Abernathy, W. 297–8
ABI see Association of British Insurers
Acs, Z. 298, 305
Adam, B. 138
Adelberger, K. 348
Afuah, A. 358
agro-food biotechnology 122–3
available finance 122
framework conditions for innovation 124, 128, 129
industry/supply network 121, 122
market 122, 129
national innovation strengths and weaknesses 125–7
public attitudes towards 116–17, 122, 123, 129
public investment in 121
regulation 116, 117, 122
technology transfer 122
Akerlof, G. 139
Allansdottir, A. 397
alliance databases 37
Almeida, P. 327, 340, 356
ambiguity 138
Anderson, P. 298
Andersson, T. 295
Anselin, L. 359
Antonelli, C. 92, 270
Arora, A. 361, 376
Arrow, K. 137, 139
Association of British Insurers (ABI) 212, 217, 224, 227, 228
Genetic Testing Code of Practice 212
Genetics and Insurance Forum 219
Genetics Committee 212
Association of Clinical Cytogeneticists 145
Autant-Bernard, C. 359, 360
Barras, R. 207
Bartholomew, S. 99
Bas, T. 302
Bathelt, H. 268
Baum, J. 360
Berger, A. 312
Berkhout, F. 135
Bernstein, P. 137, 139
Binks, M. 311
biobanks 55, 60
end-users of results 57–8
ethical and legal issues 59
public debate 59
societal linkages 58
bioinformatics 87, 235, 236, 240
see also distributed innovation processes; LION Bioscience
biomaterials 299–300
categories 303–04
patenting 300
spatial concentration of innovative activities 300, 301
technological opportunities 300
biopharmaceuticals sector
available financing 121
framework conditions for innovation 124, 128, 129
industry/supply network 120
markets 114–15, 120, 129
national innovation strengths and weaknesses 125–7
PINGOs, influence of 115–16
pricing policies 115, 120
promoting innovation 121, 129
public sector research 119–20
regulation 120
research and development collaborations 120
social acceptability 120, 129
technology transfer mechanisms 120–21
biotech clusters 352
deregulation of financial systems 347
flexible labour market, need for 340, 347, 349
local-network driven 344
location’s ability to act as a magnet for commercial activities 345
sector-specific regulation and policy 350
technology transfer infrastructure 347, 348, 352
universities
proximity to 335, 336
role of 332, 333, 343, 350
venture capital accessibility 346, 347, 348
see also Boston; Cambridge; Munich
biotech firms
absorptive capacity 360, 361, 362
continued collaboration with inventors 335–6
definitions of 33, 34
Europe
available finance 113–14
case study 100–102
distribution of firms by sector and country 103
distribution of firms by size and country 105, 106
distribution of firms by size and sector 105, 109, 110
foundation date of firms 103, 104, 105
main product markets 106–07
numbers of subsidiaries 107, 109
origins of companies 108, 109
research and development collaborations 108, 109
services offered 106
turnover attributable to biotechnology 106
financial resources
access to 54
sources of competitive advantage 326
biotech research equipment and supplies sector
available finance 123, 124
framework conditions for
innovation 124, 128, 129
knowledge/skills network 124
market 118–19, 123
national innovation strengths and weaknesses 125–7
public attitudes 123
regulation 119, 123
research investment 123, 124, 129
biotechnology
application areas 21–2
data sources 31–7
limitations of 32, 37
definitions of 21, 22, 23
development of 173–4
generations of 24, 77
Biotechnology Industry Organisation (BIO) 22
Blundell, Tom 334
Borgatti, S. 184
Boston
founder scientists’ relationships with companies 350, 351
origins of biotech firms 333
Boutellier, R. 182, 183
Breschi, S. 269, 297, 298, 359, 381
Brickman, R. 117
Brinks, J. 290
Brisbane 277
business activities 284, 286, 287
correlation between science, technology and business activities 278
regional specialization 288
revealed scientific advantage 282, 285
revealed technological advantage 283, 286
Brusco, S. 267
Brusoni, S. 228, 229
Bud, R. 46, 77
Bush, V. 47
business activities 275
correlation with scientific and technological activities 277, 278, 289, 290
measurement of 272, 273–4, 280–81
business networks 92, 93, 94, 95, 96
Cable, D. 318
Callon, M. 101
Cambridge biotech firms
affiliation of scientific advisory board members 338–9
composition of research collaborations 336–7
employment origins of scientists 341, 342
frequency of start-ups 333, 334
geographic location of academic collaborators 337, 338
geographic location of scientific advisory board members 339
origins of 333, 334
geographic locations of last academic job 345
labour market flexibility 341, 342
rules governing technology licensing 350, 351
scientific institutions 332
university-industry relationships 350, 351
Carlsson, B. 23, 100, 101, 170, 171, 237, 297, 298, 326
Casari, Georg 244
Casper, S. 327, 329, 330, 347, 348, 350
Catherine, D. 356
Cellmark Diagnostics 146, 149–50, 159
intellectual property rights 158
market appropriation strategies 158
market focus 146
numbers of people tested 146
risk management 150, 151, 152, 158
services delivery 146
technical competences 158
Cetindamar, D. 51
Chandler, A. 140, 214
Chao, L. 115
Cheetham, P. 174
Christensen, C. 298
Clarke, A. 142
Clinical Molecular Genetics Society (CMGS) 143, 145
cocollaborations 375, 376
Copeland, E. 144
Cortright, J. 303, 318
Crick, F. 332
Crowther, S. 114
Cytogenetics DNA Services Ltd 146, 147–8, 159
intellectual property rights 157, 158
market appropriation strategies 158
market focus 146
numbers of people tested 146
risk management 148, 149, 158
service delivery 146
technical competences 158
Dachs, B. 203
Daniell, E. 174
Danzon, P. 115
Darby, M. 23
Dasgutha, P. 272
David, P. 272
DBFs see dedicated biotechnology firms
De la Mothe, J. 95
deCode Genetics 59, 61
dedicated biotechnology firms (DBFs) 23, 27
market characteristics 79
role of 65, 77, 78, 89–90, 95
specialization 88
US/European contrasts 80, 81
Department of Health 209, 211, 212, 213
developing countries 397, 398, 400
companies’ incentives to innovate 398, 399
future policy requirements 400–401
research into diseases 398, 399
societal impacts of modern biotechnology 398
DiMasi, J. 48
distributed innovation processes (DIPs) 237, 238, 239
balance of ownership and flows of knowledge 253, 254, 255
case study methodology 241, 242, 261
development and marketing of informatic applications 255
established firms, role of 255–6
interdependence between public and private sector 253
privatization of software 255
see also LION Bioscience
Doddson, M. 169
Dohse, D. 237
Donnai, D. 145
Dosi, G. 138
Drew, J. 11
Duyk, G. 174

