Index

Abramovitz, M. 286
Achilladelis, B. 128, 188
Act for the Promotion of Electronics Industries, Korea 207
Act for Research Associations, Japan 197
actions taken by firms during maturity period 256
actor 304, 381
adoption of new technologies by mature industries 234–54
Advanced Science and Technology Center in Bangalore 218
Alchian, A.A. 367, 379
alliances in Asian regions 263–6 in Korea 263 in Taiwan 264, 266 ancient civilizations 353
Andersen, B. 128, 188, 384
Andersen, E.S. 380
appreciation of yen 223–5
Arthur, W.B. 188
artificial life system 294
ASIC (ICs for specific applications) 212
asynchronous transfer mode (ATM) 268
attractor 303
auto-exposure control (AE) 248
automatic focusing (AF) 248
automatic train control (ATC) 243
automatic train stop (ATS) 243
automobiles 93, 96, 97, 110, 113–14, 115, 117, 180–83
Baeyer, A. 169
Ballard power systems of fuel cells 337 ‘bandwagon effect’ 165, 175, 185, 186, 188
Baran, P. 268
BASF 169, 174, 175
Bass model 282
Bayer 174, 175
behavior of firms in electronics paradigm 193, 194
bibliometric analysis 128
bifurcation 296, 307, 375
bilinear analysis 383
bilinear equation 308–9
biological growth models 279
biological proliferation 305–6
birth of religions 353
black box 125
bounded rationality 367
Bresnahan, T.F. 90
browser 268
bubble 79, 84, 85, 86, 87, 224 bubble economy in Japan 83–5, 224 ‘Bumiputera policy’ 215
bundle fractal of infra-trajectories 374
Bush, V. 160, 378
Busicom Corporation 195
business cycles and innovation dynamism 72–4 of Kuznets 34 of Schumpeter 34
calculators 195
CALS 302, 304
Campbell, C.J. 348, 351
canal 93
capacity of organisms 289
car electronics 249–53
car navigation systems using GPS 249
Carter, President 161
catch-up by Japanese industries 70 of innovations 68–72
cellular automata 294
chaotic region 307
Chinese market 227
Club of Rome 331, 342
clustering of innovations 303
417
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>collaboration consortiums 201–2</td>
</tr>
<tr>
<td>cooperation projects 199</td>
</tr>
<tr>
<td>collapse of Japanese industries 223–7</td>
</tr>
<tr>
<td>Commission of Industrial Competitiveness 202</td>
</tr>
<tr>
<td>comparative advantage 68</td>
</tr>
<tr>
<td>complex hierarchical structure of innovation 387</td>
</tr>
<tr>
<td>complex product systems (CoPS) 235</td>
</tr>
<tr>
<td>complex systems 294, 296</td>
</tr>
<tr>
<td>in innovation 294–312</td>
</tr>
<tr>
<td>science of 294</td>
</tr>
<tr>
<td>complexity with empirical evidence 382</td>
</tr>
<tr>
<td>comprehensive description of innovation 165–75</td>
</tr>
<tr>
<td>computer generated image system (CGI) 245</td>
</tr>
<tr>
<td>computer numerical control (CNC) 248</td>
</tr>
<tr>
<td>computer operating system (OS) 269</td>
</tr>
<tr>
<td>computerization 114</td>
</tr>
<tr>
<td>concept of economic impact index 371–2</td>
</tr>
<tr>
<td>consumption of the world primary energy 349</td>
</tr>
<tr>
<td>contribution of science</td>
</tr>
<tr>
<td>by Nelson 156–8</td>
</tr>
<tr>
<td>by Rosenberg 154–6</td>
</tr>
<tr>
<td>contribution of academia 158</td>
</tr>
<tr>
<td>science being endogenous 158</td>
</tr>
<tr>
<td>conversion efficiencies of solar cells 335</td>
</tr>
<tr>
<td>Copernicus, N. 315</td>
</tr>
<tr>
