abatement costs 37, 39, 43, 45, 47–52
equity issues in 39, 48–52
 types of 39, 48–9
 welfare distribution and 47, 48
 see also emission control/reduction
ability to pay principle 47, 48
Acidi
 see also acidification indices
Acidi
 see also emission impact indices
acoustic pollution 145
aggregation methods see linear
aggregation
air pollution 145
airport landing networks 113
Alesina, A. et al. 66, 85
Algeria 111
allocation-based costs see cost
allocation
Antonioli, B. et al. 135
asbestos 146
ASTM S.p.a. 134–5
Aumann, R. 225
bankruptcy, cost sharing in 117
Barrett, S. 62, 66
Başar, T. 90, 108
Bertrand game 232
bioeconomic models 187–9
Bischi, G.I. 187, 188, 202, 208
Bloch, F. 225
Borch, K. 146–7
Borm, P.E.M. 149
Botteon, M. 52
Buchner, B. et al. 66
Bulow, J. et al. 226, 240
burden-sharing see equity issues
bus games 137

carbon cycle 41
 see also emission control/reduction
Carraro, C. 39, 52, 62, 66, 74, 85
case studies
commercial fisheries 187–8, 190
resource exploitation 5, 187–211
waste collection 125–44
Cesar, H. 54–6
Chandler, P. 10, 17, 23, 26, 27, 31, 35,
43, 52, 62, 225, 246
Charnes, A. et al. 175
China 42, 45, 53–7
Ciscar, J.C. 87–8, 107, 108
Clarke, F.H. et al. 222
climate change 37, 41, 87
acid rain 108
 see also environmental issues
climate policy
 coordination of 88–9
 domestic level 9–10
 game theory and 9–110
 global agreements 52–8
 international agreements see
 international agreements
 Kyoto Protocol see Kyoto Protocol
profitability issues 22–3, 58, 39–40,
46–52
regional agreements 40
self-enforcing agreements 38
stability of 38, 39–52, 61
time consistency of 87–8, 92–106,
107
on transfrontier pollution 9–36, 37
coalition formation 42–3
 cost sharing see cost sharing
 methods
 decision making and 9, 224–45
 delta rule of 35, 246
 game theory and 2–3, 4, 9, 10,
11–36, 37, 38, 65, 67–85, 225–6
issue linkage 2–3, 65–86
joint projects see joint projects
Kyoto Protocol see Kyoto Protocol
multiple 40, 45, 50
ratification constraints 9–36
Index

