Index

Abramson, P.R. 283

abundance 232–3

active solar heating (ASH) systems 154, 155, 161–4, 168, 169

adaptive double hypnosis 259

afterburning incineration 191–6

agency theory
 absence of 222
 role of agent 310–11

agricultural planners 124, 125

air pollution 115–16

Allen, S. 161

analytic models 45–6, 48–9, 56–67
 linking to regional innovation systems 71–2

Andersen, B. 11

Andrews, C. 222

Ardekani, S.A. 35

Argyris, C. 101–2

Asnæs power station, Denmark 37, 39, 78

ASSESS on-line environmental management package 66

Australia, landscape management 260, 265–7

Ausubel, J.H. 35

awareness raising, IS programmes 84–5, 89–91, 93–4

Axelsson, B. 207

Ayres, R.U. 32, 77, 81, 83

Baas, L.W. 78, 81, 83

Bakker, K. 240, 241

Balchin, S. 49

Ball, P. 239, 244

Bangladesh, water use 107

Barker, T. 59

Barrett, J. 55

Baum 163

Beauregard, R. 9

Beck, D.E. 265

Beck, U. 279, 281–2, 286

Becker, G.S. 204

behaviour changes, sources of 230–31

benchmarking 45–6, 47–9, 66–7

Berkhout, F. 6, 9, 20, 36, 66

Beynon, H. 150

Bianchi, M. 203–4

bio-ecological processes 257–8

biocoeosis 33

biological ecosystem 31, 33–4

Bioteknisk Jordrens 37, 39

Blackley, D.M. 154

blame culture 282

Boons, F.A.A. 83

Bordass, B. 155

Bosselaar, L. 162

Bourdieu, P. 223, 225–6, 234

Braczyck, H. 71

Brattebo, H. 100

Brauch, S. 179

Braungart, M. 100

Bremner, N. 13

Brettell, S. 59

Bringezu, S. 61

Brunner, P. 61

Bruntland Commission 31

buffer effect 212–13

Burström, F. 81

Burt, D.N. 207

Business Council for Sustainable Development (BCSD-UK) 84, 89, 93, 98, 102

business environment 47–9, 86

business models 71–2

business, developing countries 122–3

buyer-seller relations 206–7

By-product Synergy (BPS) programme 89

Cadman, D. 156

Calantone, R.J. 204

Callon, M. 241, 290
Index

calorific value, solid waste 115, 184, 189, 193–4
Canada, agriculture 258
capabilities, industrial consumption as 214–15
capital, identification of 51–2
carbon dioxide emissions 62
carrying capacities of regions 120
case studies, developing countries 111–19
Cass, N. 226, 229
Castells, M. 70, 278
Cen, K. 177, 182
Cen, Yuhong 175–98
Centre for Research on Innovation and Competition (CRIC) 4
change 262
change agents
consumption as 204–5
IS programmes 80–84
Chappells, H. 14, 226, 229, 232, 245
Chemicals Northwest see Enviros Consulting
Chertow, M. 37, 46, 77, 78, 79, 81, 101, 108
Chi, Y. 177, 182
China, waste disposal see waste disposal, China
Chiu, A. 34
Christensen, J. 37
Christie, I. 71
city planners, developing countries 126
cleaner production 5–6
climate change levy (CCL) 87–8
closure, drive to 306–7
Coccossis, H. 47, 68
Coenen, R. 279
Cohen, W. 207
Cohen-Rosenthal, E. 78, 101
COICOP energy database 62, 64
combinatorial consumption 210–14
combined heat and power (CHP) units 87–8, 89–90, 91, 95
combustion processes 193–4, 195
commodity flows 221
Commoner, B. 261
communication 264–5
Communities Scotland 167
companies
decision-making 206, 209–10
developing countries 122–3
compatibility, innovations 80–84
competent practitioners 227–8
complex systems 11–12
composite demand 211
composting, China 181–3, 186–90
Conca, K. 14
conceptual metaphors
compatibility/validity 306–7
importance 311
Conesa, E. 275, 280–81
conspicuous consumption 224–5
construction industry, sustainable technologies
active solar heating 161–4
overview 153–5
policy implications 168–9
role of government/inter-firm relations 155–6
sustainable innovation/inter-firm relations 164–7
thermal insulation 157–61
consumption 13–14, 22
changes in 230–31
patterns 8
see also practice theory view of consumption
consumption-centred mass balance 62–4
controlled landfill, China 181–2
convention, development of 233–4
conventional materials, thermal insulation 157–61
Cooke, P. 47, 71
Coombs, R. 8, 17
Cooper, L.G. 209
coordination, IS programmes 98, 102
core organizations, frozen peas industry 140–42
corporate governance 275, 294–6
competing models 280–81
Cosgel, M.M. 204, 214–15
Côté, R.P. 33, 78, 81, 101
Counsell, C. 46
Cowan, C.C. 265
creative destruction feature of innovation 11–12
cropping patterns 124
Curwell, S.R. 159
cycles 49–51

