Index

absorption of knowledge 329–30
absorptive capabilities, interdisciplinary programmes 78–9
academic disciplines, public research 122–6
academic research collaboration between firms and 158–60
government funding 11–12, 89–91
industry funding 113
innovation 105
accountability
public funding 11, 355
research activity 393–4
Action Plan for Innovation (EC) 152
adaptation work, concerned groups 53–4
aerospace, public research 116, 117, 125, 126, 131, 132, 135
Agricultural Marketing Agreement Act (1937) 369, 370
allocative efficiency, knowledge endowments 322–3
anti-diphtheria serum 47–8
Aoki’s model 85
applied research 94–5
applied subjects, academic research 89
appropriability, of knowledge 376, 378
Aristotelian philosophy 34
ASSEDIC 159
asymmetric information, public funding of basic research 337
autonomy
Bush social contract 9
Humboldt social contract 8
lack of, French universities 166
autonomy model, university research 25
Aventis 186–7
B&B funding programme study 202–30
commentaries 240
conclusions 228–30
data description 204–9
research productivity estimation assumptions 215–17
parametric estimation 217–23
semi-parametric estimation 223–8
selection and awarding phases 209–14
basic research
changing social contract 21–2
decline of, in universities 99
distinguished from applied research 94–5
as driver of technological development 110
growth of, private industry 99
public funding v. club solution 335
analytical framework 341–4
comparison 338–41
conclusion 355, 356
convergence 352–3
distribution of benefits 345–7
rate of internalization 347–51
rationales 336–8
transaction costs and exclusion 353–5
basic science, industrial R&D 123
benefits
club solutions and public funding 345–7
interdisciplinary research 77–8
spillover 385
Biobase 175
biology, industrial R&D 123, 124
biotechnology, US and European innovation study 169–90
trajectories of development 172–4
data and methods 174–6
analysis 176–89