cost allocation 4, 46–7, 136–42, 164, 166
cost sharing see cost allocation in environmental insurance 4, 145–63
game theory and 113–84
ing in joint projects 3–4, 113–24
in taxation systems 3–4, 117
in waste collection 4, 125–44
see also coalition formation
cost sharing methods 4
accounting for 166, 168–72
in bankruptcy 117
common in practice rule 138
consumer activities and 4, 164–84
cost allocation in environmental insurance 4, 145–63
game theory and 113–84
in joint projects 3–4, 113–24
in taxation systems 3–4, 117
in waste collection 4, 125–44
see also coalition formation
cost sharing rules 117–23, 165, 168, 173
as monotonic 174
costs
of abatement 37, 39, 43, 45, 47–52
composition of 164–5
liability 145–6
process-based 46–7
transaction 65, 221
of waste collection 131–2, 136, 139, 143
Cournot oligopoly game 75, 187–8, 208, 232
Cournot-Walras equilibrium 217–20
Data Envelopment Analysis ((DEA) 4, 165, 166, 174–83
weaknesses in 182, 183
De Zeeuw, A. 65–6, 88, 108
decision making 61
coalition formation and 9, 224–45
in domestic policy 15–17
game theory and 126–44, 224–45
see also voting behaviour
decision trees 87–8, 90, 91–2, 94
defection see unilateral defection problem
degenerative risk 147
delta games 225
delta rule, of coalition formation 35, 246
Denmark, emission impact indices for 176–83
Deprez, O. 147
deviator's curse 240
see also unilateral defection problem
DICE (Dynamic Integrated model of the Climate and the Economy) model 93–4
differential games 88–9
definition 108
domestic policy
decision making in 15–17
on environmental standards 9–10
international economy and 11–15
political equilibrium in 16–17
Driessen, T. 113
duality theory 214–15
dynamic consistency 91
dynamic games 91, 189, 195–200, 108
replicator dynamics 200–201
ecological transfer functions 12
economics see international economy
egalitarian equity principle 47, 48
emission control/reduction 37, 38, 41, 87
cost of 37, 39, 43, 45, 47–52
equity in 2, 39, 46–61
game theory and 187–246
incentives for 37–9, 40–45, 54, 56, 57–8, 224
Kyoto flexibility mechanisms for 38
Kyoto Protocol see Kyoto Protocol
profitability issues 38, 39–40, 46–52, 90–91, 92–106, 107, 225
emission impact indices, of Danish data 176–83
emission trading 2, 38–9, 43, 52, 62
 clearing mechanism for 5
as competitive 212–23
game theory and 212–23
transferable-utility production games 5, 213, 219–20
licences, demand for 213, 214–18, 222
licences, pricing of 212–13, 214–16, 222
by oligopolies 5, 212–23
environmental costs see cost sharing methods
environmental impact of consumption activities 4, 87, 164–84
definition 164, 173
emission indices 176–83
measurement of 166, 172–4
environmental insurance
co-insurance games 146, 150–53
companies dealing in 146, 159–60
cost sharing in 4, 145–63
game theory and 146–63
risks in 4, 145
environmental issues 145, 180
acid rain 108
climate change 37, 41, 87
consumption activities and 164, 166
Global Warming Potential (GWP) 180–82
greenhouse gases 212–23
liability costs 145–6
pollution 145–6
transfrontier 9–36
environmental management
emission control see emission control/reduction
game theory and 187–246
resource exploitation 187–211
waste collection 4, 125–44
environmental risk 145
equilibria
boundary/inner 190, 200–207
conjectural cooperative (CCE) 5, 226–39
in cooperative games 79–83, 224–45
corner 202–3
Cournot-Walras 217–20
in evolutionary games 190, 200–207
International Non-cooperative Political Equilibrium (INPE)
concept 10, 17–27, 29, 31–2, 33
in issue linkage 79–83
Nash see Nash equilibria
partial agreements equilibrium (PAE) 22–3, 31, 33
see also political equilibrium;
stable

equilibrium agreements see equity issues
equity issues
in abatement costs 39, 48–52
allocation-based 46–7, 48
in emission control/reduction 2, 39, 46–61
outcome-based 46–7, 49–50
process-based 46–7, 49

types of 46–8
European Commission 125, 142–3
European union, waste collection legislation 43, 44, 53–7

evolutionary games
dynamic 189, 195–200, 208
equilibria in 190, 200–207
Nash equilibria 189, 193, 195, 196, 208
reaction functions 192–3
in resource exploitation 5, 187–211
two-dimensional 200–207
unilateral defection problem in 187, 188–9
Eystigneev, I.V. 221
Eyckmans, J. 52, 62
feedback games 3, 87, 88–110
dynamically consistent equilibrium in 88
information structure 90–91
results from 92–106
fishing see commercial fisheries
Flam, S.D. 221
Folmer, H. et al. 65–6
Fragnelli, V. 137, 148–9, 152
free-riding incentives 2, 3, 37, 38, 42, 43, 44, 53, 65
issue linkage and 66, 67, 70–71, 76, 83–4
offsetting of 39–40, 66
Friedman, E. 165, 172, 173, 174