East Gothia 276
business activities 284, 286–7
correlation between science, technology and business activities 277, 278
regional specialization 288
revealed scientific advantage 281, 282, 285
revealed technological advantage 283, 285–6
Edquist, C. 44, 100, 169, 295, 297
Egidi, M. 138
Eisenberg, R. 64
Eliasson, G. 171
Elles, R. 145
Ennew, C. 311
Enright, M. 301
Enzing, C. 99
Ernst & Young 5, 295, 327, 329, 330, 348, 349
Esposito, R. 82
Etzold, Thure 244, 245
European Bioinformatics Institute (EBI) 244, 245
European Federation of Biotechnology (EFB) 22
European Medicines Evaluation Agency (EMEA) 115
European Molecular Biology Laboratory (EMBL) 243, 244, 245
European Patent Office (EPO) 35
Fagerberg, J. 46
Faulkner, W. 238
Faust, K. 184
Feldman, M. 23, 298, 302, 305, 358, 359, 360, 361, 362, 377
Ferry, G. 345
Fields, S. 86
firm databases 37
firm formation 356, 403
concentrated organizational origins 313, 314, 316, 317–18
dependence on interrelated factors 297–8
dispersing effects of competition 363
financing, sources of 311–13, 318
focus on certain technologies and applications 316
regional factors 363, 380
companies 318
diversification 376–7
industry structure 318, 375
science base 305–08, 317, 318
specialization 363
research infrastructure, role of 359, 375
research study
data sources 305
methodology 302, 303
sources of initial technological opportunity 308–11
spatial concentration of related industries, effect of 375, 377–8
technology licensing office, role of 318
first generation biotechnology 24
Fligstein, N. 328
food biotechnology
patents 174, 175, 176
geographic distribution of 182–3
research and development 181, 182
see also lactic acid bacteria biotechnology
France
biotech SMEs 358
concentration of activity in two regions 370, 373
development of 362
employee numbers 369, 370, 371–2, 373
firm creation 370, 375
markets 373
mean annual growth rates 370, 373
participation in scientific publications 369, 371–2
Index

