Index

absorption of knowledge 329–30
absorptive capabilities, interdisciplinary programmes 78–9
academic disciplines, public research 122–6
academic research collaboration between firms and 158–60
government funding 11–12, 89–91
industry funding 113
innovation 105
accountability public funding 11, 355
research activity 393–4
Action Plan for Innovation (EC) 152
adaptation work, concerned groups 53–4
aerospace, public research 116, 117, 125, 126, 131, 132, 135
Agricultural Marketing Agreement Act (1937) 369, 370
allocative efficiency, knowledge endowments 322–3
anti-diphtheria serum 47–8
Aoki’s model 85
applied research 94–5
applied subjects, academic research 89
appropriability, of knowledge 376, 378
Aristotelian philosophy 34
ASSEDIC 159
asymmetric information, public funding of basic research 337
autonomy
Bush social contract 9
Humboldt social contract 8
lack of, French universities 166
autonomy model, university research 25
Aventis 186–7
B&B funding programme study 202–30
commentaries 240
conclusions 228–30
data description 204–9
research productivity estimation assumptions 215–17
parametric estimation 217–23
semi-parametric estimation 223–8
selection and awarding phases 209–14
basic research changing social contract 21–2
decline of, in universities 99
distinguished from applied research 94–5
as driver of technological development 110
growth of, private industry 99
public funding v. club solution 335
analytical framework 341–4
comparison 338–41
conclusion 355, 356
convergence 352–3
distribution of benefits 345–7
rate of internalization 347–51
rationales 336–8
transaction costs and exclusion 353–5
basic science, industrial R&D 123
Bayh-Dole Act (1980) 132, 133, 172
benefits
club solutions and public funding 345–7
interdisciplinary research 77–8
spillover 385
Biobase 175
biology, industrial R&D 123, 124
biotechnology, US and European
innovation study 169–90
trajectories of development 172–4
data and methods 174–6
analysis 176–89

401
index
concerted incentive actions (NSF) 164
confined research
cooperation with research in the wild
as pillar of delegative democracy
conflicts, EU science policy goals
consensus, ISPGs 362
consortia, for supplier training 364
consulting
importance as information channel
R&D projects 117, 118
contract research
importance as information channel
R&D projects 118
convergence, public finance and club solutions 352–3
cooperation see collaboration
coordination, interdisciplinary research
Cornell University 15
corporations, funding of academic research 90
costs, interdisciplinary research 75–6, 77–8
Cour des Comptes 153
creation of knowledge see knowledge creation and diffusion
cross-disciplinary citations 70, 71
cross-national networks, biotechnology 176–89
cumulative advantage 256
curiosity, knowledge production 34–5
decision-making model, emergence of new 31–2
dedicated biotech firms 173, 180, 181
dedication problem, policy process model 371
degenerative democracy 32
Cold War institutional Configuration 38
confined research 33–7
enriching 38–54
demand-side externalities, technological knowledge 378, 382
departments, open science model 312–13
developers, biotechnology 176, 177, 178–81
diffusion of knowledge see knowledge creation and diffusion
division of labour, research organizations 240
double delegation 33, 38, 39
double divide 33
drug industry 117–18
interdisciplinary research 72, 73
public research 124, 126, 130, 132
see also pharmaceutical industry
e-universities 23
École Polytechnique 15
economic analysis
research coalition networks 254–6
scientific research 251–2
economic efficiency, funding basic research 337
economic markets
debates on organization of 62
techno-sciences 56–8, 60–61
economic policy, public funding 384–6
economies, necessity for public finance 353
efficiency, club solutions and public funding 340, 385
elected representatives, divide between citizens and 33–4
electrical engineering, industrial R&D 123, 124
employees, PROs, France 159
entrants, universities 23
entrepreneurial researchers 166
entrepreneurial universities 23, 24
epidemic diffusion, research 347–51
equity, club solutions and public funding 340–1
established pharmaceutical companies (EPAs) 173, 180
Ethics Commission 154, 155
cases examined by, since 1999 156–8
Europe
public research system 169–90
universities 14, 15
European Community Framework
Programmes 261, 269, 372
European paradox 152
European Research Area
knowledge creation and diffusion
309–10
scientific research coalitions 260–63
evolutionary properties, policy process
model 370–71
ex post evaluations, funding
programmes 203
exactitude, knowledge production 35–6
exclusions
club solutions 353–5
emergence of concerned groups 57
identification and exploration of
61–2
experience, common 34, 36
experiments
divide between common experience
and 36
knowledge production 34–5
expertise 324
at the economy level 325, 326
as heterogeneity in knowledge types
324–5
external knowledge, discovery of 377–8
externalities
public funding of basic research 335, 336, 351
technological knowledge 378, 382
face-to-face contact, information
transmission 310
Fachhochschulen 15, 16
federal funding, biomedical research 99
firm characteristics, influence of public
research 135–8
firm-specific resources 361
firms
collaboration between academic
research and 158–60
creation by researchers, France
154–6
national competitions for innovation
164
flexibility, ISPGs 362–3

