Index

abatement costs 37, 39, 43, 45, 47–52
equity issues in 39, 48–52
types of 39, 48–9
welfare distribution and 47, 48
see also emission control/reduction
ability to pay principle 47, 48
Acidification indices 18–82
see also emission impact indices
acoustic pollution 145
aggregation methods see linear
aggregation
air pollution 145
airport landing networks 113
Alesina, A. et al. 66, 85
Algeria 111
allocation-based costs see cost allocation
Antonioli, B. et al. 135
asbestos 146
ASTM S.p.a. 134–5
Aumann, R. 225
bankruptcy, cost sharing in 117
Barrett, S. 62, 66
Basar, T. 90, 108
Bertrand game 232
bioeconomic models 187–9
Bisci, G.I. 187, 188, 202, 208
Bloch, F. 225
Borch, K. 146–7
Borm, P.E.M. 149
Bortell, M. 52
Buchner, B. et al. 66
Bulow, J. et al. 226, 240
burden-sharing see equity issues
bus games 137

carbon cycle 41
see also emission control/reduction
Carraro, C. 39, 52, 62, 66, 74, 85
case studies
commercial fisheries 187–8, 190
resource exploitation 5, 187–211
waste collection 125–44
Cesar, H. 54–6
Chandler, P. 10, 17, 23, 26, 27, 31, 35,
43, 52, 62, 225, 246
Charnes, A. et al. 175
China 42, 45, 53–7
Ciscar, J.C. 87–8, 107, 108
Clarke, F.H. et al. 222
climatic change 37, 41, 87
acid rain 108
see also environmental issues
climatic policy
coordination of 88–9
domestic level 9–10
game theory and 9–110
global agreements 52–8
international agreements see
international agreements
Kyoto Protocol see Kyoto Protocol
profitability issues 22–3, 58, 39–40,
46–52
regional agreements 40
self-enforcing agreements 38
stability of 38, 39–52, 61
time consistency of 87–8, 92–106,
107
on transfrontier pollution 9–36, 37
coalition formation 42–3
cost sharing see cost sharing
methods
decision making and 9, 224–45
delta rule of 35, 246
game theory and 2–3, 4, 9, 10,
11–36, 37, 38, 65, 67–85, 225–6
issue linkage 2–3, 65–86
joint projects see joint projects
Kyoto Protocol see Kyoto Protocol
multiple 40, 45, 50
ratification constraints 9–36
single 40
stability in 40, 46–52
see also cooperative games
coaition paradigm 90
coaition rationality 150–51
Cobb-Douglas production function 41, 191, 240
Cobb-Douglas utility function 240–45
co-insurance games 146, 150–53
commercial fisheries 187–8, 190
see also resource exploitation
compensation principle 48
competitive behaviour, emission
trading as 212–23
conjectural cooiaborative equilibrium (CCE) 5, 226–40
Cobb-Douglas utility function in 240–45
strategic complementarity in 239–40
conjecture formulation, in cooperative equilibria 225
consensus criteria 49
consumption activities
cost sharing and 4, 164–84
definition 164, 173
effects of 164, 166, 172–4, 176–83
emission indices 176–83
environmental impact 4, 87, 164–84
convex games 115–17
cooperative equilibrium 79–83, 224–45
conjecture formulation in 225
definition 224, 225
cooperative games 2–3, 4, 11–36, 120–21, 136–42
core concept 9, 19
gamma core 35
in cost sharing 114–24
delta rule 35, 246
full coooperation 9, 188, 189, 190–93, 200–207, 208–9
non-coooperative 38, 65
three-stage 67–85
unilateral defection 187, 188–9, 190–93, 200–207, 224–45
partial agreement equilibrium (PAE) 22–3, 31, 33
see also coalition formation
core concept
gamma core 35
in game theory 9, 19, 137–8, 139–40, 150–51, 215–15
the nucleolus 139, 140
Cornillie, J. 62
cost allocation 4, 46–7, 136–42, 164, 166
direct costs 170, 173
Kantian allocation rule 47, 49
multiple 166, 168–72
one-dimensional 4, 138–42
polluter pays principle 47
random order 165
vector 4, 164–5, 168–74, 177, 183
cost sharing methods 4
accounting for 166, 168–72
in bankruptcy 117
common in practice rule 138
consumption activities and 4, 164–84
cost allocation see cost allocation
in environmental insurance 4, 145–63
game theory and 113–84
in joint projects 3–4, 113–24
in taxation systems 3–4, 117
in waste collection 4, 125–44
see also coalition formation
cost sharing rules 117–23, 165, 168, 173
as monotonic 174
costs
of abatement 37, 39, 43, 45, 47–52
composition of 164–5
liability 145–6
process-based 46–7
transaction 65, 221
of waste collection 131–2, 136, 139, 143
Cournot oligopoly game 75, 187–8, 208, 232
Cournot-Walras equilibrium 217–20
Data Envelopment Analysis ((DEA) 4, 165, 166, 174–83
weaknesses in 182, 183
De Zeeuw, A. 65–6, 88, 108
decision making 61
coalition formation and 9, 224–45
in domestic policy 15–17
game theory and 126–44, 224–45
see also voting behaviour
decision trees 87–8, 90, 91–2, 94
defection see unilateral defection problem
degenerative risk 147
delta games 225
delta rule, of coalition formation 35, 246
Denmark, emission impact indices for 176–83
Deprez, O. 147
deviator's curse 240
see also unilateral defection problem
DICE (Dynamic Integrated model of the Climate and the Economy) model 93–4
differential games 88–9
definition 108
domestic policy
decision making in 15–17
on environmental standards 9–10
international economy and 11–15
political equilibrium in 16–17
Driessen, T. 113
duality theory 214–15
dynamic consistency 91
dynamic games 91, 189, 195–200, 108
replicator dynamics 200–201