research and development expenditure 369, 371–2, 375
research study 364–9, 373–5, 391–2
regional characteristics 390
markets 388
organization of research 389
private research 387
public research 386
Francis, J. 358
Fransman, M. 238
Freeman, C. 172, 214, 297
Frost, T. 368
Fujita, M. 345
functional genomics 85
Galambos, L. 80
Gambardella, A. 361, 376
Gaskell, G. 100, 117
Genet, C. 357
genetic testing 142, 143
case studies
data collection 136
methodology 136, 137
commercial services 145, 146
concerns over 143, 144
factors affecting support for 143–4
insurance
impact on 210, 211, 229, 230
regulation 211–12, 230
research study 214–15, 216–18, 221, 234
use in 208, 209, 210, 211, 213
predictive capacity of 209
public testing services 144–5, 158
reliability of 210
risk management 157, 159, 160
see also Cellmark Diagnostics; Cytogenetics DNA Services Ltd; genomics companies; insurance companies; Myriad Genetics Inc.; risk management; Sciona
Genetics and Insurance Committee (GAIC) 212
Genetics and Insurance Research Centre (GIRC) 219, 220, 221
GeneWatch 143, 156
genomics companies 55, 56
capital markets 60–61
collaborative relationships 56–7, 58–9, 60
marketing of services 60
research and development costs of 57
economic value of 57
scientific competencies required 56
specialization 88
see also biobanks
Germany
biotech industry 329, 330, 331
government promotion of biotech clusters 329
see also Munich
Geuna, A. 199
Gibbons, M. 77
Giesecke, S. 99
Gilbert, Walter 83, 152
Gökbayrak, E. 276
Goldfarb, B. 295
Gothenburg 276
business activities 284, 286, 287
correlation of science, technology and business activities 277, 278
regional specialization 288
revealed scientific advantage 281, 282, 285
revealed technological advantage 283, 286
Grabowski, H. 78
Granberg, A. 11
Grannovetter, M. 349
Granstrand, O. 229
Green, W. 374
Greenwood, R. 360
Griliches, Z. 272
growth of firms
determinants of 378–9, 382
regional environment, effect of 363, 364, 380, 381
Gulati, R. 326, 342
Hacking, I. 137
Håkansson, H. 101, 297
Hall, P. 326, 331, 346, 347
Harhoff, D. 302, 308
Harper, P. 142
Harris, R. 136
Harrison, B. 237
Harvey, M. 238, 253
Hawkes, N. 156
Hayek, F. von 137
Hecht, J. 207
Henderson, R. 49, 99, 167, 298, 361
Henrekson, M. 295
HGP see human genome project
Higgins, M. 326, 342
Hoch, H. 87, 88
Hodgman, H. 235
Holmén, M. 290
Holtzman, N. 143, 160
Hopkins, M. 155
Howitt, S. 215
Human Genetics Advisory Commission (HGAC) 211–12
Human Genetics Commission (HGC) 210, 212
human genome project (HGP) 82
economic opportunities arising from 82, 83, 84
impact on life science industry 79
implementation of 78–9
see also post-genome era
Iansiti, M. 169
IDEFI/ULB 77, 80, 81
ignorance 138
industrial clusters 267
industrial districts 267
industrial policies 112–13
industrial sectors
classification of 26–7
innovation
actors involved in 7, 50, 51, 62, 63, 64, 65
development of 6, 45, 61–2
economic value of 6–7, 44–5, 48, 49, 62
