Index

Adamowicz, W. 111, 125
Adamus, P.R. 9
Adger, N.A. 27
Adger, W.N. 257
agri-environmental policy, and wetland creation 225–31
Ambus, P. 166
American Office of Technology Assessment 58
amphibians 46
analysis of variance (ANOVA) 215
Anderson, T.R. 57
Angermeier, P.L. 46
area requirement of species 64
Arrow, K. 78, 108, 114, 256
Asch, S.E. 134
Asselt, M. van 23
attitudes 135–6
Ayres, R.U. 305
Bailey, L.D. 191
Bailey, R.G. 48
Baland, J.-M. 232
Balmford, A. 4, 73
Baltic Sea 223–4
Barbier, E.B. 11, 81, 86, 109, 271
Barendregt, A. 271, 282, 285
Bateman, I.J. 88, 111, 119, 120, 143, 199, 256, 257
Baxter, J.L. 134
Bayliss, J.W. 50
Begon, M. 64
Bell, S.S. 47
‘benefits transfer’ 90–91
benefits of wetlands 11–12, 92–4
bequest value 84
Berger, P. 143
Bergh, J.C.J.M. van den 4, 5, 14, 22, 109, 271, 272, 280, 304
Bergstrom, J.C. 111
Berkes, F. 232, 308
Bhaskar, R. 140
Bingham, G. 1
biodiversity 46, 240–41
definition and measurement 58
monitoring categories 58
Biodiversity and Climate Change Conventions 306
Biodiversity Convention 58, 59
biodiversity domain, indicators 58–65
biogeochemical fluxes 29
biogeochemical functions 91
biological diversity 45
biomass 65, 94, 253
Birds and Habitats Directive, EU 251, 263, 268
Bishop, R.C. 34, 35, 80, 111, 114
Blackwell, M.S.A. 166, 167, 172, 191
Blamey, R.K. 119
Blaug, M. 133
Blomquist, G.C. 111
Broadway, R.W. 34
Boast, C.W. 182
Boesch, D.F. 3, 22
Boland, L.A. 132
Boyle, K.J. 111
Braat, L.C. 271
Braden, J.B. 88
Briand, F. 62
Brinson, M.M. 53
Broads Authority 253, 259, 261, 264, 266–7
Bromley, D.W. 88
Brooke, J. 256
Brouwer, R. 90, 110, 111, 138, 140, 210, 257, 259, 271
Brown, H. 133
Brown, M. 50, 63, 64
Brown, S.P. 34
Brown, V.K. 61
Bruce, N. 34
buffer zones, Tamar River, Devon 167
Burgess, J. 14, 142, 151, 154, 308
Burt, T.P. 166, 167

R. Kerry Turner, Jeroen C.J.M. van den Bergh and Roy Brouwer - 9781781951309
Downloaded from Elgar Online at 07/09/2019 02:58:35AM
via free access
Index

Cairns, J. Jr. 60
carbon 91, 94
Carson, R.T. 108, 110, 111, 114, 119, 199
Cattrijse, A. et al 49
Chan, M.-K. 237
changes, assessment of impact 30
characteristics of wetlands 9, 10
Chilton, S.M. 139
Christensen, S. 166
Churchill, G.A. Jr. 141
Ciriacy-Wantrup, S.V. 35, 80
cladistic analysis 59
Claridge, G.F. 10
Clark, C.W. 77
Clark, J. 14, 139
classification of wetlands 1, 53
Clausen, J.C. 57
Clayton, A.M.H. 50
climate change 3, 23, 94
coastal wetlands 54
Cole, J.J. 57
Committee on Characterization of Wetlands (CWW) 48, 51
Common, M. 85
common property 75
conceptual framework 302
conflict 301
Conrad, J.M. 77
conservation 73, 198–222
contingent valuation (CV) 90, 108, 130, 131, 140, 143
studies 108–15
study, Norfolk and Suffolk Broads 144–55, 256–7, 268
survey, Kalloni wetland, Lesvos, Greece 208–9, 211–17
Cookson, R. 140
Cooper, A.B. 166, 192
Cooper, J. 111
Cormos, R. 231
Correll, D.L. 166
Costanza, R. 4, 22, 34, 41, 271, 287
cost–benefit analysis (CBA) 73, 81–2, 130, 305, 306
Cowardin, L.M. 1, 49, 53
Crooks, S. 3, 5