<td>Corlis steam engines 114</td>
</tr>
<tr>
<td>crash 79, 83, 85, 225</td>
</tr>
<tr>
<td>Critical Technology Plan 203</td>
</tr>
<tr>
<td>cumulative nature of innovations 386</td>
</tr>
<tr>
<td>currency speculation 225</td>
</tr>
<tr>
<td>cyclical formation in natural phenomenon 359</td>
</tr>
<tr>
<td>Daimler and Benz 180</td>
</tr>
<tr>
<td>Darwin, C.R. 319, 378</td>
</tr>
<tr>
<td>Darwinian idea of gradualism 385</td>
</tr>
<tr>
<td>Darwinian thought by Veblen 378</td>
</tr>
<tr>
<td>David, P.A. 185, 188, 284</td>
</tr>
<tr>
<td>Davies, S. 284</td>
</tr>
<tr>
<td>Delbeke, J. 55</td>
</tr>
<tr>
<td>Delphi process 314, 341</td>
</tr>
<tr>
<td>demand side innovation 377</td>
</tr>
<tr>
<td>depression trigger hypothesis 57</td>
</tr>
<tr>
<td>derivative trading 225</td>
</tr>
<tr>
<td>description of innovation dynamics 279–94</td>
</tr>
<tr>
<td>determination of trajectory 136–8</td>
</tr>
<tr>
<td>determination of time span how to determine 133–6</td>
</tr>
<tr>
<td>determining procedure of innovation paradigm 369</td>
</tr>
<tr>
<td>deterministic chaos 294, 296, 305</td>
</tr>
<tr>
<td>deterministic systems 294</td>
</tr>
<tr>
<td>development of atomic bomb 373</td>
</tr>
<tr>
<td>development of electronics industry 203–19</td>
</tr>
<tr>
<td>in India 216–19</td>
</tr>
<tr>
<td>in Japan 204, 205</td>
</tr>
<tr>
<td>in Korea 204–8</td>
</tr>
<tr>
<td>in Malaysia 215–16</td>
</tr>
<tr>
<td>in Singapore 213–14</td>
</tr>
<tr>
<td>in Taiwan 208–12</td>
</tr>
<tr>
<td>development of logistic models 283</td>
</tr>
<tr>
<td>development trajectory 138, 179, 180, 185–7, 234</td>
</tr>
<tr>
<td>difference equation acceptable 383</td>
</tr>
<tr>
<td>diffusion coefficients 39, 41</td>
</tr>
<tr>
<td>diffusion rate 49</td>
</tr>
<tr>
<td>diffusion trajectory 59–60, 127</td>
</tr>
<tr>
<td>digital control system for engines, FADEC (Full Authority Digital Electronics Control) 253</td>
</tr>
<tr>
<td>digital TV 268</td>
</tr>
<tr>
<td>digitization 114, 267</td>
</tr>
<tr>
<td>discrete elements of innovation 369</td>
</tr>
<tr>
<td>discrete system 294, 296, 306</td>
</tr>
<tr>
<td>discrete system of innovation 130</td>
</tr>
<tr>
<td>discussion on invention by Schumpeter 149–53</td>
</tr>
<tr>
<td>dissipative structure 293</td>
</tr>
<tr>
<td>distinction of technology development from diffusion period 161</td>
</tr>
<tr>
<td>distribution of innovation elements 130</td>
</tr>
<tr>
<td>division of labor in innovation 381</td>
</tr>
<tr>
<td>‘dog year’ 373</td>
</tr>
<tr>
<td>dominant design 179, 180, 185–7</td>
</tr>
<tr>
<td>Dosi, G. 37, 90, 119, 188, 293</td>
</tr>
<tr>
<td>driving control in automobiles 249</td>
</tr>
<tr>
<td>dyestuff industry 128, 131, 166</td>
</tr>
<tr>
<td>Dynabook 268</td>
</tr>
<tr>
<td>dynamics of organisms 280</td>
</tr>
</tbody>
</table>
of information technology paradigms 270, 274
of innovation paradigms 234, 267–74
of life 352
of theoretical physics 316, 318, 319
evolutionary economics 366–7, 385
evolutionary model of Nelson and Winter 36
evolutionary theory of Nelson and Winter 379
exaltation of the economy 115–20, 374
examination of innovation dynamics 277
excessive fluidity of money supply 79, 84
exchange rate 221–31
existence of fractals 382
exogeneity
