Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abacus Technology Corporation</td>
<td>174</td>
</tr>
<tr>
<td>Abernathy, W.J.</td>
<td>21, 26, 123, 124, 242, 300, 308</td>
</tr>
<tr>
<td>Abramovitz, M.</td>
<td>236</td>
</tr>
<tr>
<td>absorption</td>
<td>186, 187</td>
</tr>
<tr>
<td>absorptive capacity</td>
<td>11, 15, 243</td>
</tr>
<tr>
<td>active routines</td>
<td>272, 273</td>
</tr>
<tr>
<td>adaptive landscapes</td>
<td>260–61, 283–9</td>
</tr>
<tr>
<td>adoption, bounded returns to</td>
<td>301–2</td>
</tr>
<tr>
<td>advanced batteries for EVs</td>
<td>see batteries for electric vehicles</td>
</tr>
<tr>
<td>Advanced Lead-Acid Battery Consortium (ALABC)</td>
<td>162, 163</td>
</tr>
<tr>
<td>Agarwal, R.</td>
<td>54</td>
</tr>
<tr>
<td>air pollution</td>
<td>150</td>
</tr>
<tr>
<td>Airbus 72</td>
<td></td>
</tr>
<tr>
<td>aircraft engine industry</td>
<td>see jet engine industry</td>
</tr>
<tr>
<td>aircraft industry</td>
<td>23, 65–6, 70–71, 72, 77–81</td>
</tr>
<tr>
<td>sourcing strategies</td>
<td>75–7, 78</td>
</tr>
<tr>
<td>airline industry</td>
<td>74, 81</td>
</tr>
<tr>
<td>Alchian, A.A.</td>
<td>63</td>
</tr>
<tr>
<td>Aghion, P.</td>
<td>241</td>
</tr>
<tr>
<td>American patents</td>
<td>216, 217–18</td>
</tr>
<tr>
<td>Amesse, F.</td>
<td>22</td>
</tr>
<tr>
<td>analytical chemistry</td>
<td>106, 107</td>
</tr>
<tr>
<td>analytical models</td>
<td>267–8</td>
</tr>
<tr>
<td>Andersen, E.S.</td>
<td>166, 293</td>
</tr>
<tr>
<td>Anderson, S.P.</td>
<td>310, 314</td>
</tr>
<tr>
<td>Ando, A.</td>
<td>47</td>
</tr>
<tr>
<td>anomalous behaviour tests</td>
<td>266, 267</td>
</tr>
<tr>
<td>applied research</td>
<td>102–7, 113–14, 118–19</td>
</tr>
<tr>
<td>applied technology and engineering</td>
<td>102–6, 113–14, 116–17</td>
</tr>
<tr>
<td>appreciative theorizing</td>
<td>19–20, 35, 302–3</td>
</tr>
<tr>
<td>Archibald, G.C.</td>
<td>310</td>
</tr>
<tr>
<td>Archibugi, D.</td>
<td>218</td>
</tr>
<tr>
<td>architecture replacement</td>
<td>308</td>
</tr>
<tr>
<td>Arrow, K.</td>
<td>212</td>
</tr>
<tr>
<td>Arthur, B.</td>
<td>50, 57, 294, 295, 301, 302, 322</td>
</tr>
<tr>
<td>Arundel, A.</td>
<td>95, 98, 217</td>
</tr>
<tr>
<td>Asea 137</td>
<td></td>
</tr>
<tr>
<td>Atkinson, A.B.</td>
<td>14</td>
</tr>
<tr>
<td>Audretsch, D.</td>
<td>97, 125</td>
</tr>
<tr>
<td>Ayres, R.</td>
<td>181</td>
</tr>
<tr>
<td>Azariadis, C.</td>
<td>241</td>
</tr>
<tr>
<td>Balassa, B.</td>
<td>102</td>
</tr>
<tr>
<td>Baldwin, J.R.</td>
<td>61, 62, 87</td>
</tr>
<tr>
<td>bandwidth parameter</td>
<td>237–8</td>
</tr>
<tr>
<td>Barbier, J.C.</td>
<td>198</td>
</tr>
<tr>
<td>Barfield, C.E.</td>
<td>94</td>
</tr>
<tr>
<td>Barro, R.J.</td>
<td>241</td>
</tr>
<tr>
<td>Basberg, B.</td>
<td>217</td>
</tr>
<tr>
<td>basic research</td>
<td>159–60</td>
</tr>
<tr>
<td>publicly-funded</td>
<td>102–7, 113–14, 120–21</td>
</tr>
<tr>
<td>Bassanini, A.</td>
<td>50, 51, 301</td>
</tr>
<tr>
<td>batteries for electric vehicles</td>
<td>26, 150–78</td>
</tr>
<tr>
<td>exploration-exploitation trade-off</td>
<td>153–5</td>
</tr>
<tr>
<td>research consortia</td>
<td>160–68</td>
</tr>
<tr>
<td>technology in the 1990s</td>
<td>156–7</td>
</tr>
<tr>
<td>USABC 26, 162, 163, 168–74</td>
<td></td>
</tr>
<tr>
<td>Baumol, W.J.</td>
<td>236</td>
</tr>
<tr>
<td>BBC 137</td>
<td></td>
</tr>
<tr>
<td>behaviour replication test</td>
<td>263, 266</td>
</tr>
<tr>
<td>behaviour sensitivity test</td>
<td>266, 267</td>
</tr>
<tr>
<td>Bel, F.</td>
<td>228, 229</td>
</tr>
<tr>
<td>Ben-David, D.</td>
<td>240</td>
</tr>
<tr>
<td>Bernoulli model</td>
<td>44</td>
</tr>
<tr>
<td>Besag, J.E.</td>
<td>44</td>
</tr>
<tr>
<td>Bianchi, M.</td>
<td>236, 238, 240–41</td>
</tr>
<tr>
<td>bimodal distribution</td>
<td>27, 235–59</td>
</tr>
<tr>
<td>new stylized fact of economic growth</td>
<td>236–44</td>
</tr>
<tr>
<td>self-organization model</td>
<td>244–54</td>
</tr>
<tr>
<td>biological analogies</td>
<td>261</td>
</tr>
<tr>
<td>biological metaphors</td>
<td>28</td>
</tr>
<tr>
<td>biology</td>
<td>20</td>
</tr>
<tr>
<td>Birchenhall, C.</td>
<td>57, 301, 316</td>
</tr>
<tr>
<td>blind giant paradox</td>
<td>167–8</td>
</tr>
</tbody>
</table>
Index

