Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>CDC-related statistics of disciplines</td>
<td>71</td>
</tr>
<tr>
<td>3.2</td>
<td>The faculties or similar components of ULP</td>
<td>81</td>
</tr>
<tr>
<td>4.1</td>
<td>Size distribution of business units and firms</td>
<td>114</td>
</tr>
<tr>
<td>4.2</td>
<td>Use of public research outputs in industrial R&D</td>
<td>120</td>
</tr>
<tr>
<td>4.3</td>
<td>Importance of public research, by academic discipline</td>
<td>124</td>
</tr>
<tr>
<td>4.4</td>
<td>Importance to industrial R&D of information sources on public research</td>
<td>130</td>
</tr>
<tr>
<td>4.5</td>
<td>Industry-level factor analysis of channels-of-information flow from public research to industrial R&D</td>
<td>134</td>
</tr>
<tr>
<td>4.6</td>
<td>Correlations between importance of information channels and role of public research, by industry</td>
<td>135</td>
</tr>
<tr>
<td>4.7</td>
<td>Within-industry determinants of the influence of public research</td>
<td>137</td>
</tr>
<tr>
<td>5.1</td>
<td>Performance and funding of research, 1996</td>
<td>156</td>
</tr>
<tr>
<td>5.2</td>
<td>Structure of the 109 accepted cases</td>
<td>157</td>
</tr>
<tr>
<td>5.3</td>
<td>The FRT budget</td>
<td>163</td>
</tr>
<tr>
<td>6.1</td>
<td>Collaborative R&D projects originated and developed by country and partners’ location</td>
<td>177</td>
</tr>
<tr>
<td>6.2</td>
<td>Collaborative R&D projects originated and developed by country and phase of development</td>
<td>179</td>
</tr>
<tr>
<td>6.3</td>
<td>Collaborative R&D projects originated and developed by country and organization type</td>
<td>180</td>
</tr>
<tr>
<td>6A.1</td>
<td>Organization-level patent co-assignment network, 1990–2001</td>
<td>194</td>
</tr>
<tr>
<td>6A.2</td>
<td>Organization-level R&D projects network, 1990–2001</td>
<td>199</td>
</tr>
<tr>
<td>7.1</td>
<td>Definition of variables</td>
<td>205</td>
</tr>
<tr>
<td>7.2</td>
<td>Descriptive statistics</td>
<td>206</td>
</tr>
<tr>
<td>7.3</td>
<td>Frequency tables</td>
<td>208</td>
</tr>
<tr>
<td>7.4</td>
<td>Samples means, $D_{GRANT} = 0$ and $D_{GRANT} = 1$</td>
<td>210</td>
</tr>
<tr>
<td>7.5</td>
<td>Determinants of selection (probit estimation)</td>
<td>212</td>
</tr>
<tr>
<td>7.6</td>
<td>$SCORE$ as proxy for selection (OLS estimation)</td>
<td>213</td>
</tr>
<tr>
<td>7.7</td>
<td>Relationship between units’ research productivity and past publications</td>
<td>218</td>
</tr>
<tr>
<td>7.8</td>
<td>Determinants of units’ research productivity</td>
<td>220</td>
</tr>
<tr>
<td>7.9</td>
<td>Semi-parametric estimations of $LPROD$, by location and type of research unit, and project degree of transferability</td>
<td>225</td>
</tr>
</tbody>
</table>
8.1 Summary of cases 268
8.2 Summary of results 268
8.3 Example summary 277
8.4a Comparison of average reputations across funding regimes 278
8.4b Comparison of reputation variances across funding regimes 279
8.4c Comparison of reputation variance/mean across funding regimes 280
8.5a Comparison of average natural log reputations across funding regimes 281
8.5b Comparison of natural log reputation variances across funding regimes 282
8.5c Comparison of natural log reputation variance/mean across funding regimes 283
10.1 A popular conception of the failings of club solutions and public finance 338
10.2 Efficiency of club solutions and public finance 340
10.3 Equity of club solutions and public finance 341
10.4 Summary of regions depicted in Figure 10.1 342
10.5 Comparison of the distribution of benefits depicted in Figures 10.3a–d 347
10.6 Which industry actors benefit from research? 354
10.7 A revised conception of the failings of club solutions and public finance 356
11.1 Summary of advantages and shortcomings of ISPG solutions 366