Dale, B.G. 208
Damodar Valley, energy industry 118–19
Darier, E. 59
data analysis, IS programmes 85, 91, 95–6
data collection, IS programmes 85, 89–91, 94–5
De Bretani, U. 211
de Hoan, M. 49
decentralization 274
decision-making
 firms 206, 209–10
 participatory 287–8, 289–90
demand for innovations 8–9
demand forecasting 123
dematerializing activities 35–6, 221
deMause, L. 262
den Hond, F. 77
Denmark, construction industry 161, 162, 163, 164
Department of Agriculture, Quebec 258
design and build construction 166
desrochers, P. 78
developing countries
 case studies 111–19
 companies and business 122–3
 environment planners 120–22
 ground realities 106–8
 implementation of industrial ecology 119–20
 planning platform 108–11
 public utilities 123–6
 regional perspective 111
development agencies 125
devolved administrations UK 88
Dewick, P. 9, 11, 17, 153–69
Dicken, P. 13
differentiation processes 224–7, 229
dirt, social construction of 232
Distinction (1984) 225
distributed innovation processes 8
distribution chain, frozen peas industry 139–40, 144
domestic consumption, China 176–7, 183–4, 197–8
domestic energy consumption 153–5, 157–64
domestic water metering 240
Doran, D.K. 159
Dosi, G. 79
double loop learning 101–2
Douglass, Mary 231–2
Ducatel, K. 280
e-commerce 69–71
Earl, P.E. 204
eating habits 235
eco-industrial parks (EIPs) 33–4
eo-redesigners 265–8
eo-restructuring 32–6
Ecological Agriculture Projects 258
ecological economics 220
ecological footprint 62
ecological understandings and biases 263–4
ecologies of industries 10–11
ecology of intermediaries 249–50
Economic and Social Research Council (ESRC), UK 4, 216
economic capital 51–5
economic characteristics, developing countries 110
economic considerations, IS programmes 101
economic feudalism 297
economic flows 50–51
economic inputs, frozen pea industry 145–7
economic logics 243
education strategies 230, 287–8
efficiency-substitution-redesign model 257
effluent treatment, India 115, 117
Egan, J. 156
Ehrenfeld, J. 37, 77, 100, 101, 108
Ekins, P. 66
Ellington, R. 221
emissions, minimization of 34–5
end-of-pipe approach 28
energy dependence on non-renewable sources 36
see also waste-incineration-for-energy (WIE) technologies
Index

energy consumption, domestic 153–5, 157–64
energy industry, Domodar Valley region 118–19
energy managers 124
engineering industry, Haora 115–16
Environment Agency (EA), UK 247
environment planners 120–22
environmental capital 51–5
environmental impact assessment (EIA) 120
environmental impact, insulation materials 157–61
environmental logics 243
Enviros Consulting 89, 93
ENWORKS on-line data capture tool 66
equilibrium 308–9
Erkman, Suren 11, 15, 16, 17, 28–41, 106–27, 238
Esty, C.D. 101
ethics 23
Eurobarometer surveys 283
Europe, construction industry see construction industry
European CN (Classification Nomenclature) 62
European Commission 162
White Paper on European Governance 288–9
European Union
landfill directive 96
Regional Development Funds 88
surrender of sovereignty to 274
Water Framework Directive 244–5
expert knowledge 297, 307