Crowards, T. 35, 80, 83, 108, 109
Cummings, R.G. 111
Cvetkovich, G. 24
De Angelis, D.L. 65
de Man, N.Y.H. 287
de Vries, M.S. 19
decision support system 25–37
decision-making
deliberate and inclusive approaches (DIPs) 131, 132, 305
and information 141
levels and responsibility 306–7
decision-making cycle 21, 22
DEFINITE (software package) 289
definitions of wetlands 1–2
deliberative approach 140
denitrification 166, 167, 173–9, 182, 183, 185–9, 191–3, 224
Desvouges, W.H. 110, 111, 112, 114, 120, 141, 142, 210
Devon, Tamar River 167–89
Diamond, J.M. 50
Dillaha, T.A. 166
Dillman, D.A. 256
Dinsmore, J.J. 50, 63, 64
discount rates 82
discursive psychology 136
Doktor, P. 257
Doskey, M.G. 166
Dowlatabadi, H. 23
drainage 2
Dugan, P.J. 1, 116
Dunlap, L. 33
Durand, P. 166
Dutch Ecological Network 272
Earl, T.C. 24
Earth summit, Rio 42
Eckerberg, K. 225, 227
ecological
disruption 32–3
indicators 45
functions 92
ecological functions 92
ecological–economic analysis and evaluation framework 5–14
economic efficiency, and property rights 74–5
economic valuation
research 4
of wetland ecosystem functions 91–105
economic values 13
ecological boundaries scale 48–9
ecosystem composition 45
ecosystem functions 9, 11
ecosystem health 41
ecosystem integrity 41, 45
conceptual organization 46
ecosystem maintenance 92
ecosystem resilience 41
ecosystem service value 4
ecosystem valuation studies, meta-analysis 108–29
ecosystems
social value 85–6
and total economic value (TEV) 85
ECOWET (Ecological European Commission Economic Analysis of Wetlands Functions, Values and Dynamics) research project 5, 14–15
Edwards, D. 136
effects
evaluation 32
measurement of 29
Ehrlich, A. 61
Ehrlich, PR. 61
Ekologgruppen 235, 236, 238, 239
Elmagheeb, A.H. 111
Emanuelsson, U. 233
English Nature 263, 264
Environment Agency 32, 166, 250, 259
environment, and society 29
environmental change indicators 45
environmental evaluation, role of focus groups 141–55
environmental indicators 41–4
data for 43–4
descriptive and normative 43
purposes 42
environmental pressures 6
environmental value elicitation 136–41
environmental value transfer 110
environmentally sensitive areas, public access 259–62
Etzioni, A. 136
EU Water Framework Directive 5
European Commission 5, 33
European Environment Agency 2, 3
European Union (EU)
agricultural policy (CAP) 228
Birds and Habitats Directive 251, 263, 268
Regional Mediterranean Programmes 200
Water Framework Directive 259, 262
eutrophication 263–5
Ewel, C. 223
existence value 84
experimental psychological approach 135
Farber, S. 111
Farris, J.S. 59
Federation of Swedish Farmers (LRF) 227
Festinger, L. 142
Fisher, A. 82, 111
flagship species 61
flood control 3, 119, 124
flood water detention 91, 92
flooding risk 256–9
focus groups 199
Kalloni wetland, Lesvos, Greece 209–11, 217–19
role in environmental evaluation 141–55
Folke, C. 232, 287, 308
food
chains 59–62
webs 59–60, 62, 64, 92
Foster, J. 90
Foster, M.M. 45
Franklin, J.F. 45
Freeman, A.M.I. 84, 88