ecological transfer functions 12
economics see international economy
egalitarian equity principle 47, 48
emission control/reduction 37, 38, 41, 87
cost of 37, 39, 43, 45, 47–52
equity in 2, 39, 46–61
game theory and 187–246
incentives for 37–9, 40–45, 54, 56, 57–8, 224
Kyoto flexibility mechanisms for 38
Kyoto Protocol see Kyoto Protocol
profitability issues 38, 39–40, 46–52, 90–91, 92–106, 107, 225
emission impact indices, of Danish data 176–83
emission trading 2, 38–9, 43, 52, 62
clearing mechanism for 5
as competitive 212–23
game theory and 212–23
transferable-utility production games 5, 213, 219–20
licences, demand for 213, 214–18, 222
licences, pricing of 212–13, 214–16, 222
by oligopolies 5, 212–23
environmental costs see cost sharing methods
environmental impact of consumption activities 4, 87, 164–84
definition 164, 173
emission indices 176–83
measurement of 166, 172–4
environmental insurance
cO-insurance games 146, 150–53
companies dealing in 146, 159–60
cost sharing in 4, 145–63
game theory and 146–63
risks in 4, 145
environmental issues 145, 180
acid rain 108
climate change 37, 41, 87
consumption activities and 164, 166
Global Warming Potential (GWP) 180–82
greenhouse gases 212–23
liability costs 145–6
pollution 145–6
transfrontier 9–36
environmental management
emission control see emission control/reduction
game theory and 187–246
resource exploitation 187–211
waste collection 4, 125–44
environmental risk 145