Faes, W. 208
familiarizer effect 212
farmers, frozen peas industry 139, 142–3
FedEx 221
feedback information loops 208–9
finance, access to 147
Firebaugh, G. 284
Fischhoff, B. 222
Flanagan, Kieron 272–98
Fletcher, J. 257
flexibility effect 213
fluid spaces, water management 247–9
fluidized bed incineration 191–6
food consumption/production systems
food systems and transformations 132–4
frozen peas 134–47
overview 131
Fordist production/consumption system 132–4, 134
Forum for the Future of the Sustainable Pea 135
fossil fuels 36, 115–16, 118–19, 190–91
Foster, Chris 11, 12, 17, 131–50
Foxall, G.R. 207, 208, 214
France, solar heating 162, 163
Francis, C. 32, 33
Freeman, C. 48, 68
freezing operations, peas 139, 140, 144, 147
Frosch, Robert 31–2
frozen peas
core organizations 140–42
industrial ecology and innovation 135–7
inputs from the Technosphere 142–4
materials flow 137–40
overview 134–5
socio-economic inputs and structures 145–7
Fukuyama, Francis 273
functionality effect 213
Funtowicz, S. 280

Gadrey, J. 210
Gallopoulos, Nicholas 31–2
Gallouj, F. 210
Gann, D. 154, 156
Gardiner, B. 59
Gavigan, J. 280
Geels, F. 292, 293–4
geo-politics 22
George, G. 207
Germany
construction industry 156, 161
consumption 229
solar energy 162, 163, 164
Gertler, N. 77, 101
Gibbons, M. 277
Giddens, A. 244
Gilbert, J.D. 164
Giljum, S. 55
Index

glazed solar collectors 161–2
Global Business Network 32
global initiatives, solar heating 162
globalist business model 71–2
Glynn, S. 290
good governance 274–5
goods, new/existing 212–14
goods/services, interlinked nature of 211–12
Gouldson, A. 46
governance 14–15, 22
 challenges for 275–80
 current and emerging responses in 288–90, 296
 new modes of 296–8
 and politics of manufacturing 290–98
 significance of 272–5
 and social change 281–90
see also corporate governance
government 273–5, 294
government initiatives, construction industry 162–3, 164–5, 168–9
government policies 23
 construction industry 155–61, 168–9
 UK 87–8
Graedel, T.E. 4
Graham, S. 241, 245
Granovetter, M. 10, 13
grate incineration 191–6
Green, K. 3–23, 47, 131–50
Greenfield, H.I. 211
Gronow, J. 226
Gualerzi, D. 203–4
Guide, V.D.R. 221
Gupta, J. 6
Gyproc 37, 39

