Tables

1.1 Attributes of hypothetical forests 11
2.1 Site access levels and open-ended annual WTP 26
2.2 Description of independent variables 30
2.3 Parameter estimates for single equation and pooled Tobit models 32
3.1 Visits to climbing sites in Scotland in the past: summer trips 48
3.2 Repeated nested multinomial logit for summer trips 50
3.3 Predicted welfare changes 52
3.4 Changes in predicted trips 54
3.5 Cost-effectiveness indicators for the policy alternatives 55
4.1 Illustrative choice experiment question 64
4.2 Parameter estimates 66
4.3 Implicit prices (£), (standard errors) and [95 per cent confidence bands] 67
6.1 Descriptive statistics of excursions per head by destinations 103
6.2 Sample statistics of travel cost to site and closest substitute, in € 109
6.3 FIML estimates 111
7.1 The survey 130
7.2 Variables used in the models 132
7.3 Coefficients and Z statistics of the two models 133
7.4 Measures of goodness of fit 133
7.5 Cost elasticities 134
7.6 The effect of accommodation 134
8.1 Forest site quality scores, distance to the 26 districts from each forest and forests’ share of total trips 146
8.2 Discrete choice model for site selection – NI 148
8.3 Count data trip frequency models – NI 150
8.4 Effect of policy scenarios on site share and number of trips taken 152
8.5 Compensating variation by trip origin arising from £1.50 charge at Crawfordsburn 155
8.6 Effect of policy scenarios on WTP per trip from each district 157
8.7 Effect of policy scenarios on WTP at each district 158
9.1 Data structure for examining choice behaviour 166
 Tables ix

9.2 Attributes used in the stated preference experiment 172
9.3 Parameters of site choice models 174
9.4 Tests of scaling and parameter equality 178
9.5 Results of tests of model performance 181
9.6 Per trip estimates of welfare change associated with some attribute changes for moose hunters in Alberta 183
10.1 Typical questions that a GIS can be used to answer 194
10.2 Road speed estimates 198
10.3 Consumer surplus estimates from models with differing specifications of time and distance in the travel-cost variable 205
10.4 Forestry Commission estimates and transfer model predictions of recreational visits and values for a set of English woodlands 212
10.5 A site-based model of arrivals to English woodlands 214
11.1 Estimates of parameters from multinomial logit models explaining choice of water recreation route in Nopiming Park, Manitoba in 1993 230
11.2 Estimates of mean per trip welfare measures associated with marginal changes in forest and some management conditions for some canoe routes in Nopiming Park, Manitoba 233
11.3 The current (1993) mean per trip welfare impacts of severe fires that occurred in 1983 on backcountry recreationists in Nopiming Park, Manitoba 234
12.1 Site characteristics 244
12.2 Mid-Atlantic beaches from north to south 252
12.3 Site characteristic variable summary statistics 253
12.4 The components of trip cost 253
12.5 The MNL random utility model 254
12.6 The MXL random utility model 257
12.7 Mean per-person per-trip loss due to the closure of individual beaches 259
12.8 Mean per-person per-trip loss due to the closure of groups of beaches 261
12.9 Mean per-person per-trip loss due to the erosion of Delmarva beaches 263
13.1 Estimated models 276
13.2 Properties of the estimated probabilities of membership in Regime I 276
13.3 Some average welfare measures 277
14.1 A comparison of Marshallian elasticities in the semilog and double semilog models 284
14.2 Quantities, prices and qualities by site 291
14.3 Estimation results 293
Tables

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.4</td>
<td>Price, income and quality elasticity estimates</td>
<td>294</td>
</tr>
<tr>
<td>14.5</td>
<td>Normalized and absolute shadow values of time</td>
<td>295</td>
</tr>
<tr>
<td>14.6</td>
<td>Hicksian and Marshallian estimates of access value</td>
<td>295</td>
</tr>
<tr>
<td>15.1</td>
<td>List of 26 intensively studied sites by region</td>
<td>302</td>
</tr>
<tr>
<td>15.2</td>
<td>Parameter estimates</td>
<td>312</td>
</tr>
</tbody>
</table>