gamma games 225
Gerber, H.U. 147
Gillette, L. 52
Global Warming Potential (GWP) 180–82
Gordon, H.S. 187
greenhouse gases 212–13
emission trading and 212–13
growth equations 189–90, 195–200
Hahn, R.W. 221
Haller, H. 35
Hart, S. 10, 21, 35, 225, 246
Heal, G. 62
Hirokawa, M. 29, 31
Holden, S. 35
horizontal equity principle 48
Hourcade, J.C. 52
impact indices see emission impact indices
impact studies see environmental impact
incentives 2, 10
for emission control/reduction 37–9, 40–45, 54, 56, 57–8, 59–60
for free riding 2, 3, 37, 38, 39–40, 42, 43, 44, 53, 65, 66, 70–71
for international agreements 2, 10, 37–9, 40–45, 54, 56, 57–8, 59–60
income levels 12–13
insurance see environmental insurance insurance companies 145, 159–60
integrated assessment models (IAM) 89–94, 98
international agreements
game theory and 10, 17–27
incentives for 2, 10, 37–9, 40–45, 54, 56, 57–8, 59–60
Kyoto Protocol see Kyoto Protocol
negotiations on see negotiation process
self-enforcing 38
stability of see stability
on transfrontier pollution 9–36
see also climate policy; coalition formation
international economy 42, 93
domestic policy and 11–15
externalities in 166–8
structure of 11–12, 166–8
| **Index** |
|-----------------|-----------------|
| **International Non-cooperative Political Equilibrium (INPE)** concept | 10, 17–27, 29, 31–2, 33 |
| inverse optimisation | 42 |
| IPCC (International Panel on Climate Change) | 61 |
| *Summary for Policymakers* | 38 |
| irrigation projects | 113 |
| issue linkage | 2–3 |
| definition | 65 |
| effectiveness of | 66 |
| equilibrium in | 79–83 |
| free-riding and | 66, 67, 70–71, 76, 83–4 |
| game theory and | 67–85 |
| in negotiation process | 65–86 |
| profitability in | 72–9 |
| transaction costs in | 65 |
| Italy, waste collection in | 126–43 |
| Jacobian matrices | 203 |
| Japan | 43, 44, 45, 53–7 |
| joint projects | cost sharing methods | 3–4, 113–24 |
| game theory and | 114–24 |
| structure of | 114, 118 |
| see also coalition formation; Kyoto Protocol |
Kakutani fixed point theorem	29, 31
Kaneko, M.	26
Kantian allocation rule	47, 49
Katsoulacos, Y.	66
Kopel, M.	187, 188
Kurz, M.	10, 21, 35, 225, 246
Kyoto forever hypothesis	41–5, 50, 51, 61, 87, 88, 98, 102
Kyoto Protocol	2, 3, 87
Annex I countries	41–2, 43, 45, 61
Annex B countries	87, 93–4
emission trading under	221
flexibility mechanisms	38
future of	87–110
incentives to sign	40–45
profitability of	40–45
ratification of	38
US non-ratification	61, 222
as self-enforcing	38, 42
stability of	38–9, 40–45, 61
Lagrange multipliers	214–15
Lari, E.	150
Lemaire, J.	146–7
Levhari, D.	187
liability issues	145–6
see also environmental insurance	
linear aggregation	174
linkages see issue linkages	
Mäler, K.-G.	108
Marchiori, C.	62, 85
Marina, M.E.	148–9, 150
marine pollution	145
market justice criteria	49
market price	189
Mesterton-Gibbons, M.	187
Mirman, L.J.	187
Mohr, E.	66
Montgomery, D.W.	212
Morgenstern, O.	225
Moulin, H.	165, 169, 172, 173, 174
multistage sequential games	90, 91
Nakayama, M.	35
Nash bargaining rule	59
Nash equilibria	40, 45, 68, 69
in coalition games	225, 226, 227
in evolutionary games	189, 193, 195, 196, 208
feedback	88–110
open-loop	87, 88–9, 94–106
in production games	216–17
strict	35
strong	10–11, 19, 23–6, 35, 225, 226, 227, 228–9, 246
in strategic form games	225, 226, 227, 228–9, 231, 232, 235, 236, 240, 241
Nash policy game	68
Nash stability requirement	225
natural resources see resource exploitation	
negotiation process	
coaliton formation see coalition formation	
equity in	39, 46–61
future of	87–110
game theory and	2, 9–36, 89–92
issue linkage in	65–86
stability in	38, 39–40, 46–52
Index