habituated practice 235
Häkansson, H. 206
Hamilton, G. 13
Hammersley, R. 54
Hamrin, J. 179
Han, J.K. 207, 215
Hand, M. 224, 233, 234
Handley, J. 52, 69
Haora, engineering industry 115–16
Harland, E. 159
Harper, D. 168
Harrison, P. 159
Harrison, R. 159
harvesting methods, peas 139, 140
Harvey, D. 244
Harvey, M. 4, 8, 11, 12, 17, 132, 150
Haughton, G. 46
Hayes, E. 246
health/social logics 243, 244
Heath, P. 159, 160
Hekkert, M. 241
Helper, S. 210
Herman, R. 35
Hertin, J. 36, 66
Hertwich, E. 14
Hill, Stuart, B. 15, 20, 255–69
Hirschman, E.C. 204
history of industrial ecology 30–32
Hitchens, D. 68
Holt, K. 206, 207
household consumption 223
Howe, J. 245
Howells, Jeremy 18–19, 203–16
Howson, T.G. 208
Hubacek, K. 55
Hull, R. 8
humans 264
Humber Region industrial symbiosis programme (HISP), 97–8
 awareness raising/recruitment/data collection 89–91
 data analysis 91
 implementation and support 91–3
 observed characteristics 99
Humphrey, C.R. 284
hydrological cycle 244
implementation, IS programmes 85, 91–3, 96
incentives for waste disposal, China 179–81, 190–91
incineration technologies, China 185–90
India
 energy industry 118–19
 engineering industry 115–16
 leather industry 116–18
 small scale industries 106–7
 textile industry 113–15
individual consumption 206
industrial activities, evaluation of merits 121
industrial consumption and innovation
combiniational and process-driven
212–14
consumption and the firm 203–5
perspectives 205–10
as routines/practices/capabilities
214–15
single event or combiniational stream
210–12
industrial ecology
in action 22
agenda 32–6
deep approaches 23
and ecologies of industries 10–11
frozen peas industry 135–7
history 30–32
implementation of concepts 119–20
implications of practice theories of
consumption 234–5
and innovation 21
overview 28–30
perspectives in 4–6
scope of 40–51
see also political ecology; social
ecology