of emergence of innovations 162
of initiation 377
of innovation 374–80
of technology trajectories 375
exogenous character of technology trajectory 367
exogenous knowledge of semiconductor science 375
explosive evolution 352
export control 222
external factor 280
external model of diffusion 281
fall of Japanese economy 219–31
Fazin, F. 195
Federal Highway Act 110
Federal Technology Panel 203
Feigenbaum number 307
field of knowledge transfer 368, 381–4
fifth Kondratiev cycle 324, 325
firm behavior 175–88
during maturity period 254
Fisher–Pry plot 38, 39, 43, 44, 57, 115, 128–9, 133, 307, 348, 384
Fisher’s principle of natural selection 379
flexible manufacturing systems (FMS) 200, 235, 246, 302, 304
flight simulators 243
floating exchange rate system 225
‘flying geese model’ 204
forecasting next-generation
technologies 328
forthcoming innovations 326
forward difference 308
foundry plant 212
fractal 294, 295, 296, 307, 310
bundle fractal 296–9
chain fractal 296–8
emergence of 307
paradigm 294, 295
system fractal 299–301
fracture by economic turbulence 288, 289
Free Trade Special Ward Act by
Malaysian Government 215
Freeman, C. 34, 36, 37, 55, 56, 57, 58,
74–5, 90, 188, 191, 198–201, 235,
297, 366
Frischtak, C. 57, 90, 188
fuel cells 335–8, 339
fundamental chemistry 315
fusion of technologies, see technology
fusion
fusion trajectory 234–54, 279
gauge invariance 308
GDP and GNP 77
General Crisis 355, 356–7
General Magic 269
general purpose technologies 90
generic technologies 90
genome technologies 330
Global 2000 Report to the President 65,
347
global periodicity 351–9
global problems 331
GNP
correlation with energy consumption
68
elasticity 47–8
Gompertz equation 280, 282, 286–9,
291
Gompertz model by Metcalfe 286
Goodwin, R. M. 296, 303, 386
Gould, S.J. 380
governmental policy for promoting
scientific activities 160–61
Great Depression 79–83
background of 80–82

characteristics of 80
interpretation of 80
mechanism of 82–3
Gregory, G. 235
Griliches, Z. 37, 280, 296
growth functions 279
growth models in biological systems
289–91
growth rate 289
growth rate of innovation 372
Grübler, A 111, 115, 119
Hansen, A. 53, 74, 79
Heinberg, R., ‘the party’s over’ 348,
350
heliocentric system 315
hierarchy 386
Hirota, R. 308–10
history of economics of technological
change 33–7
Hodgson, G.M. 378
Hoechst 174, 187
hollowing-out
in Japan 226, 228
in the US 221
Homburg, E. 179, 182, 184
Hsinchu Science-based Industrial Park
210
Hubbert peak of oil 348, 350–51
human activities described by logistic
curves 384
human knowledge activities 304, 383
human prehistory and social
dynamism 353
Hutchinson, G.E. 305
IBM 193, 197, 202
Ibuka, M. 193
identification of innovation paradigm
165–8
identification of science paradigms
314–24
identification of the third cycle 74–6
image compression protocol (MPEG)
269
inductive approach 367
inductive approach or deductive
thinking 385
industrial competitiveness 190
industrial production by country 73
Index

Industrial Revolution 59, 63
industrialization 61, 63
information network systems (INS) in Japan 200
infrastructure
 by trunk innovation 106–11
 construction of 106–21
 construction of highways 109–10
 construction of railways 109
infrastructures 91