Frey, J.H. 141, 210
function overlap 301
functional diversity concept 9
functions of wetlands 4, 6, 8, 9, 113
economic valuation 91–105
Fustec, E. 192
Gallant, A.L. 49
Ganderton, PT. 111
Garrod, G.D. 111, 142
Gaston, K.J. 58, 60
Generalized Least Squares (GLS) 115
genetic diversity 58
geographical information systems (GIS) 304
Index

Gerrard, J. 47, 51
Ghilaurov, A. 287
Gilbert, A.J. 271
Gilliam, J.W. 166
Glass, G.V. 109
Goldman, J.C. 57
goods and services 13
Gordon, D.C. Jr. 56
Gosselink, J.G. 1, 11, 52, 53, 55, 223
Goudie, A. 167
government 28
Greece see Kalloni wetland, Lesvos, Greece
Green, C.H. 111
Greenley, D.A. 111, 113, 114
Gren, I-M. 13, 85, 109, 223, 271
Grimble, R. 237
Gross Domestic Product (GDP) 31
Grossman, J. 172
groundwater 91, 92, 119
groundwater management 29
group discussions 142–7
groups 133–6
experimental psychological approach 135
psychodynamic approach 134
Gustafsson, J.-E. 238
Hamilton, L.C. 120
Haney, T.J. 111
Hanley, N. 88, 141
Hansson, S. 224
Harbaugh, A.W. 281
Harcombe, P.A. 45
Hargrove, C. 87
Harris, L.D. 51
Harrison, C.M. 14
Haycock, N.E. 166, 167
health and safety 33
Heathwaite, A.L. 46, 55, 56
hedonic pricing 88, 90
studies 94
Herwijnen, M. van 289
Hoehn, J.P. 142
Holling, C.S. 41, 287
Hollis, G.E. 54, 55
Holmstrom, S. 228
Hoogeveen, J.G.M. 111
Hooper, D.U. 61
Hueth, D. 74
Hughes, J. 46, 55, 56
Hughes, J.M.R. 165
Hutchinson, W.G. 139, 141
hydrogeomorphic approach (HGM) 53
hydrological analysis requirements 55
hydrological functions 91
hydrological structure of wetlands 46
hydrological studies 54–5
ICHORS (probability-based vegetation model) 14, 282, 285
‘idiosyncratic response’ hypothesis 61
Ireland, E.C. van 287
IMF 116
impact indicators, societal response 43
Inamdar, S.P. 166
indicators
biodiversity domain 58–65
ecological disruption 45
for integrated assessment 31–2
landscape domain 47–52
water regime domain 52–7
wetland integrity 46
see also environmental indicators
information
and decision-making 141, 157
supply and demand 21–2
integrated assessment 23–5
bottom-up approach 24–5
definition and overview 20
definitions 23
indicators 31
judgements is 24
integrated modelling 22
integrated policy 5
integrated research 2
irreversible change 113–14
Isenberg, D.J. 142
Isenhart, T.M. 166
Jacobs, M. 130
Janssen, M. 23, 24
Janssen, R. 33, 271, 289, 305
Janssen, A. 224
Janssen, A.M. 271
Jeffries, M.J. 58
Jermy, A.C. 58, 59, 60, 61
Johnes, P.J. 167
Johnson, A. 141
Johnston, C.A. 49, 50
<table>
<thead>
<tr>
<th>Index</th>
<th>313</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnston, J. 120</td>
<td></td>
</tr>
<tr>
<td>Jones, T. 12</td>
<td></td>
</tr>
<tr>
<td>Jones, T.A. 165</td>
<td></td>
</tr>
<tr>
<td>Jordan, J.L. 111</td>
<td></td>
</tr>
<tr>
<td>Jorgensen, B.S. 139, 140</td>
<td></td>
</tr>
<tr>
<td>Just, R. 74</td>
<td></td>
</tr>
<tr>
<td>Kadlec, R.H. 53, 57</td>
<td></td>
</tr>
<tr>
<td>Kalloni wetland, Lesvos, Greece</td>
<td></td>
</tr>
<tr>
<td>case study background 199–202</td>
<td></td>