ethical issues 51
firms’ role in 7, 62
link with developments in science and technology 46, 47, 61, 402
network of key factors influencing 101
networks 82, 86, 88–9, 90, 91, 94, 95, 96
public debates on 51–2, 62
regulation of 51, 62
relationship with regional public and private sector research expenditure 359
relationship with regional technology transfer infrastructure 359
see also research and development
Institute and Faculty of Actuaries 219
insurance companies 215, 216
competence building strategies 221, 226
importance of joint research programmes 224, 225, 229
industry division of knowledge 230
information flows 227, 228
methods of communicating with external bodies 224, 225
Nominated Genetics Underwriters (NGUs) 226
sources of information for 220, 222, 223, 224, 225, 226, 227, 228, 229
see also genetic testing; reinsurance companies
intellectual property rights (IPRs) 84–5, 112, 157, 158
Irvine, J. 123
Jacobsson, S. 273, 295
Jaffe, A. 302, 305, 359
Jeffcoat, R. 174
Jeffries, Sir Alec 149
Jensen, R. 168, 169
journal impact factor 272
Judson, H. 174
Kahneman, D. 137
Kaplan, S. 329
Katz, J. 9
Kay, L. 46
Kegley, J. 142
Kenney, M. 46, 64, 123, 326, 335
Kettler, H. 330, 348
Kevles, D. 142
Keynes, J. 138
Khurana, R. 298
Kitcher, P. 136, 143
Kivinen, O. 99
Klepper, S. 274
Klevorick, A. 198
Kline, S. 46
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knight, F.</td>
<td>138</td>
</tr>
<tr>
<td>Knorr-Cetina, K.</td>
<td>101</td>
</tr>
<tr>
<td>knowledge/skills networks</td>
<td>effect of government policies 110–11</td>
</tr>
<tr>
<td>Kogut, B.</td>
<td>327, 340, 356</td>
</tr>
<tr>
<td>Kopp, P.</td>
<td>80</td>
</tr>
<tr>
<td>Kriss, A.</td>
<td>151</td>
</tr>
<tr>
<td>Krugman, P.</td>
<td>267, 297, 357, 362, 363</td>
</tr>
<tr>
<td>KSLAT</td>
<td>52, 53</td>
</tr>
<tr>
<td>Küppers, G.</td>
<td>169</td>
</tr>
<tr>
<td>Laage-Hellman, J.</td>
<td>27, 51, 55</td>
</tr>
<tr>
<td>labour market flexibility</td>
<td>340, 341, 342, 347, 349</td>
</tr>
<tr>
<td>lactic acid bacteria (LAB)</td>
<td>biotechnology</td>
</tr>
<tr>
<td>applications</td>
<td>177, 178, 179, 180</td>
</tr>
<tr>
<td>innovation systems</td>
<td>191–2</td>
</tr>
<tr>
<td>nationality</td>
<td>192–3</td>
</tr>
<tr>
<td>patents</td>
<td>174, 175, 176, 177, 178, 179, 180–81</td>
</tr>
<tr>
<td>geographic distribution</td>
<td>182–3</td>
</tr>
<tr>
<td>research and development</td>
<td>195–6</td>
</tr>
<tr>
<td>cognitive dynamics</td>
<td>193–4, 195, 196–7</td>
</tr>
<tr>
<td>economic competence</td>
<td>193–4, 195, 196–7</td>
</tr>
<tr>
<td>national systems of</td>
<td>197</td>
</tr>
<tr>
<td>organizational networks</td>
<td>183–4, 185–7, 188–91, 196</td>
</tr>
<tr>
<td>skills required</td>
<td>181</td>
</tr>
<tr>
<td>Lancaster, K.</td>
<td>27</td>
</tr>
<tr>
<td>Landström, H.</td>
<td>311</td>
</tr>
<tr>
<td>Langer, Bob</td>
<td>351</td>
</tr>
<tr>
<td>Larédo, P.</td>
<td>199</td>
</tr>
<tr>
<td>large incumbent firms</td>