Bluestone, B. 75
Boeing 58
Bögel, W. 154
Bonaccorsi, A. 58, 59
Borgatti, S.P. 64, 65
bounded returns to adoption 301–2
Bourgeois, B. 228, 229
Boyer, R. 161
Brogan, J. 167
business environment 298–300, 313–16

California Air Resources Board (CARB) 150, 170, 174–5
Callon, M. 22
Canonical Dulmage-Mendelsohn decomposition 40–41
Cantré, U. 243, 244
Cantwell, J. 107
capital/labour ratio 262
capital market selection 323, 332–4
capital productivity 276–8
see also productivity
Carlsson, B. 217
cars 299–300, 308
batteries for EVs see batteries for electric vehicles
car manufacturers 155, 166, 169, 170, 171, 173
FCEVs 151, 174, 305–6, 308–9
‘greening’ 300
HEVs 151, 155, 174, 175
ZEV mandate 150, 170, 174–5
case studies 26
Cassirer, M. 164
catalytic cracking 181
catalytic reforming 188
Caves, R.E. 61, 87
Cefis, H. 210, 216
centralization 85–6
index 64–5
structural evolution of network 77–83
CFM International 66
Chandler, A. 50, 53–4
characteristics matrix 309–16
characteristics representation methodology 131
chemical industry 24–5, 94–121
chemistry 20
Choi, S.C. 310
Chrysler 155, 169, 170
Clark, K.B. 308
Clark, N. 164
Clements, F.E. 296
climax communities 297
Coe, D.T. 251
co-generation heat and power (CHP) systems 308
Cohen, W.M. 11, 15, 210, 213, 222, 223, 243
Cohendet, P. 164
Collins, N.R. 87
compatibility 303
competence, technological 217, 220, 222–3, 225, 226, 228
competition 86, 87, 180
EMT 139–41, 144
exploration-exploitation trade-off 155–8
oligopoly 136–8
competitiveness
product 271, 276–81, 286–8
technical 277, 278, 284, 285, 286–8
complementarity of capabilities 199
complexity theories 3–5
component replacement 302–9
computer-aided design (CAD) 138–9
computer-aided manufacture (CAM) 138–9
concentration
economies of scale and 262
electric motors industry 141, 142
increasing returns and network structure 61, 67, 68
refining process suppliers and persistence of innovation 198–9
conferences and meetings 99–101
connections, new actors’ 166–7
connectivity of networks 11,12
consolidation/strengthening stage 180
Constant, E.W. 66
contract research 99–101
Coombs, R. 21
cooperation intensity 195–8
cooperative R&D agreements (CRADA) 171
coordination 17, 18
core scientific specialization 103–6
Index