</tr>
<tr>
<td>contingent valuation survey 208–9, 211–17</td>
<td></td>
</tr>
<tr>
<td>data collection and methods 202–8</td>
<td></td>
</tr>
<tr>
<td>ecosystem value model 204–8</td>
<td></td>
</tr>
<tr>
<td>focus group analysis 209–11, 217–19</td>
<td></td>
</tr>
<tr>
<td>management options 202</td>
<td></td>
</tr>
<tr>
<td>Kaoru, Y. 111</td>
<td></td>
</tr>
<tr>
<td>Karr, J.R. 46, 63, 64, 287</td>
<td></td>
</tr>
<tr>
<td>Kävlinge River programme, Sweden</td>
<td></td>
</tr>
<tr>
<td>233–45</td>
<td></td>
</tr>
<tr>
<td>Kay, N.M. 133</td>
<td></td>
</tr>
<tr>
<td>Keddy, P.A. 61</td>
<td></td>
</tr>
<tr>
<td>Keddy, P.A. 46, 64, 65</td>
<td></td>
</tr>
<tr>
<td>keystone species 61, 65</td>
<td></td>
</tr>
<tr>
<td>Killikidis, S. 201</td>
<td></td>
</tr>
<tr>
<td>King, A.W. 41, 44, 45</td>
<td></td>
</tr>
<tr>
<td>Kirkham, D. 182</td>
<td></td>
</tr>
<tr>
<td>Klopatek, G.M. 48, 49, 62, 65</td>
<td></td>
</tr>
<tr>
<td>Knight, R.L. 53, 57</td>
<td></td>
</tr>
<tr>
<td>Knowles, R. 172</td>
<td></td>
</tr>
<tr>
<td>Kolstad, C.D. 88</td>
<td></td>
</tr>
<tr>
<td>Kontogianni, A. 221</td>
<td></td>
</tr>
<tr>
<td>Kosz, M. 111</td>
<td></td>
</tr>
<tr>
<td>Krueger, R.A. 142, 147</td>
<td></td>
</tr>
<tr>
<td>Krutilla, J. V. 82</td>
<td></td>
</tr>
<tr>
<td>Kuik, O.J. 111</td>
<td></td>
</tr>
<tr>
<td>Kupfer, J.A. 47, 49</td>
<td></td>
</tr>
<tr>
<td>land use 67</td>
<td></td>
</tr>
<tr>
<td>and water quality 55</td>
<td></td>
</tr>
<tr>
<td>land use changes, modelling 271–301</td>
<td></td>
</tr>
<tr>
<td>Landres, P.B. 31, 44, 60, 62</td>
<td></td>
</tr>
<tr>
<td>landscape domain, indicators 47–52, 56–7</td>
<td></td>
</tr>
<tr>
<td>landscape ecology concept 47</td>
<td></td>
</tr>
<tr>
<td>landscape ecology scale 2</td>
<td></td>
</tr>
<tr>
<td>Langford, I.H. 115, 210</td>
<td></td>
</tr>
<tr>
<td>Lant, C.L. 111</td>
<td></td>
</tr>
<tr>
<td>Larsson, U. 223</td>
<td></td>
</tr>
<tr>
<td>Lawton, J.H. 61</td>
<td></td>
</tr>
<tr>
<td>Lazaretou, T. 201</td>
<td></td>
</tr>
<tr>
<td>Leeds-Harrison, P.B. 166, 167</td>
<td></td>
</tr>
<tr>
<td>Leirop, W.F.J. van 271</td>
<td></td>
</tr>
<tr>
<td>Lent, R.M. 57</td>
<td></td>
</tr>
<tr>
<td>Leonardson, L. 224</td>
<td></td>
</tr>
<tr>
<td>level–area–volume relationships 55</td>
<td></td>
</tr>
<tr>
<td>Lewan, L. 237, 244</td>
<td></td>
</tr>
<tr>
<td>Likert scale 209</td>
<td></td>
</tr>
<tr>
<td>Lindahl, T. 228, 237</td>
<td></td>
</tr>
<tr>
<td>Lindsay, B.E. 111, 113</td>
<td></td>
</tr>
<tr>
<td>LNV (Ministry of Agriculture, Nature and Fisheries, Netherlands) 275</td>
<td></td>
</tr>
<tr>
<td>local pressures 3</td>
<td></td>
</tr>
<tr>
<td>Lockwood, M. 137, 138</td>
<td></td>
</tr>
<tr>
<td>Löfroth, M. 223</td>
<td></td>
</tr>
<tr>
<td>Loomis, J.B. 111, 112</td>
<td></td>
</tr>
<tr>
<td>Lorenzoni, I. et al 22</td>
<td></td>
</tr>
<tr>
<td>loss of wetlands 2–5</td>
<td></td>
</tr>
<tr>
<td>Lowrance, R. 166</td>
<td></td>
</tr>
<tr>
<td>Luckman, T. 143</td>
<td></td>
</tr>
<tr>