equilibria
boundary/inner 190, 200–207
conjectural cooperative (CCE) 5, 226–39
in cooperative games 79–83, 224–45
corner 202–3
Cournot-Walras 217–20
in evolutionary games 190, 200–207
International Non-cooperative Political Equilibrium (INPE)
concept 10, 17–27, 29, 31–2, 33
in issue linkage 79–83
Nash see Nash equilibria
partial agreements equilibrium (PAE) 22–3, 31, 33
see also political equilibrium; stability
equilibrium agreements see equity issues
equity issues
in abatement costs 39, 48–52
allocation-based 46–7, 48
in emission control/reduction 2, 39, 46–61
outcome-based 46–7, 49–50
process-based 46–7, 49
types of 46–8
European Commission 125, 142–3
European union, waste collection legislation 43, 44, 53–7
evolutionary games
dynamic 189, 195–200, 208
equilibria in 190, 200–207
Nash equilibria 189, 193, 195, 196, 208
reaction functions 192–3
in resource exploitation 5, 187–211
two-dimensional 200–207
unilateral defection problem in 187, 188–9
Evstigneev, I.V. 221
Eyckmans, J. 52, 62
feedback games 3, 87, 88–110
dynamically consistent equilibrium in 88
information structure 90–91
results from 92–106
fishing see commercial fisheries
Flam, S.D. 221
Folmer, H. et al. 65–6
Fragnelli, V. 137, 148–9, 152
free-riding incentives 2, 3, 37, 38, 42, 43, 44, 53, 65
issue linkage and 66, 67, 70–71, 76, 83–4
offsetting of 39–40, 66
Friedman, E. 165, 172, 173, 174
gamma games 225
Gerber, H.U. 147
Gillette, L. 52
Global Warming Potential (GWP) 180–82
Gordon, H.S. 187
greenhouse gases 212–13
emission trading and 212–13
growth equations 189–90, 195–200
Hahn, R.W. 221
Haller, H. 35
Hart, S. 10, 21, 35, 225, 246
Heal, G. 62
Hirokawa, M. 29, 31
Holden, S. 35
horizontal equity principle 48
Hourcade, J.C. 52
impact indices see emission impact indices
impact studies see environmental impact
incentives 2, 10
for emission control/reduction 37–9, 40–45, 54, 56, 57–8, 59–60
for free riding 2, 3, 37, 38, 39–40, 42, 43, 44, 53, 65, 66, 70–71
for international agreements 2, 10, 37–9, 40–45, 54, 56, 57–8, 59–60
income levels 12–13
insurance see environmental insurance
insurance companies 145, 159–60
integrated assessment models (IAM) 89–94, 98
international agreements
game theory and 10, 17–27
incentives for 2, 10, 37–9, 40–45, 54, 56, 57–8, 59–60
Kyoto Protocol see Kyoto Protocol
negotiations on see negotiation process
self-enforcing 38
stability of see stability
on transfrontier pollution 9–36
see also climate policy; coalition formation
international economy 42, 93
domestic policy and 11–15
externalities in 166–8
structure of 11–12, 166–8
International Non-cooperative Political Equilibrium (INPE) concept 10, 17–27, 29, 31–2, 33
inverse optimisation 42
IPCC (International Panel on Climate Change) 61
Summary for Policymakers 38
irrigation projects 113
issue linkage 2–3
definition 65
effectiveness of 66
equilibrium in 79–83
free-riding and 66, 67, 70–71, 76, 83–4
game theory and 67–85
in negotiation process 65–86
profitability in 72–9
transaction costs in 65
Italy, waste collection in 126–43
Jacobian matrices 203
Japan 43, 44, 45, 53–7
joint projects
cost sharing methods 3–4, 113–24
game theory and 114–24
structure of 114, 118
see also coalition formation; Kyoto Protocol
Kakutani fixed point theorem 29, 31
Kaneko, M. 26
Kantian allocation rule 47, 49
Katsoulacos, Y. 66
Kopel, M. 10, 21, 35, 225, 246
Kyoto forever hypothesis 41–5, 50, 51, 61, 87, 88, 98, 102
Kyoto Protocol 2, 3, 87
Annex I countries 41–2, 43, 45, 61
Annex B countries 87, 93–4
emission trading under 221
flexibility mechanisms 38
future of 87–110
incentives to sign 40–45
profitability of 40–45
ratification of 38
US non-ratification 61, 222
as self-enforcing 38, 42
stability of 38–9, 40–45, 61
Lagrange multipliers 214–15
Lari, E. 150
Lemaire, J. 146–7
Levhari, D. 187
liability issues 145–6
see also environmental insurance
linear aggregation 174
linkages see issue linkage
Mäler, K.-G. 108
Marchiori, C. 62, 85
Marina, M.E. 148–9, 150
marine pollution 145
market justice criteria 49
market price 189
Mesterton-Gibbons, M. 187
Mirman, L.J. 187
Mohr, E. 66
Montgomery, D.W. 212
Morgenstern, O. 225
Moulin, H. 165, 169, 172, 173, 174
multistage sequential games 90, 91
Nakayama, M. 35
Nash bargaining rule 59
Nash equilibria 40, 45, 68, 69
in coalition games 225, 226, 227
in evolutionary games 189, 193, 195, 196, 208
feedback 88–110
open-loop 87, 88–9, 94–106
in production games 216–17
strict 35
strong 10–11, 19, 23–6, 35, 225, 226, 227, 228–9, 246
in strategic form games 225, 226, 227, 228–9, 231, 232, 235, 236, 240, 241
Nash policy game 68
Nash stability requirement 225
natural resources see resource
exploitation
negotiation process
coalition formation see coalition formation
equity in 39, 46–61
future of 87–110
game theory and 2, 9–36, 89–92
issue linkage in 65–86
stability in 38, 39–40, 46–52
Index