core subsystems 305

correlations 11–12, 19

 knowledge as a correlational structure 6–8

 limited range of validity 12–13

cost of production 276–8, 284, 285

country scientific specialization patterns 101–8

Courtois, P.J. 47

Cowan, R. 159, 161, 331

Cox, C.B. 297

creative destruction 292

creativity 214–16

Crepon, B. 217

cross-fertilization 243

cumulativeness of knowledge 10–11

Dalum, B. 107–8

David, P. 14, 50, 51, 54, 159, 168, 294, 295, 322

De Bresson, C. 22

decision-making, firms’ 271, 274–6

deepening pattern 198, 199

degree centrality indexes 64

Delmas, C. 165

demand 279–81

discontinuity 55–6

Department of Energy (DOE) (US) 168–9, 169–70

developers 38, 39, 41

Didier, M. 161

Diersel, R. 40

differentiation 126–8, 130–35

directed graphs (digraphs) 22, 37–48

direction of technical change 179, 185–90

directive exploration 166–8

disciplines 7–8, 16–19

 local character of knowledge 13–14

discovery situation, probabilistic framework for 159–60

dissemination of public research 99–101

diversity 25

 see also variety
dominant designs 124, 164, 294–5

 EMT and standardization 130–35

 niche theory approach 126–8

Dosi, G. 2, 4, 21, 26, 35, 50, 51, 84, 123, 152, 242, 301, 323

Drazen, A. 241

Duguet, E. 217

Dulmage, A.L. 40

duration model 216–29

 first statistical analysis of patenting spells 218–23

 Kaplan-Meier estimator 224–5

 Weibull regression 225–8

Durlauf, S.N. 241

dynamic capabilities 216, 229

dynamics 2

Eaton, B.C. 310

economies of scale 63, 72–3, 262

economies of scope 63, 72–3

Edison, T. 307

efficiency 214–15

Eldridge, N. 260, 292

electric equipment industry 135

re-organization of 136–8

electric motor technology (EMT) 25, 122–49

dynamics 135–44

evolution 128–35

shifts in technology pattern of innovation and impact on the industry 123–8

Electric Power Research Institute (EPRI) 122, 169, 171

electric vehicles (EVs) 150–51

FCEVs 151, 174, 305–6, 308–9

HEVs 151, 155, 174, 175

see also batteries for electric vehicles

electricity utilities 167, 169, 171, 173

electronic controlled machines 138–9

Eliasson, G. 217, 243

emergence stage 180

exploration–exploitation trade-off 152–60

emerging disciplines 18

doncendous growth theory 50

doncendous selection 29, 323, 328–32, 334–5

ingineering systems 263–5

Enos, J.L. 180

entrepreneurial pattern of innovation 126

entropy measure of variety 25, 131–2, 133, 134
entry 271, 276
time function 38
Epanechnikov kernel 237
equilibrium 1–2
Espino, R. 309
ethers 188, 189
European patents 218
European Union/Community (EU) 162–4
publicly funded research 95–101, 102–9, 112, 115–21
evaluation criterion 263, 265–6
Everett, M.G. 64, 65
evolutionary economics 4–5
development of 21
vs neo-classical economics 1–2
and world income distribution 242–4
evolutionary traps 285
Executive Office of the President of the United States 167
exoogenous product market selection 326–8
exosomatic organs 6
experimental economics 267
exploitation 158, 159
see also exploration–exploitation trade-off
exploration–exploitation trade-off 26, 150–78
cost–benefit presentation 160, 161
efficiency of research consortia 160–8
in the emergence stage 152–60
in USABC 26, 162, 163, 168–74
Exploratory Technology Research Program 171
external environment 7
extreme condition tests 266
Fagerberg, J. 236
Farrell, J. 57, 301
Faust, K. 64, 65
Feldman, M. 97
firms
decision-making process 271, 274–6
firm size 142–3, 215–16, 228, 229
persistence in the supply of innovating refining processes 190–200
sectoral model, punctualism and gradualism 28, 269–90
Fisher, F.M. 47
Fisher, R.A. 294
fitness 214–15, 297–8, 316
relative fitness 313–16
Florida, R. 97
focusing devices 164
Foray, D. 130, 160, 161, 164, 295, 296, 301
Ford 155, 169, 170
foreknowledge 159
fractional power motors 135–6, 140
France 102–8, 112, 115–21
Freeman, C. 22, 180, 181, 242, 301, 307
Freeman, L.C. 65
Frenken, K. 25, 127, 132, 302, 310
Frischtak, C.R. 300
fuel cell electric vehicles (FCEVs) 151, 174, 305–6, 308–9
functional equivalence 303–4, 309–10
Future Car Taskforce initiative 164
Gaessler, J.P. 189
Gallini, N. 213
game theory 323
Gardiner, P. 71
GEC-Alsthom 137
General Accounting Office (GAO) (US) 169, 170, 171, 173
General Electric (GE) 66–7, 78, 82, 137
general knowledge 98–9
General Motors (GM) 155, 169, 170, 305
general purpose technologies 37, 42, 45–6
general tools for measurement 20
generic technology knowledge 164
genetical drift 288–9
Georgescu-Roegen, N. 4, 6, 20
Germany 314
publicly funded research 102–8, 112, 115–21
Geuna, A. 98
Gibbons, M. 214
Gilbert, R. 213
Giuri, P. 58, 59
Index