<td>Lundberg, J. 224</td>
<td></td>
</tr>
<tr>
<td>Mackie, D.M. 142</td>
<td></td>
</tr>
<tr>
<td>Maddala, G.S. 120</td>
<td></td>
</tr>
<tr>
<td>Madgwick, F.J. 252</td>
<td></td>
</tr>
<tr>
<td>maintenance of wetlands 6</td>
<td></td>
</tr>
<tr>
<td>Male, J.W. 50</td>
<td></td>
</tr>
<tr>
<td>Maltby, E. 2, 165, 167</td>
<td></td>
</tr>
<tr>
<td>marginal opportunity cost (MOC) 75, 77, 79</td>
<td></td>
</tr>
<tr>
<td>marginal user costs 78</td>
<td></td>
</tr>
<tr>
<td>marginality concept 79</td>
<td></td>
</tr>
<tr>
<td>Markandya, A. 34, 81</td>
<td></td>
</tr>
<tr>
<td>market price 79, 88</td>
<td></td>
</tr>
<tr>
<td>Martin, T.E. 63, 64</td>
<td></td>
</tr>
<tr>
<td>mass balance 53–4</td>
<td></td>
</tr>
<tr>
<td>maximum likelihood techniques 120</td>
<td></td>
</tr>
<tr>
<td>Maybin, J. 135</td>
<td></td>
</tr>
<tr>
<td>Mayr, E. 59</td>
<td></td>
</tr>
<tr>
<td>McDonald, M.G. 281</td>
<td></td>
</tr>
<tr>
<td>McFadden, D. 119</td>
<td></td>
</tr>
<tr>
<td>McGuckin, T. 111</td>
<td></td>
</tr>
<tr>
<td>Mediterranean wetlands 198–9</td>
<td></td>
</tr>
<tr>
<td>MEDWET 198–9</td>
<td></td>
</tr>
<tr>
<td>Merot, P. 166</td>
<td></td>
</tr>
<tr>
<td>Merriam, G. 49, 50</td>
<td></td>
</tr>
<tr>
<td>meta-analysis</td>
<td></td>
</tr>
<tr>
<td>wetland ecosystem valuation studies 108–29</td>
<td></td>
</tr>
</tbody>
</table>
meta-analysis (cont.):
 data set and study characteristics 110–15
 methodology 109–10
 model 115–16
 willingness to pay 114, 115, 116, 120, 123
 North American studies in 123
 results 116–24
 scope test 114
 study response rate 114
Milgram, S. 134
Ministry of Agriculture, Fisheries and
Food (MAFF) 166, 257
Mitchell, B. 19
Mitchell, R.C. 108, 111, 114, 119, 199
Mitsch, W.J. 1, 48, 52, 53, 55, 223
Moberg, F. 224
models 22
MODFLOW (regional groundwater flow
model) 14, 281
Morgan, D.L. 217
Morgan, H. 134
Mortimer, M. 64
Moscovici, S. 134, 135
Mueller, D.C. 231, 232
multi-criteria analysis techniques 33
multi-criteria decision analysis (MCDA)
305–6
Munasinghe, M. 209
Murray, A.L. 56
Muscutt, A.D. 167
Naeem, S. 62
Nash, L. 57
National Research Council 54, 55
National Rivers Authority 256
NATURA 2000 201, 202
Natural Environment Research Council
171
Nelder, J.A. 282
net present value 82, 286
Netherlands, The see Vecht area
Newton, I. 55, 57
Nichols, D.S. 57
Niemi-Iilahti, A. 227
Nieuwenhuis, J.W. 282, 285
Nijkamp, P. 305
Nitrate Removal Technologies 177
Nitrate Sensitive Areas 167
nitrates 165, 166, 191
plant uptake 192
see also denitrification
nitrogen reduction 223
Nixon, K.C. 59
NOAA (National Oceanic and
Atmospheric Association) 114
Nomnik, H. 191
non-use value 13, 82–4, 92
Nordhaus, W. 73
Norfolk and Suffolk Broads 144–7,
250–70
Broads Authority 253, 259, 261, 264,
266–7
contingent valuation (CV) study
144–55, 256–7, 268
cost benefit analysis 257, 268
environmental context 252–5
eutrophication 263–5
flooding risk 256–9
Hickling Broad 263, 264, 268
institutional arrangements 251–2
institutional change 266–7
joint public and private funding