turnpike and canal in the US 108–9
infra-trajectories 111–15
inherent potential of innovation 371
innovation as a function of time 367, 370
innovation clustering 324, 325
innovation clusters 58
innovation creation 293
innovation dynamism 51–78
innovation message by Carter 202
innovation paradigm 127–49
 cascade of 139, 140–41
 composition of 142
 comprehensive description of 139–42
 conformation of 139–42
 evolution of 64–5, 67
 evolution of chemical industry 143–9
 interrelation of technology and diffusion trajectories 139–42
innovation paradigm of automobiles 180–83
biotechnology 167, 171
chemical fibers 145, 150
computers 237, 238, 299, 301
electronics 167–8, 172, 191
fuel cells 339
inorganic chemicals 143–6
ISDN 267, 268, 271
multimedia 267, 268–70, 272, 301–2
organic chemical industry 144, 147
pesticides 145, 150
petrochemical industry 148, 151
polymer industry 148–9, 151
solar cells 336
superconductors 340
synthetic dyestuffs 165–6, 170, 182–4
transistors 168, 173, 192
typewriters 179–81
vacuum tubes 192
innovation theory for business cycles 55–8
innovation theory of Neo-Schumpeterian school 35
innovation time-lag 70–71
Institute of Science and Technology Policy, Japan 314, 341
institutional change 89–123, 374
 by trunk innovations 374
 infrastructure construction and institutional change 106–21
institutionalization of automobiles 110
Integrated Services Digital Network (ISDN) 267
interactive computer system (NSL) 268
interglacial period and global warming 353
internal combustion engines 180
internal factor 280
internal model of diffusion 281
international alliances in electronics 256
international competitiveness 190–233
 another factor of 221
International Standard Organization (ISO) 269
internet 268
internet protocol 268
iron-making industry 93
ISDN (Integrated Services Digital Network) 267
Japan Electronic Computer Company 197
Japan money 84, 224
Japanese enterprises in Malaysia 216
Japanese government fostering new industries 196
JESSI project 202
jet engines 253
Jevons, W.S. 51
Juglar, J.C. 51
Kaku, S. 128, 130, 174
Kaleida 269
Keynes, J.M. 34
Kitchin, J. 51
Kline, S.J. 376
knowledge development dynamics 304, 383–4
knowledge development trajectories 353–9
age of great voyages 354–5, 356–7
classical and romantic arts 356–7, 358
classical economics 356–7, 358
crusades 354, 356–7
Gothic architecture trajectory 355, 356–7
Industrial Revolution 356–7, 358
Newtonian dynamics trajectory 355, 356–7, 358
philosophies and political ideologies 356–7, 359
Renaissance arts 355, 356–7
science trajectories 356–7, 358–9
scientific thoughts 355, 356–7, 358
shipbuilding and navigation technologies 354, 356–7
theatrical arts trajectories 355, 356–7
weapon technology trajectory 355, 356–7
weaponry diffusion trajectory 355, 356–7
knowledge transfer 234, 277–312, 376
among trajectories 376
in innovations 234
Kodama, F. 200, 235, 246, 297
Kondratiev business cycles 51–78, 92
capital theory of 55
economic theories for 55–8
identification of 59, 74
labor theory of 55
raw materials and foodstuffs theory of 55
versus trunk innovation 92
war induction theory of 55
Kondratiev, N.D. 52, 76, 136
Kuhn, T. 293
Kuznets cycles 76
Kuznets, S. 34, 80, 162

Lamark, J.B. 319
Lavoisier, A.L. 315
Leontiev paradox 69, 254