Aldo Geuna, Ammon J. Salter and W. Edward Steinmueller - 9781781950241
Downloaded from Elgar Online at 01/22/2019 11:14:20PM via free access
biotechnology – continued
conclusions 189–90
organization-level patent co-
assignment network 194–201
commentary 233–5
see also B&B funding programme
study
broker solution, ISPGs 365, 366
budgets, research productivity
estimation 214–23
Bush, Vannevar, social contract 9
buyers’ manufacturing operations,
R&D projects 115, 116, 117,
118, 140
car/truck industry, public research 117,
123, 125, 128, 131
Cardinal Newman university 14, 15
Carnegie Mellon Survey 109–41
Caveman graph 326
cell fusion technology 172
Centre National de la Recherche
Scientifique (CNRS) 8, 81,
150, 151, 183
Centres of Excellence 310
chemical engineering, industrial R&D
123, 124
chemistry, industrial R&D 123, 124
Chernobyl 46–7, 50–53
citations
cross-disciplinary (CDCs) 70, 71
US patents 105, 113–14
citizens, divide between elected
representatives and 33–4
civil research, France 149
classical universities 15, 24
clinical research, involvement of
concerned groups 44–6
closed research 46, 309
club goods solutions
applied research 399
basic research 335
rationale for 337–8
v. public funding
analytical framework 341–4
comparison 338–41
conclusion 355, 356
convergence 352–3
distribution of benefits 345–7
rate of internalization 347–51
transaction costs and exclusion
353–5
clustering, industrial 183, 189–90, 364
coauthorship 71–2
codified knowledge 310
Cold War, ending of 10
Cold War institutional Configuration
(CWiC)
deleagative democracy 37, 38, 97
justifications for 31
undermining of 32
collaboration
coauthorship 71–2
cofined research and research in the
wild 38–54, 55, 62–3
firms and academic research, France
158–60
life sciences 176–89
need for 74–5
problems of interdisciplinary 75–6
science systems 394
see also scientific research coalitions
collective action, innovation 372
commercialization, public research 110
common experience 34
divide between experiments and 36
communications industry, public
research 123, 125, 126, 131
company universities 23
compensation system, US 234
competition, increasing 10
competitions, innovative firms 164
competitors, R&D projects 117, 118,
119
computer industry, public research
123, 124, 126, 135, 138
computer science, industrial R&D 123,
124
cconcerned groups 32
adaptation work 53–4
critical vigilance 46–7
divide between specialists and 34
gap between scientists and 49–52
hybrid forums 54–60
infant leukaemia 40–42
linking research and exploration of
identities 63–4
neuromuscular disease 42–4
socio-technical controversies 56–60
concerted incentive actions (NSF) 164
conferences, importance as information channel 129, 130–31, 134, 135, 140–41
confined research
cooperation with research in the wild 32, 38–54, 62–3
as pillar of delegative democracy 33–7
conflicts, EU science policy goals 261–3
consensus, ISPGs 362
consortia, for supplier training 364
consulting
importance as information channel 129, 130–31, 132, 134, 135, 141
R&D projects 117, 118
contract research
importance as information channel 129, 130–31, 134, 135
R&D projects 118
convergence, public finance and club solutions 352–3
cooperation see collaboration
coordination, interdisciplinary research 84–5
Cornell University 15
corporations, funding of academic research 90
costs, interdisciplinary research 75–6, 77–8
Cour des Comptes 153
creation of knowledge see knowledge creation and diffusion
cross-disciplinary citations 70, 71
cross-national networks, biotechnology 176–89
cumulative advantage 256
curiosity, knowledge production 34–5
decision-making model, emergence of new 31–2
dedicated biotech firms 173, 180, 181
degression problem, policy process model 371
degenerative democracy 32
Cold War institutional Configuration 38
confined research 33–7
enriching 38–54
demand-side externalities, technological knowledge 378, 382
departments, open science model 312–13
developers, biotechnology 176, 177, 178–81
diffusion of knowledge see knowledge creation and diffusion
division of labour, research organizations 240
double delegation 33, 38, 39
double divide 33
drug industry 117–18
interdisciplinary research 72, 73
public research 124, 126, 130, 132
see also pharmaceutical industry
e-universities 23
École Polytechnique 15
economic analysis
research coalition networks 254–6
scientific research 251–2
economic efficiency, funding basic research 337
economic markets
debates on organization of 62
techno-sciences 56–8, 60–61
economic policy, public funding 384–6
economies, necessity for public finance 353
efficiency, club solutions and public funding 340, 385
elected representatives, divide between citizens and 33–4
electrical engineering, industrial R&D 123, 124
employees, PROs, France 159
entrants, universities 23
entrepreneurial researchers 166
entrepreneurial universities 23, 24
epidemic diffusion, research 347–51
equity, club solutions and public funding 340–1
established pharmaceutical companies (EPAs) 173, 180
Ethics Commission 154, 155
cases examined by, since 1999 156–8
Europe
 public research system 169–90
 universities 14, 15
European Community Framework
 Programmes 261, 269, 372
European paradox 152
European Research Area
 knowledge creation and diffusion 309–10
 scientific research coalitions 260–63
 evolutionary properties, policy process model 370–71
ex post evaluations, funding programmes 203
exactitude, knowledge production 35–6
exclusions
 club solutions 353–5
 emergence of concerned groups 57
 identification and exploration of 61–2
experience, common 34, 36
 experiments
 divide between common experience and 36
 knowledge production 34–5
expertise 324
 at the economy level 325, 326
 as heterogeneity in knowledge types 324–5
external knowledge, discovery of 377–8
externalities
 public funding of basic research 335, 336, 351
 technological knowledge 378, 382
face-to-face contact, information transmission 310
Fachhochschulen 15, 16
federal funding, biomedical research 99
 firm characteristics, influence of public research 135–8
firm-specific resources 361
firms
 collaboration between academic research and 158–60
 creation by researchers, France 154–6
 national competitions for innovation 164
 flexibility, ISPGs 362–3
food industry, public research 117, 124, 128, 130, 132
FR algorithm 175
France
 École Polytechnique 15
 grandes écoles 8, 16, 18
 life sciences 170, 183
 local system of innovation, Limoges 370
 public research system 147–66
 challenges for 151–3
 characteristics 148–50
 commentaries 241
 conclusions 165–6
 recent evolutions 150–51
 reforms and new tools 153–64
 technical industrial centres 369
 University Louis Pasteur 80–84
freedom, in research 62–3
Fund for Technological Research 163
funding, research
 by industry 113
 expectation of benefits 19
 interdisciplinary 85
 life sciences, US 234–5
 mission-oriented agenda 20
 scientific coalitions 251–86
 US and European 173–4
see also B&B funding programme
 study; public funding
 generic resources 361
 Génethon 48
 genetic consultation service 48–9
 genetics 170
 geographical location
 allocation of funding 211, 212
 research productivity 229
Germany
 life sciences 170, 183–4
 universities 14, 16, 18, 21
glass industry, public research 117, 123, 124, 126, 130, 132
global problems, interdisciplinary research 74–5
governance
 for science 393–5
 technological knowledge 378
government-funded research 20, 89–91
 grandes écoles 8, 16, 18
Index

