical periods, congestion policies 171–2
home locations
commuting distances 184
working population 183–4
home-based businesses, congestion responses 168
homeworkers
Belgium 90–2
electronic 88
traditional 88
hours, road congestion 160, 161
household activity agenda 238, 241–3
household activity scheduling process model 233–63
conclusions 262–3
data collection 235–7
model development 237–54
random event simulator 254–61
household population, congestion 146
housing expenses, Ile-de-France 191–3
housing market, mobility patterns 30–1
housing and mobility aims, Netherlands 3–17
conclusions and perspective 16–17
effects of increase in density 14–16
historical development 4–5
residents' preferences versus mobility aims 10–13
urbanization, its preconditions 5–10
market-oriented construction 9–10
numerical goals 6–7
public transport 7–8
spatial and mobility conditions 7
Houten 17
human activities 56–7
Ile-de-France
- carbon dioxide emissions 190
- housing and travel expenses 191–3
- impulsive mode, scheduling 254–5, 257
- income, congestion 147
- indifference bands, congestion 218
- information societies, national 73–4
- Information Superhighways programme 73
- information and telecommunications technology, Finland 79–80
- information transfer, reduction, work-related trips 68–72
- information-intensive work, telematics 60
- infrastructure
 - investment programmes 33–5
 see also rail infrastructure; road infrastructure
- Innsbruck, SP/CA analysis, mode-choice behaviour 197–215
- inter-urban travel 126–7, 184
- International Federation for Information Processing (IFIP) 74
- international traffic, congestion 157
- investment
 - congestion relief 176
 - infrastructure programmes 33–5
 - public transport 133–6

labour market, mobility patterns,
- Randstad and Ruhr 30
- land use patterns, Randstad, Ruhr and ABG region 31, 32, 33
- land-use scenarios, state-of-the-art models 275–6
- lane switching, thresholds for 229–30
- lifestyles, congestion 148
- location policy 274
- locations
 - business 266–7
 see also home locations; relocation;
 Vinex locations; work locations
- long distances, public transport 129–31
- long-distance telephone calls study 108–19
- conclusion 117–18
- data 112
- empirical model and estimation procedures 112–15

estimation results 115–17
- model 109–12
- Long-term Program Infrastructure and Transport see MIT procedure