life cycles of innovation 68–9
theory of 69, 254
life game 294
linear model approach 378
linear model of innovation 376–8
Link trainer, flight simulator 245
linked-chain model 376
liquidity of money supply 225
Li–Yorke theorem 294
loci of social development 353
lock-in 37, 185–9
logistic dynamics 324
logistic dynamics of innovation 37–43
logistic equation 37–9, 277, 279–86, 291, 305–12
historical background of 305–6
in discrete systems 305–12
logistic mapping 305–8
by bilinear process 308–10
of May 296, 306–8
logistic nature of innovation 127–39
logistic nature of technology development 130
Lorenz, H.W. 296, 307, 386
Lotka–Volterra equation 296, 306
Louçã, F. 58, 74–5
Lundvall, B.-A. 190
macro-evolution 379
Maddison, A. 76
Mahajan, V. 281–3, 291, 292–3
mail-order business 95
Malthus, T.R. 378
Mandel, E. 52, 55, 58
Mandelbrot, B. 294
Marchetti, C. 57, 130, 133, 293, 348, 349, 355, 384
Markov chain process 382
markup languages 268
Marx, K. 33
mass extinction 352
mass of people 381
mathematical convention of continuity 306, 307, 383
Maxwell, J.C. 315
May, R. 294
May’s mapping 383
Meadows, D.H. 331, 342, 346
mechatronics 200, 246
megacycles 360
mega-structure 314, 359–61, 387–8
of innovation trajectory 360
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>of modern industrial society</td>
<td>387–8</td>
</tr>
<tr>
<td>of paradigms with time span of 300 years</td>
<td>387</td>
</tr>
<tr>
<td>of society</td>
<td>359</td>
</tr>
<tr>
<td>Mensch, G.</td>
<td>57, 76, 162</td>
</tr>
<tr>
<td>Metcalfe models</td>
<td>284</td>
</tr>
<tr>
<td>Metcalfe, S.</td>
<td>37, 280, 284, 286, 289, 379</td>
</tr>
<tr>
<td>micro-evolution</td>
<td>379</td>
</tr>
<tr>
<td>microprocessors</td>
<td>196</td>
</tr>
<tr>
<td>Mitchell, B.R.</td>
<td>76</td>
</tr>
<tr>
<td>MITI (Ministry of International Trade and Industry)</td>
<td>191–201</td>
</tr>
<tr>
<td>mixed model of diffusion</td>
<td>282</td>
</tr>
<tr>
<td>model-T</td>
<td>81, 186, 187</td>
</tr>
<tr>
<td>money supply</td>
<td>224–5</td>
</tr>
<tr>
<td>monotone increasing function</td>
<td>383</td>
</tr>
<tr>
<td>monotone increasing property</td>
<td>308, 309, 312</td>
</tr>
<tr>
<td>motorization</td>
<td>114</td>
</tr>
<tr>
<td>movement of Japanese operations to China</td>
<td>231</td>
</tr>
<tr>
<td>multi-body analysis</td>
<td>294</td>
</tr>
<tr>
<td>Murmann, J.P.</td>
<td>179, 182, 184</td>
</tr>
<tr>
<td>Nakićenović, N.</td>
<td>348, 349</td>
</tr>
<tr>
<td>nano-catalysts</td>
<td>328–9, 332</td>
</tr>
<tr>
<td>nano-electronics</td>
<td>329–30, 332</td>
</tr>
<tr>
<td>National Information Science Centers</td>
<td>218</td>
</tr>
<tr>
<td>National Information Technologies Plan by Singapore Government</td>
<td>213</td>
</tr>
<tr>
<td>National Nanotechnology Initiative</td>
<td>327</td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>203</td>
</tr>
<tr>
<td>national strategies of Asian area</td>
<td>203–19</td>
</tr>
<tr>
<td>national system of innovation</td>
<td>190–219</td>
</tr>
<tr>
<td>in the US</td>
<td>202–3</td>
</tr>
<tr>
<td>natural selection metaphor</td>
<td>379</td>
</tr>
<tr>
<td>natural trajectory by Nelson and Winter</td>
<td>188</td>
</tr>
<tr>
<td>nature of innovation dynamism</td>
<td>385</td>
</tr>
<tr>