initiative 259
pressures and conflicts of use 255
public access to environmentally
sensitive areas 259–62
Sandford Principle 251
wetland functions and benefits 254
Norris, K.R. 31, 44, 60
Norris, R.H. 31, 44, 60
Noss, R.F. 32, 45, 48, 49, 50, 51, 58, 61,
62
NRA (National Rivers Authority) 257
nutrients 53, 91, 94, 165, 223–4
Odum, E.P. 63, 64, 65
OECD 5, 22, 30, 31, 42, 44
Ogawa, H. 50
Olsen, D. 111
Olson, M. Jr. 232
O’Neill, R.V. 45
O’Neill, J. 138, 139
Onuf, C.P. 65
open access property 75
opportunity costs 73
of water and wetland degradation
75–8
Opschoor, J.B. 43
Index

option value 84
Ordinary Least Squares (OLS) 115
O’Riordan, T. 140, 265
Ostrom, E. 231, 241
Pace, M.L. 57
Papadimitriou, G. 200
Parson, E.A. 23
Patrick, W.H. Jr. 192
Pavitt, C. 142
Payne, J.W. 153
Pearce, D.W. 34, 76, 78, 80, 81, 85, 88, 108, 137, 138, 305
Perrings, C. 85
Perry, J. 46, 49, 55
Petersson, O. 229
philanthropic value 84
Phillips, G.L. 252
Phillips, W.E. 111
Pinay, G. 192
Platteau, J.-P. 232
policy implementation, models for 229
‘polluter pays’ principle 244
pollution 55
Potter, J. 136
Precautionary Principle 24
pressure indicators 43
pressures 6, 26, 43
private property 75
procedural rationality 20, 25
processes of wetlands 9
property rights, and economic efficiency 74–6
property rights regimes 75, 76
Prudic, D.E. 281
psychodynamic approach 134
public access, to environmentally sensitive areas 259–62
Purdie, D.A. 57
Putman, R.J. 59, 61, 65
Quammen, M.L. 65
quasi-option value 84
Radcliffe, N.J. 50
rainfall 3
Ramsar Convention 1, 2, 198
Randall, A. 88
Rapport, D.J. 45
Rawls, J. 138
Rayner, S. 157
‘redundant species’ hypothesis 61
regional landscape 48
Regional Mediterranean Programmes, European Union 200
regions, defining 49
Repetto, R. 78
replacement cost method 94, 176
residency status of species 64
Richards, J. 111
Rietveld, P. 289
Riparian Ecosystem Management model (REMM) 166
Riparian Management Systems (RiMS) 166
risk 33–4
Risser, P.G. 51
‘rivet’ hypothesis 61
Roberts, R.S. 111
Rockström, J. 224
Rosenzweig, M.L. 60, 64
Rotmans, J. 23, 24
Roy, P. 74
Rudstam, L.G. 224
Saaty, T.L. 33
Safe Minimum Standards 14, 24, 35, 80
Sagoff, M. 130, 137, 138, 158, 221
Salomons, W. 269
Samuelson, P. 73
Sanders, L.D. 111
Sanders, R. 57
Sandford Principle 251
Sandler, T. 231
Saunders, C.M. 111
‘scaling mismatch problem’ 3
scarcity premium 77
SCB (Statistics Sweden) 223
scenario analysis 34
Schaeffer, D.J. 287
Schkade, D.A. 153
Schmitz, A. 74
Schonewald-Cox, C.M. 50
Schrieber, K-F. 47
Schultz, S.D. 111, 113
scientific uncertainty 44–5
Scott, R.D. 111
sediment 91, 94
sensitivity analysis 34
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEPA (Swedish Environmental Protection Agency) 224</td>
</tr>
<tr>
<td>services 80</td>
</tr>
<tr>
<td>‘shadow projects’ 81</td>
</tr>
<tr>
<td>Shamdasani, P. 217</td>
</tr>
<tr>
<td>Shaw, S.C. 56</td>
</tr>
<tr>
<td>Silvander, U. 111</td>
</tr>
<tr>
<td>Simon, H.A. 20, 25</td>
</tr>
<tr>