males
- activity behaviour 225
- devices diminishing work-related trips 71, 72
- market-oriented housing 9–10
- measures of congestion 152–4
 - a critique 154–6
 - proposal for improvement 156–7
 - as quality indicators 174–5
- media endowment, telephone usage study 108–19
- messages, use of telematics 75
- Ministry of Transport and Public Works 8, 12, 16, 20
- Ministry of VROM 6, 7, 8, 17
- MIT procedure 8
- mitigation strategies, curbing congestion 172–3, 174
- mobile phones
 - Finland and Sweden 79
 - telephone demand 116
- work-related trips 68, 69, 70, 71, 72
- mobility
 - Belgium and Brussels
 - effect of telecommuting/teleworking 100–5
 - problems 81–6
 - telecommuting/teleworking as alternative 86–7
 - see also geographical analysis, trips and mobility; housing and mobility aims; transport networks and mobility
- mobility profile, locations 267
- modal attributes, SP/RP results 210
- mode of transport
 - distance of travel 28, 29
 - environmental achievement 137–9
 - switching, congestion response 168
 - work-related trips, Helsinki 68, 69
 - mode-choice behaviour analysis 197–215
 - conclusions and future work 212–14
- results from CA/SP exercises 204–12
- survey administration and response behaviour 202–4
survey approach 198–202
translation of SP and CA forms 217
modifications, scheduling 247, 259–60
modify and conflict resolver (MCR) 239, 241, 255, 257, 259–60
momentaneous priority, activities 241, 244–5, 249–51
motorized commuter round trips 100–1
reduction through telecommuting/teleworking 102–10
motorways
congestion, Randstad, Ruhr and ABG region 24, 35
design, probability of congestion 170
traffic volume, Randstad 26–7
National Environmental Policy Plan 2 270
national information societies 73–4
National Institute of Public Health and the Environment (RIVM) 265
National Model System 270–1
National Personal Travel Survey (NPTS) 181, 186
National Physical Planning Agency 5
Netherlands
car use versus PT use 128
employment location policy 266–7, 276
housing and mobility aims 3–17
rail transport
freight 139
versus car use 130
road traffic congestion 20, 126, 127–8
excess time spent 164
policy making 170–1
see also Randstad
network congestion
comparative studies 157–9
measure of congestion 153
networkers, professional 88
new urbanism movement 5
nitrogen oxide emissions (NOx)
car and rail travel 134
road and barge travel 138–9
nomadic workers 88
non-routine trips, effect of telematics 67–8
non-work trips
activity behaviour threshold 226
effects of telecommuting/teleworking 100
responses
parking supply versus parking charges 47–8
to parking availability measures 45, 46, 47
to parking price increases 42, 43, 44
to recent parking regulations 50
numerical goals, Dutch housing policy 6–7
occupation classes, telecommuting/teleworking 95–9
office relocations survey 265–77
conclusions 276–7
Dutch employment location policy 266–7
empirical research 267–8
land-use scenarios, state-of-the-art models 275–6
methodology 270–2
models for employees’ reactions 268–70
relevance for policy 274
results 272–4
spatial scenario 270
office workers’ survey, work-related travel 59–73
open time, activity scheduling 256
optimization, scheduling 261
orbital roads 185
organizational telecommuters 87–8
parking availability measures, responses to 44–7
parking management 37
programmes 38
parking policies 37–8, 42
parking pricing study 37–51
survey 40
sample 41
responses
to parking availability measures 44–7
to parking price increase 41–4
to parking supply versus parking charges 47–9
to recent parking regulations 49–50
conclusions 50–1
parking regulations, response to 49–50
parking search time responses 44–7, 50
parking supply, versus parking charges 47–9
peak periods, distance of travel 29–30
penetration, telecommuting/teleworking 88
Belgium
Brussels Capital Region 98
current numbers 90–1
future 93, 94–5
motorized/vehicle computer round trips 102–5
planning, curbing congestion 172–3
planning mode executive 241, 256–9
policies
congestion
behavioural responses 165–9
in Europe 169–73
need for valid and comparable facts 156
statements 124
travel speed 149–50
geographical classification, trips 180–94
policy instruments
and outcomes 3–4
traffic congestion 84
policy–behaviour gap, housing and mobility 3–4
population
distribution, Randstad, Ruhr and ABG region 32, 33
mobility patterns, Randstad and Ruhr 30
portable personal computers, work-related trips 68–9, 70, 71
pre-planning, scheduling 244, 248, 257
price increases, parking responses 41–4
printers, work-related trips 69
priority, in scheduling 241, 244–5, 249–51
private vehicles, use, Brussels 84
probability of congestion, motorway design 170
proximity principle 14, 15
public transport (PT)
attributes, by purpose, CA results 208
congestion relief measure 177
Dutch urban development 7–8
investments, environmental quality 133–6
policy statements 124
type of trip 186
versus car use 128–33
Vinex locations 16
see also office relocations survey
quality, road infrastructure 159–60
quality indicators, congestion measures 174–5
quitting work, congestion response 168
rail infrastructure
budget 140
Randstad, Ruhr, Flanders 163
rail transport
environmental achievements 133–6
policy statements 124
transportation of goods 136–9
versus car use 129–30, 131–2
random event simulator 254–61
Randstad
car kilometres distribution 26–7
congestion
motorway 162
statistics 151
general characteristics 22, 23
infrastructure
investment programmes 33–5
rail 163
mobility patterns
population, labour market and housing market 30–1
spatial characteristics and development 31, 32, 33
traffic loads 28–30
road supply 25–6
traffic volume 24, 25, 26, 35
regulation
curbing congestion 172
see also parking regulation
relocation
congestion response 168
see also office relocations survey
residential construction, Netherlands 9–10
residents, preferences versus mobility aims 10–13
Index

responses activity behaviour 225–7
 driving behaviour 229–30
 parking pricing study 41–50
 SP/CA analysis, mode-choice behaviour 202–4
to congestion and policies 165–9, 176
reverse commuting 184
Rhine-Ruhr see Ruhr
road infrastructure
 perceived quality of 159–60
 Randstad, Ruhr and ABG region, supply of 25–6
 upgrading of 178
road networks, traffic congestion 125–8
road pricing 84, 172
road traffic congestion
 behaviour thresholds of commuters 218–31
in Europe 143–78
 behavioural responses 165–9
 Belgium and Brussels 81
 causes 146–50
 conclusions 173–6
 nature and extent of 151–65
 Netherlands, motorway system 20
 patterns or problems? 145–6
 policy making and policy taking 169–73
 Randstad, Ruhr and ABG region 24
 recommendations 176–8
policy instruments 84–5
study 123–41
 conclusions 139–40
 implication of findings 140–1
 intervention, road traffic systems 128–33
PT investment, environmental quality
 133–6
rail freight links 136–9
road networks 125–8
road type, car kilometres distribution 26–7
route changing, congestion response 167
routine weekly activity skeleton 241, 243–6
Ruhr
 car kilometres distribution 26–7
 general characteristics 22, 23
infrastructure investment programmes 33–5
 mobility patterns 162–3
 population, labour market and housing market 30
 spatial characteristics 31, 32, 33
 traffic loads 28–30
 rail infrastructure 163
 road supply 25, 26
 traffic volume 24, 35
salary, impact of telematics on work-related trips 65
satellite offices, employees working at 88
scheduling process 233
deletions 240, 241, 247, 261
 household activity agenda 241–3
 modifications 247, 259–60
 momentaneous priority 241, 244–5, 249–51
 open time 256
 optimization 261
 planning mode executive 256–9
 sequential decision structure 251–4
 time pressure 255–6
 weekly 246–9
shift-share technique 95–9
situational change, threshold definition 222, 223
socio-demographic features, congestion 146
socio-economics categories, mobility 28–9
spatial characteristics, Randstad, Ruhr and ABG region 31, 32, 33
spatial conditions, Dutch urban development 7
spatial development, congestion relief 177
spatial planning policy, Netherlands 5
spatial scenario, office relocations 270
spatial structure, congestion 148
state-of-the-art models, land-use scenarios 275–6
stated-preference/conjoint analysis, mode-choice behaviour 197–215
conclusions and future work 212–14
results from exercises 204–12
survey administration and response behaviour 202–4
Travel behaviour