<td>NC machine tools</td>
<td>200, 235</td>
</tr>
<tr>
<td>Nelson, R.</td>
<td>90, 156–8, 188, 191, 366, 382, 385</td>
</tr>
<tr>
<td>Nelson, T.</td>
<td>268</td>
</tr>
<tr>
<td>Neo-Darwinism</td>
<td>378</td>
</tr>
<tr>
<td>Netscape</td>
<td>268</td>
</tr>
<tr>
<td>neutral theory of molecular evolution</td>
<td>380</td>
</tr>
<tr>
<td>New Deal by Roosevelt</td>
<td>110</td>
</tr>
<tr>
<td>new insight into the economics of technological change</td>
<td>363</td>
</tr>
<tr>
<td>Newton, I.</td>
<td>315</td>
</tr>
<tr>
<td>Newtonian dynamics</td>
<td>315</td>
</tr>
<tr>
<td>next-generation industries</td>
<td>314</td>
</tr>
<tr>
<td>Nippon Steel</td>
<td>237</td>
</tr>
<tr>
<td>Nixon shock</td>
<td>222, 227</td>
</tr>
<tr>
<td>nonlinear dynamics of economic development</td>
<td>365–88</td>
</tr>
<tr>
<td>nonlinear dynamics of innovation</td>
<td>277</td>
</tr>
<tr>
<td>nonlinear logistic nature of innovation</td>
<td>133</td>
</tr>
<tr>
<td>nonlinear nature of innovation</td>
<td>368–74</td>
</tr>
<tr>
<td>non-routine nature of innovation</td>
<td>374</td>
</tr>
<tr>
<td>Noyce, R.</td>
<td>193</td>
</tr>
<tr>
<td>NTT (Nippon Telegraph and Telephone Corp.)</td>
<td>200</td>
</tr>
<tr>
<td>oil depletion timing</td>
<td>348</td>
</tr>
<tr>
<td>Onoda Cement</td>
<td>239</td>
</tr>
<tr>
<td>ontogeny</td>
<td>379</td>
</tr>
<tr>
<td>operation software</td>
<td>262</td>
</tr>
<tr>
<td>optical fibers</td>
<td>268</td>
</tr>
<tr>
<td>oversee production by Japanese industries</td>
<td>226, 228, 229, 231</td>
</tr>
<tr>
<td>overshoot phenomenon</td>
<td>388</td>
</tr>
<tr>
<td>overview of global issues</td>
<td>342</td>
</tr>
<tr>
<td>packet communication process</td>
<td>268</td>
</tr>
<tr>
<td>paradigm shift</td>
<td>379</td>
</tr>
<tr>
<td>Parkin & Sons</td>
<td>174, 182</td>
</tr>
<tr>
<td>path dependence</td>
<td>37, 188</td>
</tr>
<tr>
<td>Perez, C.</td>
<td>34, 37, 58, 74, 111, 119–21, 161, 190, 191, 198, 270, 293, 366</td>
</tr>
<tr>
<td>personal computers</td>
<td>196</td>
</tr>
<tr>
<td>‘Perspectives and Recommendations’</td>
<td>327</td>
</tr>
<tr>
<td>by CHEMRAWN conference</td>
<td>327</td>
</tr>
<tr>
<td>pesticide</td>
<td>128, 132</td>
</tr>
<tr>
<td>Peters, E.E.</td>
<td>296, 307, 386</td>
</tr>
<tr>
<td>phylogeny</td>
<td>379</td>
</tr>
<tr>
<td>physical economics</td>
<td>359</td>
</tr>
<tr>
<td>Plaza Accord</td>
<td>84, 224, 226, 227</td>
</tr>
<tr>
<td>point of sales systems (POS)</td>
<td>302, 304</td>
</tr>
<tr>
<td>Polanyi, M.</td>
<td>293</td>
</tr>
<tr>
<td>population dynamics</td>
<td>305</td>
</tr>
<tr>
<td>population ecology</td>
<td>279</td>
</tr>
</tbody>
</table>
Index

population theory by Malthus 279, 305
population thinking 385
PPP figures by OECD 227
precision polymerization 328
Prigogine, I. 293
primary energy consumption 348, 349
Principia Mathematica 315
procedure for analysing technology fusion 236
product diffusion 40–47
productivity of Japanese industries 227
promoting scientific activities by government 160
Promotion Act for Technology Development, Korea 207
prospects for energy resources 347
protective trade policy 196
Provisional Act, Japan for Promotion of Electronics Industries 197, 207
for Promotion of Machinery and Information Industries 197