<td>leadership of the pharmaceuticals</td>
</tr>
<tr>
<td>industry</td>
<td>403</td>
</tr>
<tr>
<td>Latour, B.</td>
<td>101, 136</td>
</tr>
<tr>
<td>Laurent, T.</td>
<td>80</td>
</tr>
<tr>
<td>Laursen, K.</td>
<td>198</td>
</tr>
<tr>
<td>Lazonick, W.</td>
<td>140</td>
</tr>
<tr>
<td>Ledley, F.</td>
<td>144</td>
</tr>
<tr>
<td>Leisner, J.</td>
<td>198</td>
</tr>
<tr>
<td>Lemarie, S.</td>
<td>358</td>
</tr>
<tr>
<td>Lenaghan, J.</td>
<td>143</td>
</tr>
<tr>
<td>Lerner, J.</td>
<td>326</td>
</tr>
<tr>
<td>Leveque, F.</td>
<td>169</td>
</tr>
<tr>
<td>Levett, L.</td>
<td>147</td>
</tr>
<tr>
<td>Levinthal, D.</td>
<td>214, 228, 229, 270, 360</td>
</tr>
<tr>
<td>Liddle, S.</td>
<td>147</td>
</tr>
<tr>
<td>Liebeskind, J.</td>
<td>169, 306, 360</td>
</tr>
<tr>
<td>life science industry</td>
<td>business networks 92, 93, 94, 95, 96</td>
</tr>
<tr>
<td>electronics, role of</td>
<td>87–8</td>
</tr>
<tr>
<td>future research and development</td>
<td>implications 95</td>
</tr>
<tr>
<td>improvements in techniques</td>
<td>86, 87, 88</td>
</tr>
<tr>
<td>innovation networks</td>
<td>82, 86, 88–9, 90, 91, 94, 95, 96</td>
</tr>
<tr>
<td>instability of</td>
<td>77, 78</td>
</tr>
<tr>
<td>interdisciplinary projects</td>
<td>86, 88</td>
</tr>
<tr>
<td>large corporations</td>
<td>passive role of 79–80</td>
</tr>
<tr>
<td>mergers and acquisitions</td>
<td>80, 82</td>
</tr>
<tr>
<td>public/private cooperation</td>
<td>77</td>
</tr>
<tr>
<td>source of growth opportunities</td>
<td>91</td>
</tr>
<tr>
<td>US/European contrasts</td>
<td>80, 81, 82, 96</td>
</tr>
<tr>
<td>Lindblom, C.</td>
<td>47</td>
</tr>
<tr>
<td>LION Bioscience</td>
<td>241, 242, 251, 257</td>
</tr>
<tr>
<td>acquisitions</td>
<td>GMD 249–50</td>
</tr>
<tr>
<td>NetGenics 250–51</td>
<td></td>
</tr>
<tr>
<td>Trega 249</td>
<td></td>
</tr>
<tr>
<td>activities</td>
<td>246–8</td>
</tr>
<tr>
<td>cross-licensing deal with MDL</td>
<td>250</td>
</tr>
<tr>
<td>formation of</td>
<td>243</td>
</tr>
<tr>
<td>GeneQuiz</td>
<td>244</td>
</tr>
<tr>
<td>network of relationships</td>
<td>252</td>
</tr>
<tr>
<td>partnerships</td>
<td>Bayer 248–9</td>
</tr>
<tr>
<td>Celera 254</td>
<td></td>
</tr>
<tr>
<td>life science companies</td>
<td>242, 243</td>
</tr>
<tr>
<td>Nestlé</td>
<td>254</td>
</tr>
<tr>
<td>sequence retrieval system (SRS)</td>
<td>244, 245, 246</td>
</tr>
<tr>
<td>Lissoni, F.</td>
<td>269, 359, 381</td>
</tr>
<tr>
<td>Llerena, P.</td>
<td>169</td>
</tr>
<tr>
<td>Loasby, B.</td>
<td>138</td>
</tr>
<tr>
<td>localized knowledge spillovers</td>
<td>268–70, 359, 360</td>
</tr>
<tr>
<td>Lundgren, A.</td>
<td>101</td>
</tr>
<tr>
<td>Lundvall, B.-A.</td>
<td>172, 297</td>
</tr>
<tr>
<td>Lynskey, M.</td>
<td>192</td>
</tr>
<tr>
<td>Macdonald, A.</td>
<td>210</td>
</tr>
<tr>
<td>Malecki, E.</td>
<td>267</td>
</tr>
<tr>
<td>Malerba, F.</td>
<td>99, 237, 297, 298</td>
</tr>
<tr>
<td>Malloy, M.</td>
<td>82</td>
</tr>
</tbody>
</table>
Index