Industrial Ecology: An Environmental
Agenda for Industry (1991) 32
industrial ecosystem 31
industrial futures and social change
285–8
industrial metabolism 30
industrial symbiosis (IS) networks
business environment 86
determinant factors/role of change
agents 80–84
development of networks 84–5
discussion 96–9
government policies/legislative
framework 87–8
Humber region programme 89–93
importance of nationwide
programme 102–3
innovative approach to regional
economies 79–80, 84
Kalundborg 36–9
Mersey Banks programme 93–6
overview 77–9
regional governance bodies 88
role of information 309
sustainability of networks 100–102
industrial system, restructuring 32–6
industrial transformation 6
industrial/modern food production
systems 132–3
industry 261
industry planners 121, 122
inertia 230
information society 277
information/information failure 308–9
informational factors, IS developments
80–84
infrastructural settings, practice theory
229
infrastructure
developing countries 110
transformation of 239–41
Inglehart, Ronald 283, 284
innovation 21
barriers to 155, 164–7
developing countries 123–4
frozen peas industry 135–7
implications of segmentation of
Chinese WIR markets 191–6
role of consumption 204–5
solar heating 161–4
spatial considerations 244–9
studies, perspectives from 7–10
thermal insulation 157–61
as variety generating process 197
see also industrial consumption and
innovation; spaces of
innovation
innovation systems
implications and future research
72–3
linking analytic models to regional
innovation systems 71–2
regional innovation in context
68–9
structural change and resource
productivity 69–71
Innovation Tomorrow 276, 297
innovative approach to regional
economies 79–80
innovators 265–8
input substitution 122
inputs, frozen peas industry 142–4
Institute for Thermal Power
Engineering, Japan (ITPE) 186,
190–91
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>instituted organization of socio-economic life</td>
<td>12–13</td>
</tr>
<tr>
<td>institutional factors, active solar heating systems</td>
<td>161–4</td>
</tr>
<tr>
<td>institutional settings, practice theory</td>
<td>229</td>
</tr>
<tr>
<td>institutions</td>
<td>22</td>
</tr>
<tr>
<td>Integrated Sustainable Cities Assessment Method (ISCAM)</td>
<td>49</td>
</tr>
<tr>
<td>inter-firm relations, construction industry</td>
<td>155–6, 164–7, 168–9</td>
</tr>
<tr>
<td>interdependence, regional and network spaces</td>
<td>246</td>
</tr>
<tr>
<td>intergenerational value shifts</td>
<td>273–5</td>
</tr>
<tr>
<td>intermediary organizations, water management</td>
<td></td>
</tr>
<tr>
<td>diversity and work of</td>
<td>241–4</td>
</tr>
<tr>
<td>ecology of intermediaries</td>
<td>249–50</td>
</tr>
<tr>
<td>emergence of</td>
<td>239–41</td>
</tr>
<tr>
<td>intermediary space</td>
<td>244–9</td>
</tr>
<tr>
<td>overview</td>
<td>238–9</td>
</tr>
<tr>
<td>intermediary space networks</td>
<td>245–9</td>
</tr>
<tr>
<td>regions</td>
<td>244–5</td>
</tr>
<tr>
<td>International Energy Agency (IEA)</td>
<td>162</td>
</tr>
<tr>
<td>International Institute for Industrial Environmental Economics (IIIEE)</td>
<td>84, 89</td>
</tr>
<tr>
<td>Ironmonger, D.S.</td>
<td>204</td>
</tr>
<tr>
<td>IVEM energy database</td>
<td>62</td>
</tr>
<tr>
<td>Ivory, C.</td>
<td>165</td>
</tr>
<tr>
<td>Jackins, H.</td>
<td>259, 265</td>
</tr>
<tr>
<td>Jackson, T.</td>
<td>5–6, 14, 56</td>
</tr>
<tr>
<td>Jacobs, M.</td>
<td>14, 54</td>
</tr>
<tr>
<td>Jaffe, A.B.</td>
<td>156</td>
</tr>
<tr>
<td>Jansen, F.</td>
<td>154</td>
</tr>
<tr>
<td>Jiang, J.</td>
<td>190, 191</td>
</tr>
<tr>
<td>Josselson, R</td>
<td>264, 265</td>
</tr>
<tr>
<td>Journal of Industrial Ecology</td>
<td>32</td>
</tr>
<tr>
<td>Joy, Bill</td>
<td>272</td>
</tr>
<tr>
<td>Kalundborg, Denmark</td>
<td>36–9, 77–8, 100, 108–9, 111</td>
</tr>
<tr>
<td>Kanagy, C.L.</td>
<td>284</td>
</tr>
<tr>
<td>Kay, N.M.</td>
<td>205</td>
</tr>
<tr>
<td>Kaya, Y.</td>