see also environmental issues

pollution control see emission control/reduction

price levels see market price

prisoner's dilemma problem 187, 189, 246

process-based costs 46–7

production games 212–13, 214–20

Cournot-Walras equilibrium 217–20

demand curves 213, 214–18

Nash equilibria in 216–17

production technology 12, 165, 167, 176

Total Factor Productivity (TFP) 93

productivity analysis 176, 177, 180

Cobb Douglas production function 41, 191, 240

profit maximization 187–8, 189, 190–95

profitability issues 22–3, 59–60

definition 39

in emission control/reduction 38, 39–40, 46–52, 90–91, 92–106, 107, 225

in issue linkage 72–9

Kyoto Protocol and 40–45

strong 39, 43, 44–5, 48, 50, 51, 52, 56

weak 39, 43, 44–5, 50, 51, 54–5, 57

public good game 232

quota exchange see emission trading

railway networks 113

Ramsey growth model 93

random order methods 165, 173–4

ratification constraints, in international agreements 9–36

ratification voting game 19–21

Rawls’s criteria 47, 49

renewable resources 208–9

resource exploitation 4–5

commercial fisheries 187–8

cooperation in 188, 189, 190–93, 200–207, 208–9

evolutionary game approach 5, 187–211

growth equations in 189–90, 195–200

renewable resources 208–9

partial agreements equilibrium (PAE) 22–3, 31, 33

payoffs see profitability issues

Petit, M.L.

Control Theory and Dynamic Games 108

political equilibrium

domestic 16–17

international 17–18

non-cooperative 17–27

polluter pays principle 47

pollution

depollution 145

liability costs 145–6

transfrontier 9–36

strategic issues in 65–86

noise pollution 145

non-cooperative games 38, 65

International Non-cooperative Political Equilibrium (INPE) concept 10, 17–27, 29, 31–2, 33

three stage 67–85

unilateral defection 187, 188–9, 190–93, 200–207, 208–9, 224–45

non-cooperative political equilibrium 17–27

non-smooth analysis 222

Norway 222

Okuguchi, K. 187–8, 202, 208

oligopolies

competitive 212–23

Cournot oligopoly game 75, 187–8, 208

emission trading by 5, 212–23

non-cooperation between 188

Olsder, G.J. 90, 108

one-dimensional cost allocation 138–42

one-point solutions 4, 138–9

Shapley values 115, 139–42, 143

open-loop games 3, 87, 88–110

definition 91

as inconsistent 106

information structure 90–91

results from 92–106

optimisation, inverse 42

outcome-based costs 46–7

partial agreements equilibrium (PAE) 22–3, 31, 33

payoffs see profitability issues

Petit, M.L.