Gort, M. 58, 61, 87, 124–5
gradualism 260–91, 292–3
 punctuated vs gradual development 28, 281–9
Gould, S.J. 260, 292
Gourieroux, G. 216
graph theory 35–6
 see also directed graphs (digraphs)
Greene, W.H. 224
Greiner, A. 241
Griliches, Z. 217
group centralization 64–5, 77–83
growth theory 50, 235, 241–4
Grübler, A. 296, 297, 301

Hagedoorn, J. 22
Hayek, F.A. 3
Hayward, K. 66
hazard rates 225–8
heavy patentors 223
Heinrich, G. 203–4
Helpman, E. 50, 251
Henderson, R. 308
Herfindahl index 61, 195, 196
heterogeneity
 of agents 2
 of preferences 312–16
hi-fi systems 307
hiring trained scientists/engineers 99–101
Hirshleifer, J. 159
histograms 236–7
homogeneity 44
Hotelling, H. 310
Howitt, P. 241
hybrid electric vehicles (HEVs) 151, 155, 174, 175
hydrotreating 186, 187
Hymer, S. 61

IBM 305
ideal gases, law of 8, 12
Ikeda, T. 44
imitation (recombination) 243, 272–4, 282–6
incandescent lighting 306–7
incentives 212–13, 241–2
income distribution see world income distribution
increasing returns 50–93, 153
 in the dynamics of industries 53–60
 exploration stage to counter negative increasing returns 164–6
 in jet engine industry 70–74
 lack of and non-shake-out 58–9
 and network dynamics 84–6
 sources of 53–8
 and vertical market structure 59–60
incremental innovations 180–2
incremental learning 294
independent electric motors groups 140–41
indicators 24
industrial concentration see concentration
industrial dynamics
 EMT 135–44
 changes in industry selection environment 136–41
 evolution of industrial structure and organization 141–2
 evolutionary model 269–81
 entry 271, 276
 firms’ decisions 271, 274–6
 product competitiveness 271, 276–81
 search for innovation 271–4
 increasing returns in 53–60
industry life cycle (ILC) 50, 54–5, 57, 215–16
industry stability 60–63
informal personal contacts 99–101
information 8–9, 9–10
information search 159–60
informational entropy function 25, 131–2, 133, 134
infrastructure, technological 243, 248, 249, 252–4
infratechnologies 165
innovation 270–71
 contribution of publicly funded research to industrial innovation 95–101
 patents as indicators of innovative activity 217, 218, 219
 patterns of see patterns of innovation
 persistence in see persistence in innovation
 search for 271–4, 281–8
 stages of 180
Index