Soviet Union, former (FSU) 42, 43, 44, 45, 53–7
see also Russia

Tragedy of the Commons problem 187

Unilateral Defection problem 187, 188–9, 190–93, 200–207, 208–9

Resource extinction 189

Resource preservation 187, 208–9

Revealed preference approach, to self-enforcing agreements 38

Reward functions 116–17

Risk

degenerative 147

environmental 145
game theory and 146–63

Optimal decomposition of 4, 147

Risk assessment 4, 145

Rose, A. et al. 49

Russia 44, 222

Samuelson’s conditions 29

Sanctions 188, 191, 208, 209

Schmeidler, D. 153

Sebenius, J.K. 65

Self-enforcing agreements

Kyoto Protocol as 38

Revealed preference approach to 38

Sequential games 87–8, 90–92

definition 91

Multistage 90, 91

Sethi, R. 188, 189, 191, 194, 208

Shapley values 115, 139–40, 143

calculation of 140–42

Sharing rules see cost sharing rules

Shenker, S. 169

Simultaneous Coalition Unanimity Game 35

Simultaneous games, open-loop 3, 87, 88–110

Siniscalco, D. 39, 52, 62, 66, 74

Soil pollution 145

Somanathan, E. 188, 189, 191, 194, 208

Soria, A. 87–8, 107, 108

Sovereignty principle 47, 48, 49

Subgame perfectness 108

Submodular games 5, 226–7

equilibrium in 239–45

Symmetric 5

Szidarovszky, F. 187–8, 202, 208

Cooperative Decision Making...

147

Supermodular games 115, 226

Conjectural cooperative equilibrium (CCE) in 230–39

Symmetric 5, 227, 230–39

Tollison, R.D. 65

Taskin, F. 165

taxation systems, cost sharing in 3–4, 117

technological cooperation 66, 73, 74–5, 84, 93

Thomas, J.P. 66

Tijssen, J.H. 33, 113, 153

time consistency/constraints

in climate policy 87–8, 92–106, 107

in resource exploitation 5, 188–9, 190, 200–207, 209

Tol, R.S.J. 47

Tollison, R.D. 65
Topkis, D.M.
Supermodularity and Complementarities 226, 230, 231

Total factor Productivity (TFP) 93
trade liberalisation 66
trade-offs 3
tragedy of the commons problem 187
transaction costs 65, 221
transfer schemes see emission trading
transferable-utility production games 5, 213, 219–20
transfrontier pollution, international agreements on 9–36, 37
travel agencies 137
TU game 153–4, 157
Tulkens, H. 10, 17, 23, 26, 27, 31, 35, 43, 52, 62, 225, 246
UN Framework Convention on Climate Change 46
unanimity voting 84
unilateral defection problem
in cooperative games 187, 188–9, 190–93, 200–207, 208–9
deviator’s curse 240
in strategic form games 224–45
United States 43, 44, 53–4, 56–7
emission trading in 221
Kyoto Protocol, non-ratification of 61, 222

Valverde, J. et al. 108
van den Nouweland, A. 33
van der Ploeg, F. 88, 108
Varian’s no-envy criterion 47
vector cost allocation 4, 164–5, 168–74, 177

as restrictive 183
vertical equity principle 48
Visual Basic 6.0 programming language 126, 132–3
von Neumann, J. 225
voting behaviour 10
game theory and 2, 15–17, 19–21, 67, 84
preferences 27
unanimity voting 84
see also decision making

waste collection 125–6
container numbers needed 127–9
cost of 131–2, 136, 139, 143
cost sharing in 4, 125–44
curb side 126–8
EU legislation on 4, 125, 142–3
game theory and 126–44
quantitative evaluation of 4, 126–32
time needed for completion 130, 135, 136
vehicle numbers needed 128, 129–30, 131
water pollution 145
welfare distribution 89, 218–20
abatement costs and 47, 48
Weyant, J. 52
Willett, T.D. 65
Wooders, M. 33

Yang, Z. 52, 62
Yi, S.-S. 35, 62, 246
Young, H.P. 113
Zaim, O. 165
zero-sum games 225