Malmberg, A. 270
Mandran, N. 359, 378
Mangematin, V. 358, 359, 360, 378, 381
Margolis, J. 174
Marshall, Alfred 267
Martin, Chris 155
Martin, P. 135, 362
Martin, R. 267, 268
Martinson, J. 135
Maskell, P. 270
Massachusetts clustering 318, 319
correlation between RSA and RCA 308
firm formation concentrated organizational origins 313, 314, 315
sources of financing 311, 312, 313
sources of initial technological opportunity 309–11
regional science base 302, 303
influence on firm formation 307, 308
revealed comparative advantage (RCA) 306, 307
revealed scientific advantage (RSA) 306, 307
Massard, N. 359, 362
Matt, M. 169
Mayer, H. 303, 318
McKelvey, M. 9, 27, 37, 44, 77, 78, 80, 95, 271, 272, 276, 290, 291, 369, 375
MeMeekin, A. 238, 253
McNiven, C. 34
Meek, J. 210
Melbourne 276–7
business activities 284, 286, 287
correlation between science, technology and business activities 278
regional specialization 288
revealed scientific advantage 282, 285
revealed technological advantage 283, 286
Meldrum, Peter 152
Meredith, Rodney 147, 148
Merz, J. 151
metabolomics 25
Metcalfe, S. 180
modern biotechnology
categories of 9, 274, 275
data sources 396
definitions of 9, 10–11, 22, 23, 24, 25
development of 24
economic impact of 9–10, 11, 12
future research requirements 396, 397
government policies towards 63, 64
interdisciplinarity of 46, 61
knowledge bases 8–9, 20, 24, 28, 29, 30, 31
limitations of studies on 4
product-based axis of 26, 27, 28, 30, 31
simultaneous global and local aspects of 4
societal impacts of 3–4, 47, 395
developing countries 398
techniques of 25
Mogee, M. 273
Morange, M. 174, 183
Moss, D. 137, 139, 140, 152
Mowery, D. 140, 214, 229, 350
Mullis, K. 86
Munich biotech firms
affiliation of scientific advisory board members 338–9
composition of research collaborations 336–7
employment origins of scientists 341, 342–3
frequency of start-ups 333, 334, 335
geographic location of academic collaborators 337, 338
geographic location of scientific advisory board members 339–40
origins of 333, 334, 335
geographic locations of last academic job 345
labour market 342
scientific institutions 331–2
Murray, F. 327, 329, 350
Mustar, P. 199, 380
Myriad Genetics Inc. 146, 152–4, 159
intellectual property 158
market appropriation strategy 157, 158
Index