food industry, public research 117, 124,
128, 130, 132
FR algorithm 175
France
École Polytechnique 15
grandes écoles 8, 16, 18
life sciences 170, 183
local system of innovation, Limoges
370
public research system 147–66
challenges for 151–3
characteristics 148–50
commentaries 241
conclusions 165–6
recent evolutions 150–51
reforms and new tools 153–64
technical industrial centres 369
University Louis Pasteur 80–84
freedom, in research 62–3
Fund for Technological Research 163
funding, research
by industry 113
expectation of benefits 19
interdisciplinary 85
life sciences, US 234–5
mission-oriented agenda 20
scientific coalitions 251–86
US and European 173–4
see also B&B funding programme
study; public funding
generic resources 361
Généthon 48
genetic consultation service 48–9
genetics 170
geographical location
allocation of funding 211, 212
research productivity 229
Germany
life sciences 170, 183–4
universities 14, 16, 18, 21
glass industry, public research 117, 123,
124, 126, 130, 132
global problems, interdisciplinary
research 74–5
governance
for science 393–5
technological knowledge 378
government-funded research 20, 89–91
grandes écoles 8, 16, 18
Index

Aldo Geuna, Ammon J. Salter and W. Edward Steinmueller - 9781843761099
Downloaded from Elgar Online at 12/06/2018 11:22:35PM via free access
innovation – continued
linear model 9, 109
policy instruments 360
for productivity and competitiveness 10
research networks 397
resources necessary for 360–61
science policy 237–8
systems, life sciences 169–90
innovative firms, national competitions 164
Institut National de la Santé et de la Recherche Médicale 8, 81, 183
institutional inertia, policy process model 370–71
institutional mechanisms for collaboration 62–3
resource allocation 202
institutional structures biomedical research 189
French public research 151–2
interdisciplinary research 78
scientific research 99
uneven, ISPGs 365, 366
institutional typology allocation of funding 211, 212, 214
research productivity 229
institutions French public research 149–50
intertwining 151
ISPGs, intermediary 361–2
see also scientific institutions
instruments, knowledge production 35, 36
instruments and techniques, technical advances 119–22
intellectual property rights advantages of 377
creation of 376
policies absence of, France 153
public research 132
interdisciplinary research 69–86
growing importance of 98
as recognized discipline 21
in universities analytical framework for 76–80
concluding remarks 84–6
emergence of 70–72
inherent problems and shortcomings 72–6
University Louis Pasteur 80–84
internalization, funding of basic research 347–51
interventionist model, research 25
Italian Research Council, B&B programme 202–30, 240
Ivy League university 14, 16
Japan research, life sciences 186
universities 14, 16, 18
job market 310
activity 318–19, 320
knowledge diffusion 327
knowledge levels 322
model 314–15
joint/cooperative ventures importance as information channel 129, 130–31, 134, 135, 141
R&D projects 117, 118
use of academic research by industry 132
knowledge economics of 375
external knowledge and knowledge trade-off 377–80
great swing 375–7
multiple equilibria, instability and governance of knowledge commons 380–83
increasing importance of scientific and technological 11
interdisciplinary research 79–80
sources, used in industrial R&D 115–19
time lag between creation and use of 24
knowledge creation and diffusion 309–32
conclusion 330–32
discussion 326–30
model 311–15
commentary on 386–7
individuals and departments 312–13