Control Theory and Dynamic Games 108

political equilibrium

domestic 16–17

international 17–18

non-cooperative 17–27

polluter pays principle 47

pollution

depollution 145

liability costs 145–6

transfrontier 9–36

see also environmental issues

pollution control see emission control/reduction

price levels see market price

prisoner’s dilemma problem 187, 189, 246

process-based costs 46–7

production games 212–13, 214–20

Cournot-Walras equilibrium 217–20

demand curves 213, 214–18

Nash equilibria in 216–17

production technology 12, 165, 167, 176

Total Factor Productivity (TFP) 93

productivity analysis 176, 177, 180

Cobb Douglas production function 41, 191, 240

profit maximization 187–8, 189, 190–95

profitability issues 22–3, 59–60

definition 39

in emission control/reduction 38, 39–40, 46–52, 90–91, 92–106, 107, 225

in issue linkage 72–9

Kyoto Protocol and 40–45

strong 39, 43, 44–5, 48, 50, 51, 52, 56

weak 39, 43, 44–5, 50, 51, 54–5, 57

public good game 232

quota exchange see emission trading

railway networks 113

Ramsey growth model 93

random order methods 165, 173–4

ratification constraints, in international agreements 9–36

ratification voting game 19–21

Rawls’s criteria 47, 49

renewable resources 208–9

resource exploitation 4–5

commercial fisheries 187–8

cooperation in 188, 189, 190–93, 200–207, 208–9

evolutionary game approach 5, 187–211

growth equations in 189–90, 195–200

renewable resources 208–9
Index

Soviet Union, former (FSU) 42, 43, 44, 45, 53–7
see also Russia

stability
definition 39–40, 224
internal 51
intra-coalition 40
of Kyoto Protocol 38–9, 40–45, 61
in negotiation process 38, 39–40,
46–52
see also equilibria

Stackelberg game 226

strategic complementarity 239–40
strategic form games 5, 224–45
Cobb-Douglas utility function in
240–45

conjectural cooperative equilibrium
(CCE) in 5, 226–40

Nash equilibria in 225, 226, 227,
228–9, 231, 232, 235, 236, 240,
241

strong Nash equilibria 10–11, 19,
23–6, 35, 225, 226, 227, 228–9,
246

subgame perfectness 108

submodular games 5, 226–7

equilibrium in 239–45

symmetric 5

Suijs, J. 147, 149

Cooperative Decision Making...
147

supermodular games 115, 226

conjectural cooperative equilibrium
(CCE) in 230–39

symmetric 5, 227, 230–39

Szidarovszky, F. 187–8, 202, 208

Taskin, F. 165
taxation systems, cost sharing in 3–4,
117
technological cooperation 66, 73,
74–5, 84, 93

Thomas, J.P. 66

Tijjs, S.H. 33, 113, 153
time consistency/constraints
in climate policy 87–8, 92–106, 107
in resource exploitation 5, 188–9,
190, 200–207, 209

Tol, R.S.J. 47

Tollison, R.D. 65
Index

Topkis, D.M.

Supermodularity and Complementarities 226, 230, 231

Total factor Productivity (TFP) 93
trade liberalisation 66
trade-offs 3
tragedy of the commons problem 187
transaction costs 65, 221
transfer schemes see emission trading
transferable-utility production games 5, 213, 219–20
transfrontier pollution, international agreements on 9–36, 37
teach agencies 137
TU game 153–4, 157
Tulkens, H. 10, 17, 23, 26, 27, 31, 35, 43, 52, 62, 225, 246

UN Framework Convention on Climate Change 46
unanimity voting 84
unilateral defection problem
in cooperative games 187, 188–9, 190–93, 200–207, 208–9
deviator’s curse 240
in strategic form games 224–45
United States 43, 44, 53–4, 56–7
emission trading in 221
Kyoto Protocol, non-ratification of 61, 222

Valverde, J. et al. 108
van den Nouweland, A. 33
van der Ploeg, F. 88, 108
Varian’s no-envy criterion 47
vector cost allocation 4, 164–5, 168–74, 177

as restrictive 183
vertical equity principle 48
Visual Basic 6.0 programming language 126, 132–3
von Neumann, J. 225
voting behaviour 10
game theory and 2, 15–17, 19–21, 67, 84
preferences 27
unanimity voting 84
see also decision making
waste collection 125–6
container numbers needed 127–9
cost of 131–2, 136, 139, 143
cost sharing in 4, 125–44
curb side 126–8
EU legislation on 4, 125, 142–3
game theory and 126–44
quantitative evaluation of 4, 126–32
time needed for completion 130, 135, 136
vehicle numbers needed 128, 129–30, 131
water pollution 145
welfare distribution 89, 218–20
abatement costs and 47, 48
Weyant, J. 52
Willett, T.D. 65
Wooders, M. 33
Yang, Z. 52, 62
Yi, S.-S. 35, 62, 246
Young, H.P. 113
Zaim, O. 165
zero-sum games 225