market focus 146
numbers of people tested 146
risk management 154, 155, 158
service delivery 146
technical competences 158

Narin, F. 273
national systems of innovation (NSI)
 theory 100, 172, 173, 197, 198, 199
Nelson, R. 100, 169, 172, 198, 237, 270, 297, 350
Nesta, L. 358, 360, 368
new economic geography 267, 268
Nightingale, P. 25, 48, 139, 140
Nilsson, A. 52
Niosi, J. 54, 95, 302, 356, 378
Noma, E. 273
Noyons, E. 272
Nuffield Council on Bioethics 154

OECD see Organisation for Economic Co-operation and Development
Office of Technology Assessment (OTA) 22, 27, 48
Ohio
 clustering 319
 correlation between RSA and RCA 308
firm formation
 concentrated organizational origins 313, 314
 sources of financing 311, 312, 313
 sources of initial technological opportunity 309–11
 regional science base 302, 303
 influence on firm formation 307, 308
 revealed comparative advantage (RCA) 306, 307
 revealed scientific advantage (RSA) 306, 307
Oliver, S. 235–6
O’Neill, O. 209
Organisation for Economic Co-operation and Development (OECD) 4, 9, 22, 23, 24, 27, 33, 63, 143, 285
orphan-designated products 398, 399

Orsenigo, L. 47, 49, 78, 80, 90, 95, 99, 169, 176, 237, 297, 298, 302
Ostro, M. 82
Ottaviano, G. 362
Owen-Smith, J. 238

patents 64, 273
 sources of data 35
Pavitt, K. 198, 228, 273
Payson, S. 26
Penrose, E. 76, 91, 92
PGE see post-genome era
pharmacogenomics 85
PINGOs 115–16, 122
Pisano, G. 360
Poll, R. 139, 140
Porter, M. 267, 302, 345
positioned cloning genomics 85
post-genome era (PGE) 76
 challenging problems of 84–5
 inter-organizational interactions 89
 research areas 85–6
Powell, W. 22, 27, 90, 91, 169, 214, 238, 326, 327, 344
Prencipe, A. 229
Preston, L. 305
Prevezer, M. 29, 378
Pridmore, R. 182
Priest, S. 135
probabilistic risk 138
proteomics 25, 85
public interest non-government organisations (PINGOs) 115–16, 122
public-private partnerships (PPPs)
 research into specific diseases 399, 400
Pyka, A. 80, 173
Quéré, M. 78, 92, 93

R & D see research and development
Raeburn, Professor 212
Ramsden, S. 152
Rappert, B. 238
RCA see revealed comparative advantage
regional specialization 267, 268, 269, 289, 290, 361, 362
case studies 288
methodology 272–5
dependence on co-location of multiple types of activities 271
see also business activities; revealed comparative advantage; revealed scientific advantage; revealed technological advantage
Reid, M. 136
reinsurance companies
importance of joint research programmes 224, 225, 226
in-house research 220, 226, 229
information flows 227
sources of information 222, 223, 224, 226
see also insurance companies
research and development
costs of 48, 62, 65
firms’ role in 52, 53, 54
inter-organizational 168, 169, 170
investment in 63, 396–7
networks of collaborative relationships 50, 51, 52, 54, 169
organizational types 50–51
surveys on 35–7
see also innovation
revealed comparative advantage (RCA)
case studies 306, 307
see also revealed scientific advantage; revealed technological advantage
revealed scientific advantage (RSA)
Brisbane 282, 285
calculation of 279–80
East Gotthia 281, 282, 285
Gothenburg 281, 282, 285
Massachusetts 306, 307
Melbourne 282, 285
Ohio 306, 307
Sweden 306, 307
revealed technological advantage (RTA)
Brisbane 283, 286
calculation of 279–80
East Gotthia 283, 285–6
Gothenburg 283, 286
Melbourne 283, 286
Richardson, G. 92, 93, 94
Rickne, A. 53, 302
Riou, S. 362
Rip, A. 183
risk management 137, 139, 140
combinations of organizations 141
diversification strategies 141
firms 140, 141
governments 140, 141
insurance and financial markets 139
precautionary approach to 139
procedures 138, 139
risk assessment 137, 138
types of risk 138
see also genetic testing
Robbins-Roth, C. 79, 80
Roberts, E. 298
Ronzio, C. 23, 362
Rose, H. 139
Roseboom, J. 183
Rosenberg, N. 46, 199, 295
Rosenfeld, S. 302
Rothschild, M. 139
Rothwell, R. 113, 140, 297
RSA see revealed scientific advantage
RTA see revealed technological advantage
Rutten, H. 183
Rybak, B. 235
Rynning, E. 51
Sainsbury, Lord 22
Salminin, S. 168, 198
Salter, A. 183, 198
Sanger, F. 86
Sattelle, D. 9
Saviotti, P. 77, 80, 93, 100, 167
Saxenian, A. 237, 268, 297, 301, 302, 327
Schiele, H. 301, 362
Schissel, A. 151
Schmookler, J. 272
Schneider, Reinhard 244
Schreiber, Stuart 351
Schumpeter, J. 295, 298
scientific activities 275
correlation with technological and business activities 277, 278, 289, 290
measurement of 272, 273, 274
see also revealed scientific advantage
scientific advisory boards (SABs) 338, 339, 340
scientific publications as sources of data 34–5
Sciona 146, 155–7, 159
intellectual property 158
market appropriation strategies 158
market focus 146
numbers of people tested 146
risk management 156, 157, 158
service delivery 146
technical competences 158
Scott, A. 268
second generation biotechnology 24
Senghaas, D. 47
Senker, J. 238, 329, 356
serial entrepreneurship 319–20
Shane, S. 297, 298, 317, 318
Skolnick, Mark 152
Soete, L. 172, 279
Sorensen, O. 326
Sörlin, S. 295
Soskice, D. 326, 331, 346, 347
Stankiewicz, R. 11, 170, 237, 297, 298
Steier, L. 360
Steinle, C. 301, 362
Stephan, P. 267, 299, 338, 356, 360
Stiglitz, J. 139
Stirling, A. 135, 137, 138, 139
Storper, M. 237, 268
structural genomics 85
Stuart, T. 326
Sturchio, J. 80
Suarez, F. 274
Sulston, John, Dr. 332, 345
Sunley, P. 267, 268
surveys of firms 33, 34
Swan, P. 29, 302
Sweden clustering 318, 319
correlation between RSA and RCA 307–08
firm formation concentrated organizational origins 313, 314
sources of financing 311, 312, 313
sources of technological opportunity 309–11
revealed comparative advantage (RCA) 306, 307
revealed scientific advantage (RSA) 306, 307
science base 302, 303
influence on firm formation 307, 308
see also East Gothia; Gothenburg
Tait, J. 116
technological activities 275
correlation with scientific and business activities 277, 278, 289, 290
measurement of 272, 273, 274
see also revealed technological advantage
technological platforms 90
technological regimes (TRs) 298
determining the scope of new firms 299
implications for the innovation process 298, 299
technology licensing offices 318, 352
technology system (TS) theory 100, 170–71, 173, 198, 199
see also lactic acid bacteria biotechnology
technology transfer mechanisms 111–12, 120–21, 122, 347, 348, 350, 351, 352, 359
Teece, D. 90, 136, 141, 151, 157
Thackray, A. 77
third generation biotechnology see modern biotechnology
Thomas, S. 155
Törnqvist, G. 295
trade statistics 32–3
traditional biotechnology 24
Trajtenberg, M. 273
transcriptomics 85
TRs see technological regimes
Tushman, M. 298
Tversky, A. 137
Udell, G. 312
UK Forum for Genetics and Insurance 219
Ullrich, Axel, Professor 335
UmanGenomics 59, 61
uncertainty 138
United Kingdom
biotech industry 329, 330