Aldo Geuna, Ammon J. Salter and W. Edward Steinmueller - 9781843761099
Downloaded from Elgar Online at 12/06/2018 11:22:35PM via free access
national centres, technological research 164
national clusters, European organizations, biomedicine 183, 190
national competitions, innovative firms 164
national funding model of 271–84, 285
programme coordination, EU 260–61
National Institute for Standards and Technology 363
National Institutes of Health (NIH) 99, 173, 183, 234–5
National Science Foundation 94, 110
National Science Fund 164
network analysis 309
network model, knowledge creation and diffusion 311–15
numerical analysis 315–18
results 318–26
conclusion 330–32
discussion 326–30
networked universities 23
networks
cross-national, biotechnology 176–89
enthusiasm for 396–9
of innovation 32
Networks of Excellence 262
neural networks, interdisciplinary research 76
neuromuscular diseases, collaborative research 42–4
new projects, public research 115–16, 128, 135
non-cooperative games, coalition formation 257–8, 265–6
non-industrial research centres, life sciences 170, 181
nuclear example
gap between concerned groups and scientists 49–53
vigilance, concerned groups 46–7
obligatory passage point 39
open science model see network model
Open University 15
organizational competencies, US and European innovation study 176–89
organizational structures, interdisciplinary research 84, 85, 98
originators, biotechnology 176, 177, 178–81
orphan groups 57, 58, 61
overflowsings
CWiC 31
emergence of concerned groups 56
identification and exploration of 61–2
paper industry, public research 117, 124, 128, 130
parametric estimations, research productivity 217–23
partnerships, public and private research, France 163
past publications see scientific reputation
Pasteur, Louis 47
Pasteur’s Quadrant 22
patent co-assignment network, biotechnology 181, 182, 183, 184, 185, 194–201
patents
growing importance of 22
importance as information channel 129, 130–31, 133, 134, 135
for signaling 379
US academic citations 105, 113–14
granted to universities 112
universities 169
patronage 3
peer-review system
institutionalization of 9
rejection of authors 339
personal exchange, importance as information channel 129, 130–31, 134, 135
petroleum industry, public research 116, 123, 124, 128, 130, 132
pharmaceutical industry
biomedical research 173, 180, 186
public research
academic disciplines 123
impact of 140
information channels 133
new projects 115, 117
sources of knowledge 117
start-up firms 137–8
Plastic and Composite Development Center 365
policy experiments 360
policy goals
EU science policy 261–3
supra-national funding agencies 285
policy instruments, promoting
innovation 360, 372
policy process model, ISPGs
advantages of schema 368–71
policy mechanism 367–8
shortcomings and problems 371–2
political actors, science policy priorities 237
political motivation, EU research programmes 261
political properties, policy process model 371
polytechnics 14
porcelain companies, Limoges 370
priority setting, science and technology 11
private sector
cross-national networks, biomedicine 184–9
growth of basic research 99
R&D, France 149
university collaboration with 93–4
private subsidiaries, French universities 161–2
private universities, United States 170
privatization, public knowledge 377
probit model, determinants of selection 212
problem-bound research, public goods 74–5
problematizing 36, 37, 39–40
productivity, science policy 237–8
profitability, funding of basic research 338, 339, 343
project completion, public research 116–17, 128, 129, 135
PROs see public research organizations
prototypes, technical advances 119, 120–21
proximity, to research and success of results 100
public action, hybrid forums 60–64
public expenditure, constraints on 10–11, 202
public funding
academic research 89–90
basic research
arguments for 335
v. club solution
analytical framework 341–4
comparison 338–41
conclusion 355, 356
convergence 352–3
distribution of benefits 345–7
rate of internalization 347–51
rationale for 336–7
taxation costs and exclusion 353–5
congerence about returns from 239
public research, France 150
public goods
interdisciplinary research 74–5
science as 31
technological knowledge 375
see also industry-specific public goods
public knowledge commons 376
public meetings, importance as information channel 129, 130–31, 134, 135
public provision, technological knowledge 376
public research
commercialization of 110
contribution to industry 111–12
impact on industrial innovation 109
industrial R&D
conclusion 139–41
dimensions and incidence of influence 127–9
fields which contribute to 122–7
firm characteristics and incidence of influence 135–8
new projects 115–16
pathways of knowledge flows 129–35
public research – continued
as source of knowledge 118
use of outputs 119–22
public research organizations (PROs) 3–4
incentives 395
life sciences
organization-level patent co-assignment network 181, 182, 183
originators and developers 178–81
United States 172, 189, 233
personnel, France 159
public research systems
France 147–66
challenges for 151–3
characteristics 148–50
conclusions 165–6
recent evolutions 150–51
reforms and policy tools 153–64
US and Europe comparison 169–90
analyses 176–89
commentary on 233–5
conclusions 189–90
data and methods 174–6
trajectories of development 172–4
public technological programmes, decline of 32
public universities, United States 170
public-private relations
Europe 171
United States 170
publications
importance as information channel 129, 130–31, 134, 135, 140–41
see also scientific reputation
recently hired graduates, importance as information channel 129, 130–31, 132, 134, 135
recombinant DNA methods 172
reductions, divide between citizens and elected representatives 33–4
referee evaluations, resource allocation 213
regional clusters, US, biotechnology 183, 189–90, 240
reports, importance as information channel 129, 130–31, 134, 135
research
government influence 393–4
infrastructures, US and Europe 170
networks, enthusiasm for 396–9
projects see new projects; project completion
quality, measuring 242
societal needs 16
spillover benefits 385
and teaching
Humboldt social contract 8
restructuring link between 5, 81–3
separation of 8, 24
symbiosis 17–18
v. third mission 18–19
see also academic research; confined research; interdisciplinary research; public research
research centres 85, 164
research collectives 44–7
research and development (R&D)
concentrated private, France 149
growing costs 11
see also industrial R&D survey
research findings, and technical advances 119, 120–21, 122
research productivity
allocation of funds 239–40
estimation, B&B programme assumptions 214–17
parametric estimations 217–23
semi-parametric estimations 223–8
research programmes
large, France 149, 151
sponsored by EC 261
research units
resource allocation study 207
self-organization into coalitions 254–5
research in the wild
collaboration with confined research 32, 38–54, 62–3
entry points, concerned groups 55
research-only institutes 17, 23
researchers
absorptive capabilities 78–9
duty to indicate doubts about research 61–2
opportunities for, France 154–6
withdrawal of 36–7
resource allocation
 B&B funding programme study 202–30
 research coalition networks 251–86
 value for money 239–40
retrenchment, expansion of science 4
revised social contract 12–13
Rhône-Poulenc Rorer 186–7