survey approach 198–202
translation of SP and CA forms 217
statistics, on congestion 177
stimulation, telematics and work-related travel 72–3, 76
substitution, telematics and work-related travel 62–3, 76
suburbanization
congestion and 148
demand for mobility 17
process of 4
supervisors
devices diminishing work-related trips 71
number of work-related trips 60–2
supply-side measures, curbing congestion 172, 178
sustainability, and urban sprawl 188–91
sustainable transport policy, and telematics 73–6
systems dynamics, congestion 149–50
taxation, cars 148
taxi users, parking supply versus parking charges measures 48
technological development, telecommunications and transport 57
technology-based approaches, curbing congestion 173
telecommunications
as substitute for transport 85–6
use of, Finland 79–80
work-related travelling 55–76
connection between transport and 56–9
effect on 62–73
office workers’ survey, Helsinki 59–62

telework centres 88
teleworking see telecommuting/teleworking
temporal changes, congestion response 167
temporal structure, congestion 148
time, buying, congestion response 167
time factor, congestion 145
time and money, work-related travel 58
time and place, telecommunications and transport 57–8, 60
time pressure
activity scheduling 255–6
aggression 221–3
behavioural thresholds 230–1
traditional homeworkers 88
traffic calming measures, trip geography 185–8

conclusions and research needs 105
forms and scope of 87–8
impact on transport 100–5
mobility problems 81–6
congestion response 168
Finland, posts 79
telecopying 69
telefax
growth phase 57
telephone demand 116
work-related trips 68, 69, 70, 71

telematics
sustainable transport policy 73–6
time and place restrictions 57–8
use, Finland 79
work-related trips
complementarity 73, 76
heavy travellers 63–6
means of information transfer 68–72
non-routine trips 67–8
stimulation 72–3, 76
substitution 62–3, 76
telenetworks, access to 74
telephone survey, mode-choice behaviour 199

conjoint-analysis survey 199–201
stated preference 201–2
telephones
work-related trips 69
see also long-distance telephone calls study
telework centres 88

teleworking see telecommuting/teleworking
temporal changes, congestion response 167
temporal structure, congestion 148
time, buying, congestion response 167
time factor, congestion 145
time and money, work-related travel 58
time and place, telecommunications and transport 57–8, 60
time pressure
activity scheduling 255–6
aggression 221–3
behavioural thresholds 230–1

telecommunications
as substitute for transport 85–6
use of, Finland 79–80
work-related travelling 55–76
connection between transport and 56–9
effect on 62–73
office workers’ survey, Helsinki 59–62