input factor coefficients 14–15
invention 270–71
international electric equipment oligopoly 137–8, 139–40
interpretative (retrieval) structure 9–11
Iosso, T.R. 214
Islas, J. 296
Italy 102–8, 112, 115–21
Jacoby, N.H. 61
Japan
batteries for electric vehicles 162, 163, 170, 171–2
publicly funded research 102–8, 112, 115–21
jet engine industry 23, 50–93
economies of scale and scope 63, 72–3
industry stability 60–63
introduction of new products 63, 70–71
network measures 64–65
structural evolution of industry and network 65–83
dynamics of vertical relations 75–83
history 65–7
increasing returns 70–74
market stability 67–70
joint research projects 99–101
Jones, C.I. 236, 238, 240
Jones, M.C. 237
Joskow, J. 61
Jullien, B. 152
Juma, C. 164
Justman, M. 243
Kabla, I. 217
Kaldor, N. 235, 262, 265
Kaplan, A.D.H. 87
Kaplan–Meier estimator 224–5
Katz, M. 50, 301
Kemp, R. 299
kernel density estimation 236–8
world income distribution 238–41
Kieff er, N. 216, 225
Kindermann, R.P. 44
Klepper, S. 23, 50, 53, 54, 58–9, 124–5
Kline, S.J. 18
knowledge 2–21
correlational structure 6–8
local character of 11–15
productivity development 242–4
retrieval (interpretative) structure 9–11
simplified representation 15–21
uncertainty, information and 8–9
knowledge integration 24–5, 95, 102, 106, 108, 109
knowledge persistence 24–5, 95, 102, 109
knowledge transfer 99–101
Kodama, F. 243
Koestler, A. 282
Krüger, J.J. 235
Krugman, P.R. 50
Kuhn, T.S. 302, 308
Kumar, V. 162
Kwasnicka, H. 261, 262, 275, 290
Kwasnicki, W. 261, 262, 271, 274, 275, 280, 290
labour productivity 235, 238–40
see also productivity
Lancaster, K. 292, 310
land-based transport technologies 310–16
see also cars
Landes, D. 19
Landgrebe, A. 167
Langlois, R. 22
Laplace, P.S. 2
Laplacian dream 2–3, 5
Large, J.P. 63
Larrue, P. 164
latent routines 272, 273
Le Bas, C. 214, 217
Le Dortz, L. 153
lead-acid battery technology 156, 162, 170
learning
customer relations and 84–5
evolutionary model of selection in the presence of 29, 322–35
learning capacity 302
Lequeux, F. 153
Levin, R.C. 213
Levinthal, D. 11, 15, 243
lexicographic analysis 23–4
Lhuillery, S. 210, 218
licensing agreements 37
Liebowitz, S. 51
life cycle
industry 50, 54–5, 57, 215–16
product 124–5, 300
lighting, incandescent 306–7
Lithium Battery Energy Storage
program (LIBES) 162, 163, 171–2
lithium-ion battery technology 156, 170
lithium-iron battery technology 170
lithium-polymer (Li-P) battery
technology 156, 170, 173
Llerena, P. 164
Loasby, B.J. 7
local character of knowledge 11–15
localization of public research 97–8
localized technological development 14
lock-in 293, 294–6, 300
logit Pseudolikelihood (p*) models 42–7
Lovasz, L. 40
Lundvall, B-A. 294
Lynch, J.J. 74
Machlup, F. 242, 243
Mader, J. 167
maintenance 74
major innovations 180–82
Malerba, F. 125, 136, 152, 198, 210
Mani, G.S. 127
manufacturing, increasing returns to
54–6
March, J.G. 155–8
Margolis, S.E. 51
market failure 51
market-share instability 61–3, 67–70
market structure, vertical 59–60, 75–83
marketing 57–8, 74
Markov graphs 44
Marshack, T. 63
Marshall, A. 292, 293
Martin, B. 94
Martin, J.M. 180
master-equation 27, 246–7, 250–51
materials characterization 165
mature disciplines 18
May, R.M. 127
Mazzucato, M. 52, 53, 332, 333
mean-value equations 251
measurements 18–19, 20
medical chemistry 106, 107
medium patentors 223
Mendelsohn, N.S. 40
Mensch, G. 180
mental representations 7
mergers and acquisitions 137, 141
Mermelstein, D. 87
Metcalfe, J.S. 51, 131, 180, 199, 213, 214, 244
Metcalfe, S. 295
Michie, J. 218
Midler, C. 155
Miller, R. 66
Mirowski, P. 2, 4, 20
MITI 172
model adjustment 263–4
model behaviour tests 266
model parameter tests 266
model structure tests 266
modelling 18–19, 20, 27–9
punctualism and gradualism 28, 260–91
selection in the presence of learning
29, 322–35
technological succession 28–9, 292–321
world distribution of income 27–8, 335–59
modernization investment 278–9
modular compatibility 303
Mokyr, J. 242, 243
monodimensional representation of
knowledge 15–19
monopolies 212–13, 262
Moore, P.D. 297
Moore, R.M. 154, 173
Mowery, D. 51
multiple equilibria 313–16
multiple sourcing 75–7, 79
Murmann, J.P. 305
mutation 272–4, 282–6
myopic selection 29, 322–3, 326–8, 334
narrow policy window 167–8
National Academy of Science (NAS)
(US) 162
National Research Council (NRC) (US) 169, 171, 173
Nearly Completely Decomposable Systems (NCDS) 47–8
Nelson, R. 2, 4, 14, 19, 21, 26, 28, 35, 51, 75, 123, 125, 138, 151, 175, 210, 213, 235, 271, 272, 294, 302
neoclassical economics vs evolutionary economics 1–2
growth models 241–2
influence of physics on 4
networks 21–4
increasing returns and network structure 23, 50–93
network dynamics 84–6
structural evolution of jet engine network 77–83
network measures 64–5
network size and technological succession 301–2, 309–16
pharmaceutical industry 22, 35–49
network structure 36–42
structure of knowledge 11, 12
new products, introduction of 63, 70–71
new trade theory 50
Newberry, D. 213
niches
ecological succession 297–8
evolutionary patterns of innovation 126–8, 130–35, 141, 144
socio-technical and technological succession 298–301, 316
nickel-cadmium battery technology 156, 170
nickel-metal hydride (Ni-MH) battery technology 156, 170, 173
nickel-sodium chloride battery technology 156, 170
Nicolis, G. 297
no-loss pricing 333–4
Noble 315
non-shake-out patterns 58–9
NSF 162
objective function 275–6
observables 7, 17–18
observation space 11–12, 13–14
monodimensional representation of knowledge 15–17
obsolescence, technological 243, 248–51, 252–4
Odum, E.P. 297
Office of Technology Assessment (OTA) 162, 164, 168–9
oil companies 309
oligopolization 136–8
optimization 264, 275–6
organic chemistry 107
originators 38, 39, 41
Orsenigo, L. 35, 36–7, 39, 136, 152, 198, 210
overproduction 280–81
Paap, R. 236, 238, 241
PACE survey 94, 95–101
Pack, H. 235
Page, J.M. 235
Pakes, A. 217
Pammolli, F. 35, 47
Papell, D.H. 240
partial correlations 11
Pashig index 62
Pashigian, P. 61
Passer, H.C. 137
Patel, P. 210, 218, 228
patents 210–11, 216–29
EMT 142–4
granted by US Patent Office 217–18
as indicator of innovative activity 217, 218, 219
regimes of patenting behaviour 223
statistical analysis of patenting spells 218–29
path dependency 51
patterns of innovation 25–6, 122–49
characteristics of technology and 125–6
electric motors industry dynamics 135–44
consolidation of new pattern 142–4
evolution of EMT 128–35
evolutionary interpretation of shifts in 126–8
shifts in and impacts on industry 123–8
Pavitt, K. 107, 151, 210, 217, 228, 229
per capita income distribution see world income distribution
Index