grants system, US 235
Gresham’s law 336–7
Guillaume report 152–3

Herfindahl indices 324, 326
higher education, expansion of 11
Hobbes, Thomas 34
Hoechst Marion Roussel 186, 187
homogeneity, knowledge endowments 322–3
human resources, R&D, France 149
Humboldt social contract 3, 4, 8
Humboldt universities 14, 16
hurt groups 56, 57, 58, 61
hybrid forums 97
organization of 54–60
public action 60–64
recognition of existence 32
hybrid universities 23

imperial university 14
implementation, of research 396
in-house universities 361
incentive structures
interdisciplinary research 78, 79
SAIC, French universities 159, 241
incentives, public research institutions 395
increasing returns, public funding of
basic research 336
incubators
creation of, France 161

growing importance of 22
individuals, open science model 312–13
industrial associations 363–4, 366
industrial companies,
interdisciplinarity 76
industrial R&D survey 109–41
and academic research 105
background 111–13
data 113–15
public research conclusions 139–41
dimensions and incidence of
influence 127–9
fields contributing to 122–7
firm characteristics and incidence
of influence 135–8

pathways of knowledge flow
129–35
sources of outputs 119–22
industry

use of outputs 119–22

sources of knowledge used in 115–19

industry specificity

demand for research networks 399
funding of academic research 113
growing application of scientific
knowledge 394
industry-specific public goods 360–73

commentary on 388
critical importance of 360–61
designing intermediary institutions
361–2
finding a consensus 362
introducing flexibility 362–3
policy process model
advantages of the schema 368–71
policy mechanism 367–8
shortcomings and problems 371–2
SME solutions
brokers 365
industrial associations 363–4
uneven institutional structure 365
user- or supplier-driven
mechanism 364
towards a new policy rationale 372–3
infant leukaemia, concerned groups
40–42
informal interactions, importance as
information channel 129, 130, 132, 134, 135, 141
information channels, public research
129–35
information and communication