scholarship 14

Science: The Endless Frontier 9, 31, 109

science
 Aristotelian view 34
 changing social contract 21–2
 expansion of 3–4
 governance of 393–4
 in knowledge society 24–6
 legitimacy of 4–5
 linked to societal needs 19–20
 as public good 31
 resource allocation 202–3
 sociology of 252
 under threat 7

science policy 3
 academic research 89–91
 actors involved in 236–8
 consideration of innovation and productivity 237–8
 European 260–63
 managerial approach 239–42
 revised social contract 12
 socio-technical controversies 91–2
 warning about change 92–3

science-push model see linear model

scientific communities, knowledge
 creation and diffusion 309–32

scientific competencies, increasing importance of 11–12

scientific discourse, fears about opening up 5

scientific institutions
 reconfiguration 30–32, 96–7
 separation from wider society 3

scientific laboratories 34, 37, 39

scientific reputation
 Matthew effect 256, 270
 research productivity 214–23, 229–30

self-organization, coalition networks 256

scientific research coalitions study 251–86

European research area 260–63

introductory overview 251–60
 motivating considerations 252–4
 focal problems for economic analysis 254–6
 theoretical approach and principal findings 257–9

model of collaboration formation
 description of collaboration
 formation game 265–6
 equilibria of coalition-formation game with a single funding agency 291–8
 equilibrium collaborations 267–8
 equilibrium definition and properties 266–7
 external funding rules 264–5
 notation and key assumptions 263–4

model of national and supra-national research funding 271–84
 discussion 283–4
 interaction of funding regimes 274–5
 numerical example 275–83
 outcomes for reputation distributions of interactions 299–308

supra-national research networks, formation of 269–71

scientists
 gap between concerned groups and 49–52
 interaction between 309
 trust in 5
 see also social scientists