<td>single system component, loss of 45</td>
</tr>
<tr>
<td>Skourtos, M.S. 208</td>
</tr>
<tr>
<td>Slangen, L.H.G. 111</td>
</tr>
<tr>
<td>Smith, V.K. 111</td>
</tr>
<tr>
<td>social constructivist approaches 135, 143</td>
</tr>
<tr>
<td>social representations theory 135</td>
</tr>
<tr>
<td>social uncertainty 34–5</td>
</tr>
<tr>
<td>social value, of ecosystems 85–6</td>
</tr>
<tr>
<td>societal response, impact indicators 43</td>
</tr>
<tr>
<td>society 30</td>
</tr>
<tr>
<td>and environment 29</td>
</tr>
<tr>
<td>socio-cultural group-based methodologies 132–6</td>
</tr>
<tr>
<td>socio-economic benefits, measurement 92, 93</td>
</tr>
<tr>
<td>socio-economic changes 29–30</td>
</tr>
<tr>
<td>socio-economic values 108</td>
</tr>
<tr>
<td>Söderqvist, T. 109, 235, 237, 242, 244</td>
</tr>
<tr>
<td>Spain, la Mancha occidental aquifer 3–4</td>
</tr>
<tr>
<td>Spaninks, F.A. 111</td>
</tr>
<tr>
<td>Spash, C.L. 88</td>
</tr>
<tr>
<td>specialist species 64</td>
</tr>
<tr>
<td>species composition and diversity 52–3</td>
</tr>
<tr>
<td>species warranting special monitoring 61</td>
</tr>
<tr>
<td>ecological indicators 61</td>
</tr>
<tr>
<td>flagships 61</td>
</tr>
<tr>
<td>keystones 61</td>
</tr>
<tr>
<td>umbrellas 61</td>
</tr>
<tr>
<td>vulnerables 61</td>
</tr>
<tr>
<td>Spencer, T. 56</td>
</tr>
<tr>
<td>Spilansis, J. 200</td>
</tr>
<tr>
<td>stakeholder interests 202–3</td>
</tr>
<tr>
<td>Stansfield, J. 57</td>
</tr>
<tr>
<td>state property 75</td>
</tr>
<tr>
<td>Steedman, R.J. 287</td>
</tr>
<tr>
<td>Steele, J.H. 9</td>
</tr>
<tr>
<td>Stewart, D.W. 217</td>
</tr>
<tr>
<td>Stockwell, L.T. 9</td>
</tr>
<tr>
<td>‘structuralism’ 133</td>
</tr>
<tr>
<td>structure of wetlands 9</td>
</tr>
<tr>
<td>Subak, S. 27</td>
</tr>
<tr>
<td>Susskind, L.E. 33</td>
</tr>
<tr>
<td>sustainability 80–81</td>
</tr>
<tr>
<td>concepts 41</td>
</tr>
<tr>
<td>rules 45</td>
</tr>
<tr>
<td>sustainable development 31–2</td>
</tr>
<tr>
<td>Sutherland, R.J. 111</td>
</tr>
<tr>
<td>Swanson, F.J. 48, 49, 51</td>
</tr>
<tr>
<td>Swedborg, E. 228</td>
</tr>
<tr>
<td>Sweden 223</td>
</tr>
<tr>
<td>agri-environmental policy 224–5</td>
</tr>
<tr>
<td>agricultural policy, history 226–8</td>
</tr>
<tr>
<td>grants for wetland creation 230</td>
</tr>
<tr>
<td>Kävlinge River programme 233–6</td>
</tr>
<tr>
<td>objectives, methodology and data collection 236–7</td>
</tr>
<tr>
<td>results 237–45</td>
</tr>
<tr>
<td>wetland creation 223–49</td>
</tr>
<tr>
<td>Syme, G.J. 139</td>
</tr>
<tr>
<td>systems perspective 84–5</td>
</tr>
<tr>
<td>Tamar River, Devon, buffer zones 167–89</td>
</tr>
<tr>
<td>taxation 156</td>
</tr>
<tr>
<td>taxonomic diversity 58–9</td>
</tr>
<tr>
<td>Thomas, K. 134</td>
</tr>
<tr>
<td>Thompson, J.R. 54, 55</td>
</tr>
<tr>
<td>thresholds 13–14, 34</td>
</tr>
<tr>
<td>Tietenberg, T.H. 74</td>
</tr>
<tr>
<td>topography of wetlands 49</td>
</tr>
<tr>
<td>‘Total Design Method’ 256</td>
</tr>
<tr>
<td>total economic value (TEV) 13, 82, 83, 84</td>
</tr>
<tr>
<td>and ecosystems 85</td>
</tr>