technologies 22–3
information sources
new projects 115–16

project completion 117
information transmission mechanisms
310
innovation
academic research 105
changing role of universities, US
98–9
collective action 372
interdisciplinary research 72–4
knowledge absorption 329–30
knowledge transfer 95
knowledge-based economies 93
innovation – continued
linear model 9, 109
policy instruments 360
for productivity and competitiveness
10
research networks 397
resources necessary for 360–61
science policy 237–8
systems, life sciences 169–90
innovative firms, national competitions 164
Institut National de la Santé et de la Recherche Médicale 8, 81, 183
institutional inertia, policy process model 370–71
institutional mechanisms for collaboration 62–3
resource allocation 202
institutional structures
biomedical research 189
French public research 151–2
interdisciplinary research 78
scientific research 99
uneven, ISPGs 365, 366
institutional typology
allocation of funding 211, 212, 214
research productivity 229
institutions
French public research 149–50
intertwining 151
ISPGs, intermediary 361–2
see also scientific institutions
instruments, knowledge production 35, 36
instruments and techniques, technical advances 119–22
intellectual property rights
advantages of 377
creation of 376
policies
absence of, France 153
public research 132
interdisciplinary research 69–86
growing importance of 98
as recognized discipline 21
in universities
analytical framework for 76–80
concluding remarks 84–6
emergence of 70–72
inherent problems and shortcomings 72–6
University Louis Pasteur 80–84
internalization, funding of basic research 347–51
interventionist model, research 25
Italian Research Council, B&B programme 202–30, 240
Ivy League university 14, 16
Japan
research, life sciences 186
universities 14, 16, 18
job market 310
activity 318–19, 320
knowledge diffusion 327
knowledge levels 322
model 314–15
joint/cooperative ventures
importance as information channel 129, 130–31, 134, 135, 141
R&D projects 117, 118
use of academic research by industry 132
knowledge economics of 375
external knowledge and knowledge trade-off 377–80
great swing 375–7
multiple equilibria, instability and governance of knowledge commons 380–83
increasing importance of scientific and technological 11
interdisciplinary research 79–80
sources, used in industrial R&D 115–19
time lag between creation and use of 24
knowledge creation and diffusion 309–32
conclusion 330–32
discussion 326–30
model 311–15
commentary on 386–7
individuals and departments 312–13
job market 314–15
knowledge 313–14
numerical analysis 315–18
settings 317–18
statistics 316–17
results 318–26
allocative efficiency 322–3
expertise 324
at economy level 325, 326
as heterogeneity in knowledge types 324–5
job market activity 318–19, 320
knowledge levels and job market 322
and networking 320–21
production of knowledge 320
knowledge production 12–13
main stages 34–6
knowledge society 24–6
knowledge transfer innovation 95
science and industry 75
knowledge-based economies 93
universities’ central position 4
knowledge-intensive industrial clustering 364
laboratization 47–9
labour costs, variations in 10
labour mobility
number of agents moving per job market 319
total, over the economy lifetime 320
land-grant universities 15, 16, 19, 26, 96
large firms, influence of public research 135
large research programmes, France 149
disappearance of 151
lay people see concerned groups
liberal arts colleges 18
licences, importance as information channel 129, 130–31, 133, 134, 135, 141
life sciences
growing role of 32
interdisciplinary research 76
see also biotechnology
Life Sciences Industry Database 175
lifetime learning 11
Limoges 370
linear model, innovation 9, 94, 109, 110
London Insurance Market 371
machine tool industry, public research 116, 124, 128, 131, 135
managerial approach, science policy 239–42
Mansfield survey 112
Manufacturing Center Programme 363
manufacturing operations, R&D projects 115, 116, 117, 118, 140
market failures, public funding of basic research 336–7
materials science, industrial R&D 123
Matthew Effect 256, 270
Max Planck institutes 170, 183
mechanical engineering, industrial R&D 123, 124
medical equipment, public research 125, 126, 131, 132, 138
medical and health sciences, industrial R&D 123, 124
medical lasers, interdisciplinary research 76
medieval universities 14
mergers and acquisitions, universities 23
metals industry, public research 124, 126, 130, 132
Ministry of National Education, Research and Technology (MENRT) 161
mission-oriented research 16, 20, 25, 149–50
Mode 1 research 7, 16
Mode 2 research 7, 12–13, 20–21
molecular biology research 170, 173–4
Molecules and Innovative Therapeutics Federation 83–4
monopolization
funding of basic research 337–8
technical knowledge 376, 377
Morrill Act (1862) 19, 96
multidisciplinary research 12–13, 21
national agencies, EU science policy goals 262–3
national centres, technological research 164
national clusters, European organizations, biomedicine 183, 190
national competitions, innovative firms 164
national funding model of 271–84, 285 programme coordination, EU 260–61
National Institute for Standards and Technology 363
National Institutes of Health (NIH) 99, 173, 183, 234–5
National Science Foundation 94, 110
National Science Fund 164
network analysis 309
network model, knowledge creation and diffusion 311–15
numerical analysis 315–18
results 318–26
conclusion 330–32
discussion 326–30
networked universities 23
networks cross-national, biotechnology 176–89
enthusiasm for 396–9
of innovation 32
Networks of Excellence 262
neural networks, interdisciplinary research 76
neuromuscular diseases, collaborative research 42–4
new projects, public research 115–16, 128, 135
non-cooperative games, coalition formation 257–8, 265–6
non-industrial research centres, life sciences 170, 181
nuclear example
gap between concerned groups and scientists 49–53
vigilance, concerned groups 46–7
obligatory passage point 39
open science model see network model
Open University 15
organizational competencies, US and European innovation study 176–89
organizational structures, interdisciplinary research 84, 85, 98
originators, biotechnology 176, 177, 178–81
orphan groups 57, 58, 61
overflows CWiC 31
emergence of concerned groups 31
identification and exploration of 61–2
paper industry, public research 117, 124, 128, 130
parametric estimations, research productivity 217–23
partnerships, public and private research, France 163
past publications see scientific reputation
Pasteur, Louis 47
Pasteur’s Quadrant 22
patent co-assignment network, biotechnology 181, 182, 183, 184, 185, 194–201
patents
growing importance of 22
importance as information channel 129, 130–31, 133, 134, 135
for signaling 379
US
academic citations 105, 113–14
granted to universities 112
universities 169
patronage 3
peer-review system institutionalization of 9
rejection of authors 339
personal exchange, importance as information channel 129, 130–31, 134, 135
petroleum industry, public research 116, 123, 124, 128, 130, 132
pharmaceutical industry biomedical research 173, 180, 186
public research
academic disciplines 123
impact of 140
information channels 133
new projects 115, 117
sources of knowledge 117
start-up firms 137–8
Plastic and Composite Development Center 365
policy experiments 360
policy goals
EU science policy 261–3
supra-national funding agencies 285
policy instruments, promoting
innovation 360, 372
policy process model, ISPGs
advantages of schema 368–71
policy mechanism 367–8
shortcomings and problems 371–2
political actors, science policy priorities 237
political motivation, EU research programmes 261
political properties, policy process model 371
polytechnics 14
porcelain companies, Limoges 370
priority setting, science and technology 11
private sector
cross-national networks, biomedicine 184–9
growth of basic research 99
R&D, France 149
university collaboration with 93–4
private subsidiaries, French universities 161–2
private universities, United States 170
privatization, public knowledge 377
probit model, determinants of selection 212
problem-bound research, public goods 74–5
problematizing 36, 37, 39–40
productivity, science policy 237–8
profitability, funding of basic research 338, 339, 343
project completion, public research 116–17, 128, 129, 135
PROs see public research organizations
prototypes, technical advances 119, 120–21
proximity, to research and success of results 100
public action, hybrid forums 60–64
public expenditure, constraints on 10–11, 202
public funding
academic research 89–90
basic research
arguments for 335
v. club solution
analytical framework 341–4
comparison 338–41
conclusion 355, 356
convergence 352–3
distribution of benefits 345–7
rate of internalization 347–51
rationale for 336–7
transaction costs and exclusion 353–5
concern about returns from 239
public research, France 150
public goods
interdisciplinary research 74–5
science as 31
technological knowledge 375
see also industry-specific public goods
public knowledge commons 376
public meetings, importance as information channel 129, 130–31, 134, 135
public provision, technological knowledge 376
public research
commercialization of 110
contribution to industry 111–12
impact on industrial innovation 109
industrial R&D
conclusion 139–41
dimensions and incidence of influence 127–9
fields which contribute to 122–7
firm characteristics and incidence of influence 135–8
new projects 115–16
pathways of knowledge flows 129–35
public research – continued