Peretto, P. 210
Perez, C. 138, 180, 301
performance 214–16
characteristics and socio-technical
matrix approach 309–16
peripheral subsystems 305
permanent magnet (PM) motors
128–9, 130, 139, 140
perfection in innovation
duration models 26–7, 210–32
data and empirical analysis
216–18
estimations and results 223–8
evolutionary framework 211–16
statistical analysis of patenting
spells and overview of variables
218–23
refining processes 26–7, 179–209
firms’ persistence in supply of
innovating refining processes
190–200
personal computers (PCs) 295, 305
petroleum refining see refining
processes
pharmaceutical industry
networks of innovation 22, 35–49
network structure 36–42
technological bases and relational
behaviour 42–7
public research 24–5, 94–121
contribution to industrial
innovation 95–101
country specialization patterns
101–8
phase transitions 251, 252–4
Phillips, A. 59
physical world 2–3
physics 4–5, 20
Pisano, G. 216
Plummer, M.D. 40
PNGV 163
policy-makers 167–8
Popper, K. 282
population-based approach 2
Porter, M.E. 61
Powell, W.W. 22
power electronics technology 129, 138
Prais, S. 87
Pratt & Whitney 66, 77–81
Pratten 63
prediction 266, 267
PREDIT 163
pre-emption effect 213
preferences 312–16
Preston, L.E. 87
price/pricing
consumer price sensitivity 324–5,
328–32
evolutionary industrial model 270,
274–6
‘sticky’ prices 84
strategic pricing 332–4
Prigogine, I. 2, 297
Principal Component Analysis (PCA)
185–6
probability
of learning external knowledge 14,
15
probabilistic framework of discovery
situation 159–60
problem-solving capacity 302
process technology 124
product characteristics 276–8
product competitiveness 271, 276–81,
286–8
product families 71–3
product life cycle (PLC) 124–5, 300
product market selection 323,
324–32
endogenous 328–32
exogenous 326–8
product technology 124
productivity 259
capital 276–8
labour 235, 238–40
model of productivity development
244–55
profit 216
prototypes 98–9
public research 24–5, 94–121
contribution to industrial innovation
95–101
country scientific specialization
patterns 101–8
methodology and data 112–14
specialization index 102–8, 114,
115–21
publications, scientific 101–8, 112–14
dissemination of public research
99–101
Index