<tr>
<td>trace elements 91, 94</td>
</tr>
<tr>
<td>travel cost method 88, 90, 94</td>
</tr>
<tr>
<td>tripartite deliberation 32</td>
</tr>
<tr>
<td>tropical wetland studies 109</td>
</tr>
<tr>
<td>Trudgill, S.T. 167</td>
</tr>
<tr>
<td>Tunstall, S.M. 111</td>
</tr>
<tr>
<td>Turner, R.K. 2, 4, 5, 12, 22, 23, 26, 27, 29, 36, 74, 78, 80, 81, 85, 86, 108, 109, 130, 137, 138, 139, 199, 223, 256, 257, 259, 271, 301, 305</td>
</tr>
<tr>
<td>Udluft, P. 172</td>
</tr>
<tr>
<td>umbrella species 61, 64, 65</td>
</tr>
<tr>
<td>uncertainty 34–5</td>
</tr>
<tr>
<td>combating scientific uncertainty 44–5</td>
</tr>
<tr>
<td>and sensitivity analysis 33–5</td>
</tr>
<tr>
<td>Urban, D.L. 47, 48</td>
</tr>
</tbody>
</table>
use value 13
user cost of water 77–8
valuation empirical studies 95–104
valuation techniques 88–91
Van Horssen, P.W. 285
van Vuuren, W. 74
Vanderklein, E. 46, 49, 55
Vecht area
Netherlands, The 271–2
environmental change scenarios 276–8
environmental changes 274
environmental pressures, state changes and policy responses 272–6
evaluation outcomes 289–93
integrated system of spatial models 279–84
results 284–9
natural science models 281
nature management organisations 276
nature reserves 275
recreation pressure 274–5
water chemistry 274
Vedung, E. 225, 228
Venice Declaration 198
Vitousek, P.M. 45, 61
Voisey, H. 259
VROM (Ministry of Public Housing, Spatial Planning and Environment, Netherlands) 275
vulnerable species 61
Walker, B.H. 61
Walsh, R.G. 111
Ward, D.V. 60
Ward, R. 265
water and wetland degradation, opportunity costs 75–8
water balance 55
Water Framework Directive, EU 5, 259, 262
Water Fringe Habitat Scheme Option 166
water level regime 55
water pricing 33
water quality 55, 94
and land use 55
water regime domain, indicators 52–7
water resource management 19
water storage 55
water supply and loss 55
WCMC 59
Weaver, R.D. 241, 242
Weller, D.E. 166
Weller, M.W. 48, 60, 62
Welsh, M.P. 111
Weterings, R. 43
Wetherall, M. 135
Wetherburn, R.W.M. 282
wetland buffer zones 165–97
Tamar River
in-stream wetland buffer zone case study 168–70, 171–85
slope/floodplain boundary wetland buffer zone case study 170–71, 185–9
wetland conservation scenarios 198–222
wetland conservation, willingness to pay for 78–87
wetland creation
and agri-environmental policy 225–31
Sweden 223–49
wetland definitions 1–2
wetland degradation and loss 165
wetland ecosystem functions, of economic valuation 91–105
wetland ecosystem valuation studies, meta-analysis 108–29
wetland integrity, indicators 46
wetland losses 2–5
Weyant, J. 23
Wheeler, B.D. 56
Wheeler, Q.D. 59
Whitehead, J.C. 111
Williams, P.H. 58, 60
willingness to accept (WTA) 78, 79, 108
and flood control 124, 144–5
for flood defences 256, 257
in meta-analysis model 114, 115, 116, 120, 123
for wetland conservation 78–87
Willis, K.G. 88, 111, 119, 199
| Winter, S. | 226, 244 |
| Wolf, F.M. | 109 |
| World Bank | 35 |
| Wyatt, R. | 192 |
| Yoshinari, T. | 172 |
| Young, R.A. | 111 |
| Zuchetto, J. | 271 |