as source of knowledge 118
use of outputs 119–22
public research organizations (PROs) 3–4
incentives 395
life sciences
organization-level patent co-assignment network 181, 182, 183
originators and developers 178–81
United States 172, 189, 233
personnel, France 159
public research systems
France 147–66
challenges for 151–3
characteristics 148–50
conclusions 165–6
recent evolutions 150–51
reforms and policy tools 153–64
US and Europe comparison 169–90
analyses 176–89
commentary on 233–5
conclusions 189–90
data and methods 174–6
trajectories of development 172–4
public technological programmes,
decline of 32
public universities, United States 170
public-private relations
Europe 171
United States 170
publications
importance as information channel 129, 130–31, 134, 135, 140–41
see also scientific reputation

research
government influence 393–4
infrastructures, US and Europe 170
networks, enthusiasm for 396–9
projects see new projects; project completion
quality, measuring 242
societal needs 16
spillover benefits 385
and teaching
Humboldt social contract 8
restructuring link between 5, 81–3
separation of 8, 24
symbiosis 17–18
v. third mission 18–19
see also academic research; confined research; interdisciplinary research; public research
research centres 85, 164
research collectives 44–7
research and development (R&D)
concentrated private, France 149
growing costs 11
see also industrial R&D survey
research findings, and technical advances 119, 120–21, 122
research productivity
allocation of funds 239–40
estimation, B&B programme
assumptions 214–17
parametric estimations 217–23
semi-parametric estimations 223–8
research programmes
large, France 149, 151
sponsored by EC 261
research units
resource allocation study 207
self-organization into coalitions 254–5
research in the wild
collaboration with confined research 32, 38–54, 62–3
entry points, concerned groups 55
research-only institutes 17, 23
researchers
absorptive capabilities 78–9
duty to indicate doubts about research 61–2
opportunities for, France 154–6
withdrawal of 36–7
resource allocation
B&B funding programme study 202–30
research coalition networks 251–86
value for money 239–40
retrenchment, expansion of science 4
revised social contract 12–13
Rhône-Poulenc Rorer 186–7