telework centres 88
teleworking see telecommuting/teleworking
temporal changes, congestion response 167
temporal structure, congestion 148
time, buying, congestion response 167
time factor, congestion 145
time and money, work-related travel 58
time and place, telecommunications and transport 57–8, 60
time pressure
activity scheduling 255–6
aggression 221–3
behavioural thresholds 230–1
traditional homeworkers 88
traffic calming measures, trip geography 185–8
traffic jams 127
traffic queues, time lost in 127
traffic systems, congestion 128–33
traffic volume
Dutch motorway system 20
Randstad, Ruhr and ABG region 22–5, 26, 35
mobility patterns 28–30
transit users
parking supply versus parking charges 48–9
response to recent parking regulations 50
transport
connection between telecommunications and 56–9
impact of telecommuting/teleworking 100–5
telecommunications as substitute for 85–6
transport models, effects of office relocations 268–9
transport networks, mobility analysis 20–36
background and objectives 20–1
conclusions 35–6
data sources 21–2
distribution of car kilometres 26–7
infrastructure investment programmes 33–5
mobility patterns 28–33
supply of infrastructure 25–6
transport planning, stated-preference-based surveys 197
transport policies, and telematics 73–6
Transportation Demand Management (TDM) strategies 171–2
transportation forecasting models 99
Transportation Systems Management (TSM) period 171
travel
behaviour, activity-based model 233–63
choices 132
costs, accepting or reducing 167
demand lifestyle 148
PT fares 130
expenses, Ile-de-France 191–3
reducing demand through telecommuting 86
speed
average daily and distance per person, Finland 58
congestion policy 149–50
surveys 188–9
travel times 127
travellers, congestion responses 166–9
trend analysis, telecommuters/teleworkers, Belgium 92–5
trip-related characteristics, congestion 151
trips
geographical classification, policy assessment 180–94
impact of telecommuting/teleworking 100–5
as measure of congestion 153
purpose and distance of travel 28
see also non-work trips; work-related trips
trucks, environmental performance, freight transport 136
unit of analysis, congestion 152–4
United Kingdom
compact cities/new towns debate 4–5
congestion 164
telemuters/teleworkers, distribution 87
United States
Information Superhighways programme 73
new urbanism movement 5
telemuters/teleworkers, growth rate 93–4
urban sprawl 180
and sustainability 188–91
urban units 181
urban zones 181–2
allocating emissions 189–90
urbanization
preconditions 5–10
see also suburbanization
vehicle commuter round trips 101–2
reduction through telecommuting/teleworking 102–5
videoconferences
Finland 79
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>work-related trips</td>
<td>70, 71</td>
</tr>
<tr>
<td>videophone calls</td>
<td>79</td>
</tr>
<tr>
<td>Finland</td>
<td></td>
</tr>
<tr>
<td>work-related trips</td>
<td>70, 71</td>
</tr>
<tr>
<td>VINEX locations</td>
<td>9–10</td>
</tr>
<tr>
<td>expensiveness</td>
<td>7–8, 16</td>
</tr>
<tr>
<td>public transport</td>
<td>7–8, 16</td>
</tr>
<tr>
<td>residents’ preferences versus mobility goals</td>
<td>10–13</td>
</tr>
<tr>
<td>spatial and mobility conditions</td>
<td>7</td>
</tr>
<tr>
<td>walking</td>
<td>186</td>
</tr>
<tr>
<td>weekly scheduling process</td>
<td>246–9</td>
</tr>
<tr>
<td>work, quitting as congestion response</td>
<td>168</td>
</tr>
<tr>
<td>work locations</td>
<td>184</td>
</tr>
<tr>
<td>commuting distances</td>
<td>184</td>
</tr>
<tr>
<td>working population</td>
<td>183–4</td>
</tr>
<tr>
<td>work position</td>
<td></td>
</tr>
<tr>
<td>devices diminishing work-related trips</td>
<td>71</td>
</tr>
<tr>
<td>impact of telematics on work-related trips</td>
<td>64</td>
</tr>
<tr>
<td>number of work-related trips</td>
<td>61</td>
</tr>
<tr>
<td>work-related trips</td>
<td></td>
</tr>
<tr>
<td>activity behaviour threshold</td>
<td>226, 227</td>
</tr>
<tr>
<td>congestion, Europe</td>
<td>164–5</td>
</tr>
<tr>
<td>Helsinki study</td>
<td></td>
</tr>
<tr>
<td>number of 60–2</td>
<td></td>
</tr>
<tr>
<td>survey responses</td>
<td></td>
</tr>
<tr>
<td>parking availability measures</td>
<td>45, 46, 47</td>
</tr>
<tr>
<td>parking price increases</td>
<td>42, 43, 44</td>
</tr>
<tr>
<td>parking supply versus parking charges</td>
<td>47–8</td>
</tr>
<tr>
<td>recent parking regulations</td>
<td>49–50</td>
</tr>
<tr>
<td>telematics</td>
<td></td>
</tr>
<tr>
<td>complementarity</td>
<td>73, 76</td>
</tr>
<tr>
<td>heavy travellers</td>
<td>63–6</td>
</tr>
<tr>
<td>means of information transfer</td>
<td>68–72</td>
</tr>
<tr>
<td>non-routine trips</td>
<td>67–8</td>
</tr>
<tr>
<td>stimulation</td>
<td>72–3, 76</td>
</tr>
<tr>
<td>substitution</td>
<td>62–3, 76</td>
</tr>
<tr>
<td>transport mode</td>
<td>68, 69</td>
</tr>
<tr>
<td>time and money restrictions</td>
<td>58</td>
</tr>
<tr>
<td>working population</td>
<td></td>
</tr>
<tr>
<td>home and job locations</td>
<td>183–4</td>
</tr>
</tbody>
</table>