for Promotion of Specified Machinery and Electronics Industries 197, 235
punctuated equilibrium theory 380
punctuated evolution by Awan 380
punctuated evolution versus gradualism 385
purchasing power parity (PPP) 223–4, 227–31
quantum computers 329, 333
QWERTY keyboard arrangement 179, 185–6
‘railroadization’ 112, 380
railways 63
rate-determining step of innovation 372
realization timing 341
recognition of nonlinearity of innovation 367
recurrence formulae 309
regeneration technology 330, 334
relative competitiveness of the US and Japan 221–3
relative performance of Japan and the US 230
Renaissance 315
resonance of innovation 63–7
retail businesses A & P Company 106
chain stores 95–6
convenience stores 97
convenience stores in Japan 101–2
Daiei 97
department stores 95
discount stores 96–7
evolution by information technologies 97–102
evolution by trunk innovations 102, 107
evolution of 94–106
history of 94
home delivery services 102
mail-order business 95
retail business in Japan 97
supermarkets 96
Wal-Mart 97, 101
retardation analysis of 43–4
Ricardo, D. 68
RISC type MPU (microprocessor unit) 269
r-K theory 280, 286
role of academia 168–74
role of invention and science in innovation 149–63
role of MITI 198–201
Rosenberg, N. 36, 57, 90, 91, 94, 114, 154–6, 162, 163, 188, 366, 375, 377
endogeneity of technology 91
innovation trigger 377
steel-making innovations 375
Rostow, W.W. 52, 56, 58, 119
routines 381
Samsung Electronics Company 207
Santa Fe Institute 294
sardine cycles 360
Schmookler, J. 188
Schumpeter, J.A. 34, 51, 52, 53–5, 72, 75, 80, 89, 136, 149–53, 234, 280, 302, 365, 366, 374, 380, 385
applicability of Verhulst’s formula 280
business cycles 34, 51, 52, 75, 80, 136
changeover from Mark I to Mark II 365

Masaaki Hirooka - 9781845428860
Downloaded from Elgar Online at 04/22/2019 06:45:42AM
t via free access
circular flow in economic system 374
complex dynamism of three business cycles 302
definition of innovation 89
discussion on innovation 149–53
emergence of innovation 366
equilibrium system of economy 234
innovation theory 53–5
invention and innovation 149–53
‘railroadization’ 112, 380
second approximation 72
way of thinking 385
science centers 203
science discipline 315
Science Policy Research Unit (SPRU) 236
science trajectories
bacteriology 316, 317
biotechnology 167, 171
chemistry 315, 317
complex system 294–5
electromagnetics 315, 317
elementary particle theory 316, 318
embryology 316, 317
evolutionary theory 318
fractal 294–5
genetics 318
modern evolutionary theory 318
nano-porous catalysts 332
Newtonian dynamics 315, 316, 317
organic chemistry 166, 170
quantum computers 333
regeneration technology 334
relativity theory 316, 318
theoretical physics 316, 318
topology 294–5
transistors 168, 173
ultimate theory of universe 316, 318
scientific contribution by industrial researchers 377
scientific technology trajectory 158
seat reservation system 243
self-organization 293, 296, 303, 311, 382
self-organizing nature 382
SEMATech consortium 201
semiconductor lasers 268
sequence of bubble, crush and depression 79–88
Sharp Corporation 195
Shima, M. 195
Shinozaki, Y. 279, 289–91, 292
Shockley, W.B. 193
Sholes typewriters 179, 180
shortage of energy and resources 388