scholarship 14
Science: The Endless Frontier 9, 31, 109

science
Aristotelian view 34
changing social contract 21–2
expansion of 3–4
governance of 393–4
in knowledge society 24–6
legitimacy of 4–5
linked to societal needs 19–20
as public good 31
resource allocation 202–3
sociology of 252
under threat 7

science policy 3
academic research 89–91
actors involved in 236–8
consideration of innovation and productivity 237–8
European 260–63
managerial approach 239–42
revised social contract 12
socio-technical controversies 91–2
warning about change 92–3

science-push model see linear model

scientific communities, knowledge creation and diffusion 309–32
scientific competencies, increasing importance of 11–12
scientific discourse, fears about opening up 5
scientific institutions
reconfiguration 30–32, 96–7
separation from wider society 3
scientific laboratories 34, 37, 39
scientific reputation
Matthew effect 256, 270
research productivity 214–23, 229–30

self-organization, coalition networks 256

scientific research coalitions study 251–86
European research area 260–63
introductory overview 251–60
motivating considerations 252–4
focal problems for economic analysis 254–6
theoretical approach and principal findings 257–9

model of collaboration formation
description of collaboration formation game 265–6
equilibria of coalition-formation game with a single funding agency 291–8
equilibrium collaborations 267–8
equilibrium definition and properties 266–7
external funding rules 264–5
notation and key assumptions 263–4

model of national and supra-national research funding 271–84
discussion 283–4
interaction of funding regimes 274–5
numerical example 275–83
outcomes for reputation distributions of interactions 299–308
supra-national research networks, formation of 269–71

scientists
gap between concerned groups and 49–52
interaction between 309
trust in 5
see also social scientists

SCORE, allocation of funding 213–14
search/navigation equipment, public research 117, 125, 126, 131
selection phase, B&B funding programme 209–14
selectivity bias, funding programmes 204
Aldo Geuna, Ammon J. Salter and W. Edward Steinmueller - 9781781950241
Downloaded from Elgar Online at 01/22/2019 11:14:20PM via free access
technical high schools 15
technical industrial centres 369
technical universities 14–15, 16, 18, 24, 26

France
externalization of useful research 160
incentive structures 159
lack of autonomy 166
shareholding and creation of private subsidiaries 161–2
Humboldt social contract 3, 4, 8
in-house 361
innovation systems 93–4
interdisciplinary research
analytical framework 76–80
case study 80–84
context 70–76
in knowledge society 24–6
linked to societal needs 19–20
Mode 2 research 21
patenting, US 169
survival under current form 22–3
teaching and research restructuring link between 5, 81–3
separation of 24
symbiosis 17–18
versus the third mission 18–19
under threat 7
United States 170, 183
University Louis Pasteur 5, 80–81
Molecules and Innovative Therapeutics Federation 83–4
teaching activities and research 81–3
university/industry relations, biotechnology 183–4, 233
upstream research, industrial innovation 111, 115, 116
useful academic research 90
user-driven mechanism, ISPGs 364, 366
user-interdependence, technological knowledge 378
utility, knowledge production 35
value for money, funding 11, 239, 337
watch-making industry 363
Yale survey 105, 111–12, 122, 126, 139, 140

United States
liberal arts colleges 18
public research system 169–90, 233–5
universities 14, 15, 16, 21, 98–9

uncodified knowledge 310
undergraduate teaching, combining research with 17–18

transdisciplinary research 12–13, 20, 84–5
transferability of research
research productivity 229
resource allocation 206–7, 209, 212, 214

treatment of research

transinstitutional model, research 25
translation theory 39–54, 91–2
TV/radio, public research 125, 126, 131, 132

university/industry relations, biotechnology 183–4, 233
upstream research, industrial innovation 111, 115, 116
useful academic research 90
user-driven mechanism, ISPGs 364, 366
user-interdependence, technological knowledge 378
utility, knowledge production 35
value for money, funding 11, 239, 337
watch-making industry 363
Yale survey 105, 111–12, 122, 126, 139, 140

uncodified knowledge 310
undergraduate teaching, combining research with 17–18

United States
liberal arts colleges 18
public research system 169–90, 233–5
universities 14, 15, 16, 21, 98–9

changes impacting on role of 97–9
coevolution of different species 16
evolving functions and ethos of 14–15