Index

11 world regions 174

A1 scenarios 25–6
A1-550 53–4
A1B 27
A1C 27
A1G 27
A1T 34–5

A2 scenarios 25–6, 28
A2-550 45, 52, 53, 54

Acidification
sustainable-development scenarios 75–6

AIM model 74

Arthur, W.B. 84

B1 scenarios 25–6
B1B 34
B1G 34
B1T 34

B2 scenarios 25–6, 28
B2-550 45, 52, 53

Barro, R.J. 62, 111
Bos, E. 55

Brundtland Commission 2, 161

carbon intensity
Kaya identity 13–14
SRES database 20–24
sustainable-development scenarios 69–71

CH4 emissions
IIASA’s scenarios 46–7, 49
climate sensitivity parameters 47

CO2DB 121

CO2 emissions
CO2 mitigation scenarios 33, 51–4
high-impact scenarios 33
IIASA’s scenarios 45, 48
PF and OG scenarios 147–50

SRES database 22
sustainable-development scenarios 37, 71–3

CO2 mitigation scenarios
analysis of CO2 mitigation scenarios 51–4
characterization of CO2 mitigation scenario 30–31
classification of CO2 mitigation scenario 25
definition 23
constraints
capacity constraints (technical description) 199–203
dynamic constraints (technical description) 193, 197–9

Cropper, M.L. 66
dev Vries, B. 166
decarbonization see carbon intensity
demand and supply elasticities 182
Demeny, P. 58
discount rate 65–6

Durand, J.D. 58
dynamic constraints 193, 197–9

Easterlin, R.A. 55
economic growth
11 world regions PF and OG scenarios 112–14
CO2 mitigation scenarios 32
high-impact scenarios 32
intergenerational equity 64–5
intragenerational equity 61–4
Kaya identity 11–12
PF and OG scenarios 112–14
SRES database 22
sustainable-development scenarios 36, 58–61
economic sustainability 3
Klaassen, G. 2, 5, 104
Kram, T. 46
Kuznets curve 152
Kyoto Protocol 147, 148, 179

land use
 sustainable-development scenarios 75–6
Lee, H.-C. 20, 58, 70, 71, 72, 76
load regions 180–82
lock-in effect 84
long-term environmental stress 5
Lowenstein, G. 66
Lutz, W. 26, 55