punctualism 260–91
punctuated vs gradual development 28, 281–9
punctuated equilibrium 292
Pyka, A. 243, 244
Quah, D.H. 236, 238, 240, 241
qualitative change 1–2, 5
quantum mechanics 3
radical innovations 180, 181–2, 286
real systems, experiments with 267–8
receiver competencies 243
recombination 243, 272–4, 282–6
recrudescence 28, 273–4, 282–8
Reeve, N. 180
Refining Process Handbook 182–5, 205
refining processes 26–7, 179–209
direction of technical change 185–90
assessment of trends 185–9
explaining factors for trends 189–90
firms’ persistence in supply of innovating refining processes 190–200
test of explaining factors 194–200
full data file 182–5, 185–7, 191–2
list of actors and their institutional characteristics 205–9
nomenclature of refining processes 203–4
reduced data file 182–5, 187–9, 192–3
technical change measurement issues 180–5
data files on technology 182–5
taxonomy of technical change 180–2
regulation environment 298–300, 313–16
relational behaviour 42–7
relational density 64, 77–83
relative fitness 313–16
relative specialization index (RSI) 102–8, 114, 115–21
relative technological scale 244–6
replacement effect 212–13
replicator dynamics 322–3
Fisher’s replicator dynamic algorithm 294
research consortia 26, 160–75
efficiency for solving exploration-exploitation trade-off 160–8
new organization in case of advanced batteries for EVs 162–4
selective and directive exploration 166–8
USABC 26, 162, 163, 168–74
research and development (R&D) 11, 15
increasing returns to 56–7
probabilistic framework of discovery 159–60
research typology 102–3, 105
retrieval (interpretative) structure 9–11
retroprognosis 267
Riccaboni, M. 35, 37
Riordan, M. 331
Rip, A. 298, 299, 300, 306, 310
roads 308
Robertson, P. 22
robots 139
robust design 71–3
Rolls-Royce 66, 77–81
Romer, P. 50, 235
Rosenberg, N. 159–60, 243, 300, 301, 306–7
Rothwell, R. 71
routines 28
product competitiveness 276–9
search for innovation 271–4
routinized pattern of innovation 125–6
Sahal, D. 21, 123, 131, 242
Sala-i-Martin, X. 240, 241
Salaun, F. 137
Salkind, A. 150
Saloner, G. 57, 301
Saviotti, P.P. 1, 4, 17, 123, 127, 131, 164, 213, 244, 310
Sawers, D. 66
scale, economies of 63, 72–3, 262
Scherer, F. 217, 228
Schmookler, J. 180, 217
Schumpeter, J. 1, 180, 271, 292
science, and technology 6–7
scientific knowledge 4
scientific revolution 308
scope, economies of 63, 72–3
Scott, D.W. 237, 238
Scott, J. 64
search for innovation 271–4
search strategies 281–8
sectoral model of firm dynamics 28, 261–2, 269–90
entry 271, 276
firms’ decisions 271, 274–6
product competitiveness 271, 276–81
punctuated vs gradual development 281–9
search for innovation 271–4
segments 272
selection 29, 322–35
endogenous 29, 323, 328–32, 334–5
myopic 29, 322–3, 326–8, 334
selection environment
patterns of innovation 126–8, 130–31, 144–5
EMT 136–41
impact of changes on pattern of competition 139–41
shifts in refining industry 189–90
technological succession 298–301, 313–16
selective exploration 166–8
self-organization model 244–54
basic structure 244–7
simulation 251–4
transition rates and master-equation 247–51
Semmler, W. 241
sense organs 6
Shackenraad, J. 22
Shapiro, C. 50, 301
Shy, O. 293, 303, 309, 312
Sigaud, J.B. 181
Silverberg, G. 21, 294
Silverman, B.W. 237
Simon, H.A. 35, 47, 274
Simons, K. 23, 54
simulation
punctuated vs gradual development 281–9
specificity of approach 262–8
see also modelling
single patentors 223
single sourcing 75, 77, 78, 79
Smith, B.L.R. 94
Snecma 66, 82
Snell, J.L. 44
social sciences 3
societal environment 298–300, 313–16
socio-economic systems 264–5
socio-technical matrix approach 309–16
sodium-sulphur battery technology 156, 170
Soete, L. 102, 217
Solow, R.M. 241
sourcing strategies 75–7, 78
special motors market 135
specializations 16
specialization 24–5, 94–121
core scientific specialization 103–6
country scientific specialization patterns 101–8
index 102–8, 114, 115–21
in a research typology 102–3
stability of specialization patterns 106–8
technical and innovation persistence 194–5, 196
specialized knowledge 98–9
species 296–8, 301, 316
sporadic patentors 223
stages of innovation 180
standardization 126–8, 130–35
Stengers, I. 2
Sterman, J.D. 302
‘sticky’ prices 84
Stiglitz, J.E. 14
Storper, M. 97
strategic alliances 195–8
strategic pricing 332–4
Strauss, D. 44
strengthening/consolidation stage 180
stylized facts 235, 265
sub-criteria 263, 265
subsystems 304–5
supply–demand alignment process 280–81
survival rates 192, 193, 194, 224–5
Sutton, J. 72, 74
Swann, G.M.P. 97, 301–2, 312
sweetening 186, 187
system succession 302–9
Tassey, G. 162, 165
technical competitiveness 277, 278, 284, 285, 286–8