Singapore One Plan 213
Smith, A. 33
social mega-trend 351–2
software industry in India 218
solar cells 331–5, 336
solar economics 359–60
solid polymer fuel cells 337
Sony Corporation 193
speculation in the cotton business 85
in railways 86
speed of innovation 57
spread of knowledge activities 354–5
SPRU (Science Policy Research Unit) 236
standardization in multimedia 269, 273
steam engines 63
stock price 81, 82, 83, 84
strategic alliances 256
for custom ICs 259, 262
for microprocessors 260, 262
for multimedia technologies 269
on DRAM development 257–8
strategic information systems (SIS) 302
study of peak oil (ASPO) 351
subsidies 197
substitution model
in primary energy 115
in transportation systems 115
sudden catastrophe 388
Sumitomo Chemical 239
superconducting materials 338, 340
supply side 284
synchronization of business cycles 61–3
synergistic effect 65
systematization 200
tacit knowing 293
T-cluster by Rosenberg and Frischtak 57, 188
TCP/IP 268, 269
TCP/IP
techno-economic paradigm 198, 200
 technological development period 127, 128
 technological forecasting 200
 technological maturation 384
 technological opportunities 174, 180
 technological system by Freeman 188
 technological trajectory by Dosi 37, 188
 technology foresight 314–52
 technology fusion 200, 234–54, 297
 of computers 237–46
 by cement industry 239, 241
 by chemical industry 239, 242
 by flight simulators 243–7
 by railways 243–4
 by steel industry 237–8
 of electronics 246–54
 by aircraft engines 253–5
 by automobile industry 249–53
 by camera industry 248–9, 254
 by machine tools 246–8, 250
 technology trajectory 135, 138
 technology transfer 234
 time lag between invention and innovation 366
 time span of element distribution 131
 timing of commercialization 326
 timing of venture business 176–8
 in biotechnology paradigm 177
 in dyestuff paradigm 176
 in electronics paradigm 178
 trade friction between the US and Japan 222–3
 trade surplus 227
 trajectories in a deterministic process 382
 trajectories of ongoing science and technologies 326
 Trajtenberg, M. 90, 114
 transformation of Delphi data into innovation trajectories 341
 transistor radios 193
 transition of energy resources 348, 349
 transition of the world scenarios 346
 transportation cost 93
 trend of world population 347
 trunk innovation 89–123
 definition of 89, 90
 on Kondratiev business cycles 92
 TTL (through the lens) light-measuring device 248
 two concepts of evolutionary theory 378–80

 ultimate market size 43–4
 ultimate oil reserves 348, 350
 ultimate performance of innovation 371
 Underwood No. 5 179, 187
 UNIX 269
 urbanization 110–11
 Utterback, J.M. 175, 179–88

 value-added 303
 value-added by innovation 370
 value-added of innovation 76
 van Duijn, J.J. 58, 74
 venture business 174–5
 Verhulst, P.F. 279, 305
 Vernon’s life cycle theory 69, 203, 219, 254
 VHS 185–6
 VHSIC project in the US 201
 video tape recorders 185–6
 visions by MITI 201
 VLSI project in Japan 198, 235
 VLSI research association in Korea 207

 Wallace, A.R. 319
 way of thinking 385
 Winter, S. 90, 188, 366, 382, 385
 world oil depletion 350–51
 world wide web (www) 268
 www consortium 268

 Yahoo 268
 Yamaguchi, M. 305, 306, 310–11
 Young Report 202