McDonald, A. 76, 164
McKelvey diagram 17–18, 117
Maddison, A. 11, 114
MAGICC model 73, 74
Manne, A.S. 209
Marchetti, C. 39, 95, 165
market shares of energy technologies
 frequency distributions of market shares in scenarios 102–6
 IIASA's scenarios 39–45
Marland, G. 48, 72
Masters, C.D. 118
MERGE model 5 209
MESSAGE
 mathematical model description 179–209
 MESSAGE inputs 173–8
 MESSAGE outputs 178–9
 non-technical description 16
 technical introduction to MESSAGE 168–79
MESSAGE MACRO 209–10
Messner, S. 210
methane 46–7, 68, 74, 119
methanol 27, 52, 135, 146
Metz, B. 17, 25, 168, 211
Miketa, A. 16, 157
MINOS 208
Montreal Protocol 74
Morita, T. 20, 58, 70, 71, 72, 76
MS clusters
 definition 85
 identification of MS clusters 97–106
Mukherji, A. 66
Munasinghe, M. 3
Murtagh, B.A. 208
Myhre, G. 73
Nakićenović, N. 82, 84, 115, 118, 162, 168, 211
nitrogen 29, 50, 74, 75, 179
normative scenarios 9
nuclear energy 165
 IIASA scenarios 35, 43, 44
 sustainable-development scenarios 133, 134, 135, 140, 143, 144
 technology clusters 92, 94, 96
objective function and cost counters
 MESSAGE (technical description) 205–8
OG scenario see Oil and Gas rich scenario
Oil and Gas rich scenario 109
O’Neill, B. 15
Opschoor, J.B. 2
PA clusters
 definition 84
 examples 95–7
path-dependency 84
Pearce, D. 2
PF scenario see post-fossil fuel scenario
photovoltaic see solar photovoltaic population
 in CO2 mitigation scenarios 32
 high-impact scenarios 32
Kaya identity 11
PF and OG scenarios 111–12
SRES database 22
sustainable-development scenarios 36, 55, 58
post-fossil fuel scenario 109
primary-energy consumption
 11 world regions PF and OG scenarios 138–42
 in CO2 mitigation scenarios 32
 high-impact scenarios 32
Kaya identity 11
PF and OG scenarios 126–33
SRES database 22
sustainable-development scenario 36
primary-energy extraction
MESSAGE (technical description) 175
primary-energy intensity of GDP
Kaya identity 12–13, 69
SRES database 22
sustainable-development scenarios 69–70
primary-energy mix
11 world regions PF and OG scenarios 138–42
IIASA’s scenarios 38
PF and OG scenarios 126–33
Raper, S.C.B. 32, 73
Reference Energy System 17
technical description 169–73
Research and Development (R&D) 6, 110, 164
PF and OG scenarios 156–8
reserves and resources 66–8
world resource base estimate 118
reserves to production ratio 66–9
PF and OG scenarios 131
resource extraction
MESSAGE (technical description) 183–7
Riahi, K. 17, 31, 51, 74
Richels, R. 209
Roehrl, R.A. 17, 31, 51, 74
Rogner, H.-H. 17, 18, 66, 68, 117, 118, 119
Saunders, M.A. 208
SC (steam cycle) cluster 88
scenario families 25–6
scenario generator 15, 210–11
scenarios
definition 4–5
scenario analysis 9–10
Schrattenholzer, L. 16, 20, 76, 157, 164, 210
Scientific Assessment of Ozone Depletion 74
Seebregts, A. 82
Siberia 27
Singapore 62
Smith, S.J. 45
social external costs 95
social sustainability 3
socioeconomic inequity 5
solar photovoltaic (PV) technology cluster 100–101
Special Report on Emission Scenarios (SRES) 14, 25, 162, 211
SRES database 20–24
steam cycle 86
Strubegger, M. 168–212
sulfur emissions
in CO2 mitigation scenarios 33
high-impact scenarios 33
IIASAs scenarios 45, 48
PF and OG scenarios 151–4
sustainable-development scenarios 37
sustainable-development scenarios 31–5, 54
analysis of sustainable-development scenarios 54–76
characterization of sustainable-development scenario 31–5
classification of sustainable-development scenarios 23, 25
definition 5–6
storylines 15, 25
Swart, R. 17, 20, 25, 28, 46, 115, 162, 211
synthetic fuels 135
PF and OG scenarios 135
system cost 156
technological learning 16
technology clusters 39
definition 82
examples 106–7
technology improvement rates
high-impact scenarios 30
sustainable-development scenarios 36
Thaler, R.H. 66
Third Assessment Report 25, 211
Tietenberg, T. 2, 3
Totschnig, G. 168–212
TP clusters
definition 83
examples 87–90
transport sector
11 world regions PF and OG scenarios 144–7
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Nations Framework</td>
<td></td>
</tr>
<tr>
<td>Convention on Climate Change</td>
<td>23, 147, 148</td>
</tr>
<tr>
<td>useful-energy demand</td>
<td></td>
</tr>
<tr>
<td>see end-use energy demand</td>
<td></td>
</tr>
<tr>
<td>Vu, M.T.</td>
<td>55</td>
</tr>
<tr>
<td>Watson, R.</td>
<td>11</td>
</tr>
<tr>
<td>Wigley, T.M.L.</td>
<td>30, 32, 51, 73</td>
</tr>
<tr>
<td>World Energy Council</td>
<td>25</td>
</tr>
<tr>
<td>world regions see 11 world regions</td>
<td></td>
</tr>
<tr>
<td>Zhu, B.</td>
<td>168–212</td>
</tr>
</tbody>
</table>