Index
technical knowledge, sources of 96–7
technical specialization 194–5, 196
techno-economic paradigm 138–9
technological competence 217, 220, 222–3, 225, 226, 228
technological differentiation 126–8, 130–35
technological infrastructure 243, 248, 249, 252–4
technological lock-in 293, 294–6, 300
technological obsolescence 243, 248–51, 252–4
technological opportunities 242–3 exploitation of intensive technological opportunities 247–8, 249, 251–4
technological paradigms 151–2, 164, 242
and the evolution of networks 22, 35–49 technological bases and relational behaviour 42–7
technological regimes 198
technological standardization 126–8, 130–35
technological succession 28–9, 292–321 component replacement and system succession 302–9
ecological succession 296–8 potential for a technology shift 301–2
socio-technical matrix approach 309–16
 technological lock-in theory 294–6
technological trajectories 138, 151–2, 164, 242
 technological variety see variety
technology characteristics and pattern of innovation 125–6
science and 6–7
Teece, D.J. 195
Teece, J. 216
Teubal, M. 22, 243
theories 16, 19
appreciative theorizing 19–20, 35, 302–3
thermal coking 188
thermal conversion 186, 187, 189
Tirole, J. 210, 212, 213
Toker, S. 61, 87
tools, of a discipline 20–21
 trade theory, new 50
tragedy of the commons 164
trajectories, technological 138, 151–2, 164, 242
transition 272–4
transition rates 247–51
transposition 272–4
transversal technologies 39–40, 41, 42, 45–7
turbulence of players’ positions 61–3, 69
turnkey plants 138, 140
Tushman, M. 304–5
typological approach 2
uncertainty 8–9
United Kingdom (UK) 102–8, 112, 115–21
United States (US) 143, 314
 advances in refining processes 189–90
electric motors market 122
Patent Office 216, 217–18
publicly funded research 102–9, 112, 115–21
ZEV mandate 150, 170, 174–5
United States Advanced Battery Consortium (USABC) 26, 162, 163, 168–74
evaluation and changes in the exploration-exploitation trade-off 172–4
origin and first negotiation 168–70
scope and depth of exploration 170–72
United States Council for Automotive Research (USCAR) 162
upgrading 186, 187
utility companies 167, 169, 171, 173
Utterback, J.M. 21, 26, 123, 124, 242, 300
Valente, M. 21
validation of models 262–7
validity, range of 12–13
van Dijk, H.K. 236, 238, 241
variable speed drives (VSDs) 129–30, 135–6, 139, 140
variables 7
variety 25, 126–8, 130–35
measurements for the EMT 132–5
measures 131–2
persistence in innovation 220–22, 226, 228
Verbart, O. 302
Verspagen, B. 236
vertical market relations 59–60, 75–83
video recorders 295
Wand, M.P. 237
Warwick 58
Wassermann, S. 64, 65
Weber, K.M. 308
Weibull model 225–8
Weitzman, M.L. 132
Weitzman variety measure 25, 132, 133, 134
Westinghouse, G. 307
Westinghouse 137
widening pattern 198
Williamson, O.E. 302
Willinger, M. 123, 127, 152
Windrum, P. 57, 301, 303, 316
Winner 315
WinTel standard 305
Winter, S. 4, 14, 19, 21, 26, 28, 35, 123, 125, 138, 151, 210, 213, 215, 271, 272, 294, 302
World Bank 235
world income distribution 27–8, 235–59
bimodal distribution as new stylized fact 236–44
kernel density estimation 236–41
theoretical explanations 241–4
self-organization model 244–54
basic structure of model 244–7
simulation of the model 251–4
transition rates and master-equation 247–51
world-views 2–5
ZEV (zero emission vehicles) mandate 150, 170, 174–5
Zuscovitch, E. 22, 123, 127, 152