government promotion of commercialization of university research 330

see also Cambridge

United States

Bayh-Doyle Act (1980) 44

competitive advantage 4–5

see also Boston; Massachusetts; Ohio

United States Patent and Trademark Office (USPTO) 35

universities

biotech clusters

proximity to 335, 336

role in 332, 333, 343, 350

formation of companies 335

government promotion of commercialization of research 330

need to encourage serial entrepreneurship and pre-firm activities 319, 320

relations with biotech firms

Cambridge 350, 351

geographic locations 360, 361, 362

research teams 50–51

Utterback, J. 274, 297, 298, 358

Valentin, F. 168, 169, 183

van der Meulen, B. 183

VanLoon, J. 138

Varelius, J. 99

Venables, A. 362

venture capital availability of 54, 61, 113–14, 123, 124, 311, 312, 313, 318, 346, 347, 348

databases 37

Vernon, J. 78

von Bohlen, Friedrich, Dr. 243, 250

von Tunzelmann, G. 228

Walsh, V. 99

Wang, Q. 228

Wasserman, S. 184

Watson, J. 332

Weber, M. 139

Weinstein, N. 139

West, J. 169

Westphal, S. 154

Whitesides, George 351

Williamson, O. 90

Winborg, J. 311

Winter, Craig 334

Winter, S. 270, 297, 305, 343

World Health Organization (WHO) 12

Wright, A. von 168, 198

Wyatt, S. 279

Wynne, B. 137, 138

Zegveld, W. 113

Zeller, C. 302

Zimmern, R. 142

Zucker, L. 23, 269, 298, 301, 302, 335, 356, 357, 361

Maureen McKelvey, Annika Rickne and Jens Laage-Hellman - 9781845420611
Downloaded from Elgar Online at 07/07/2019 07:08:19AM via free access