SCORE, allocation of funding 213–14

search/navigation equipment, public research 117, 125, 126, 131

selection phase, B&B funding programme 209–14

selectivity bias, funding programmes 204
self-organized industry investment boards 367–71, 373
Sellafield 49–53
SEMATECH 371, 386, 388
semi-parametric estimation, research productivity 204, 223–8
semiconductors, public research 116, 123, 125, 126, 131, 132
services for industrial and commercial activities (SAICs), France 158–60
shareholding, French universities 161–2
signalling, knowledge transaction costs 379
skills, demand for new 11
small firms, influence of public research 135, 140
small and medium-sized enterprises (SMEs)
ISPG solutions
broker solution 365
industrial associations 363–4
summary 365–7
uneven institutional structure 365
user- or supplier-driven mechanism 364
social contracts
Bush, Vannevar 9
global forces driving change 10–12
history of 8–10
revised 12–13
science 3–4
change in 21–2
implications, post-war society 95
increasing strain of 95–6
shift back to nineteenth century 26
social motivation, EU research programmes 261
social sciences, new institutional arrangements 32
social scientists, science policy 236, 237
social welfare, decline in 20
societal needs
harnessing science system towards 395
knowledge production 13
research 16, 18–19
science and universities linked to 19–20
society, laboratization of 48, 49
Society for Plastic Engineering 365
socio-economic relevance, French public research 152
socio-technical controversies
assessing impact of 33
changing institutions 31
involvement of concerned groups 56–60
laboratory-based science 91–2
sociology, of science 252
specialists, divide between lay people and 34
specialized universities 23
spillover benefits, research 385
start-up firms, public research 137–8, 140
steel industry, public research 116, 124, 128, 130, 132
structural models, for research networks 399
supplier-driven mechanism, ISPGs 364, 366
suppliers’ manufacturing operations, R&D projects 115, 116, 117, 118, 140
supply-side externalities, technological knowledge 382
supra-national government agencies, resource allocation 260
supra-national research funding, model of 271–84, 284–5
supra-national research networks, formation of 269–71
Switzerland, watch-making industry 363
tacit knowledge 79, 310
Targeted Social and Economic Research (TSER) 261
teaching
and research
Humboldt social contract 8
restructuring link between 5, 81–3
separation of 8, 24
symbiosis 17–18
v. the third mission 18–19
in universities 14
teaching universities 15
technical democracy 97
technical high schools 15
technical industrial centres 369
technical universities 14–15, 16, 18, 24, 26
techno-sciences, emergence of concerned groups 56–8, 60–61
technological competencies, increasing importance of 11–12
technological and innovation research networks (TIRNs) 163
technological institutes 364
technological research, national centres 164
technological transitions 370
technologies, twenty-first century 75
Textile/Clothing Technological Corporation (TC) 363–4
third mission, teaching and research versus 18–19
Toyota 361
TRACES study 72–4
transaction costs, public finance and club solutions 337, 341, 353–5
transdisciplinary research 12–13, 20, 84–5
transferability of research
research productivity 229
resource allocation 206–7, 209, 212, 214
transinstitutional model, research 25
translation theory 39–54, 91–2
TV/radio, public research 125, 126, 131, 132

uncodified knowledge 310
undergraduate teaching, combining research with 17–18

United States
liberal arts colleges 18
public research system 169–90, 233–5
universities 14, 15, 16, 21, 98–9

universities
changes impacting on role of 97–9
coevolution of different species 16
evolving functions and ethos of 14–15

France
externalization of useful research 160
incentive structures 159
lack of autonomy 166
shareholding and creation of private subsidiaries 161–2
Humboldt social contract 3, 4, 8
in-house 361
innovation systems 93–4
interdisciplinary research
analytical framework 76–80
case study 80–84
context 70–76
in knowledge society 24–6
linked to societal needs 19–20
Mode 2 research 21
patenting, US 169
survival under current form 22–3
teaching and research
restructuring link between 5, 81–3
separation of 24
symbiosis 17–18
versus the third mission 18–19
under threat 7
United States 170, 183
University Louis Pasteur 5, 80–81
Molecules and Innovative Therapeutics Federation 83–4
teaching activities and research 81–3
university/industry relations, biotechnology 183–4, 233
upstream research, industrial innovation 111, 115, 116
useful academic research 90
user-driven mechanism, ISPGs 364, 366
user-interdependence, technological knowledge 378
utility, knowledge production 35
value for money, funding 11, 239, 337
watch-making industry 363
Yale survey 105, 111–12, 122, 126, 139, 140