<td>66</td>
</tr>
<tr>
<td>Keenan, M.</td>
<td>290</td>
</tr>
<tr>
<td>Keirsey, D.</td>
<td>265</td>
</tr>
<tr>
<td>Kemp, R.</td>
<td>292, 293–4</td>
</tr>
<tr>
<td>Kern, R.</td>
<td>225</td>
</tr>
<tr>
<td>Kerr, A.</td>
<td>161</td>
</tr>
<tr>
<td>Keyline system for landscape management</td>
<td>260, 266</td>
</tr>
<tr>
<td>Kim, N.</td>
<td>207, 215</td>
</tr>
<tr>
<td>Kimmins, S.</td>
<td>159</td>
</tr>
<tr>
<td>Klein, G.A.</td>
<td>206</td>
</tr>
<tr>
<td>knowledge</td>
<td>262–4, 297, 308–9</td>
</tr>
<tr>
<td>knowledge-based economy</td>
<td></td>
</tr>
<tr>
<td>governance</td>
<td>278–80</td>
</tr>
<tr>
<td>governance in</td>
<td>275–8, 295</td>
</tr>
<tr>
<td>knowledge-intensive business services</td>
<td>(KIBS) 276</td>
</tr>
<tr>
<td>Kohl, D.H.</td>
<td>258</td>
</tr>
<tr>
<td>Kong, X.-W.</td>
<td>190, 191</td>
</tr>
<tr>
<td>Korhonen, J.</td>
<td>81, 101</td>
</tr>
<tr>
<td>Kuhn, T.S.</td>
<td>262</td>
</tr>
<tr>
<td>Kuwayama, M.</td>
<td>109</td>
</tr>
<tr>
<td>Kwa, C.</td>
<td>250</td>
</tr>
<tr>
<td>Labour</td>
<td></td>
</tr>
<tr>
<td>developing countries</td>
<td>110</td>
</tr>
<tr>
<td>frozen pea industry</td>
<td>145</td>
</tr>
<tr>
<td>Lai, Shou-Cheng</td>
<td>226</td>
</tr>
<tr>
<td>Laing, R.D.</td>
<td>259</td>
</tr>
<tr>
<td>Lambert, A.J.D.</td>
<td>83</td>
</tr>
<tr>
<td>Lancaster, K.J.</td>
<td>204, 211</td>
</tr>
<tr>
<td>land use planners</td>
<td>125</td>
</tr>
<tr>
<td>land-related issues, developing countries</td>
<td>110</td>
</tr>
<tr>
<td>Landfill Tax Credit Scheme, UK</td>
<td>62, 87</td>
</tr>
<tr>
<td>landfill, China</td>
<td>177–9, 181–3, 186–90, 191</td>
</tr>
<tr>
<td>landscape management</td>
<td>260, 265–7</td>
</tr>
<tr>
<td>Langlois, R.N.</td>
<td>204, 205, 214–15</td>
</tr>
<tr>
<td>Latham, M.</td>
<td>156</td>
</tr>
<tr>
<td>Latour, B.</td>
<td>239</td>
</tr>
<tr>
<td>Lauer, R.M.</td>
<td>265</td>
</tr>
<tr>
<td>Law, J.</td>
<td>239, 244, 245, 247, 248</td>
</tr>
<tr>
<td>Leadbeater, C.</td>
<td>46, 50</td>
</tr>
<tr>
<td>LEAP model</td>
<td>64</td>
</tr>
<tr>
<td>learning organizations</td>
<td>277–8</td>
</tr>
<tr>
<td>learning, IS programmes</td>
<td>101–2</td>
</tr>
<tr>
<td>leather industry, Tamil Nadu</td>
<td>116–18</td>
</tr>
<tr>
<td>legislative framework</td>
<td></td>
</tr>
<tr>
<td>developing countries</td>
<td>110</td>
</tr>
<tr>
<td>UK</td>
<td>87–8</td>
</tr>
<tr>
<td>Levett, R.</td>
<td>71</td>
</tr>
</tbody>
</table>
Li, Xiaodong 175–98
life cycle assessment (LCA) 145
Lifset, R. 4
Limoges, C. 277
Loasby, B.J. 204
localist business model 71–2
Locke, W. 258
logics, translation of water into 242–3
Lovins, A.B. 35, 46
Lovins, L.H. 35, 46
Lowe, E.A.. 33, 81, 101
Lundvall, B-A. 207
Lury, C. 226
Lynch, J.G. 214
Macdonald-Stewart Foundation 258
Mach, C.G. 159
MacRae, R.J. 257, 258
macro-energy 221
Malin, N. 155
Maniates, M. 14
manufacturing, politics of 290–98
mapping, resource productivity 52–5
market regulation strategies 230
market segmentation 226
market-based inequities 258
Marshall, Alfred 211, 231
Martin stoke technology 184–5
Marvin, Simon 8, 9, 19, 238–50
mass balance programme 45, 60–62
material consumption 61
Material Flow Analysis (MFA) 30, 60–61
material flows 50–51
frozen peas industry 137–40
models 62–4
material loops, closure of 34–5
McDonough, W. 100
McEvoy, D. 52, 69
McMeekin, A. 8, 9, 12, 13, 132
Medd, Will 8, 9, 19, 238–50
Mersey Banks industrial symbiosis (MBIS) programme 98–9
awareness and recruitment 93–4
data analysis and identification of
opportunities 95–6
data collection 94–5
implementation and support 96
observed characteristics 99
project gestation 93
Metcalfe, J.S. 11, 204
Michaelis, L. 56
Miles, Ian 272–98
Miles, J. 7
Ministry of Construction, China 184, 186
Minx, J. 55
Miozzo, Marcela 9, 11, 17, 153–69
Mirata, Murat 16, 69, 77–103
Mitsubishi Heavy Industries 184, 185
Moffat, L.A.R. 209
Mol, A. 244, 245, 247
Molendijk, K. 292, 293–4
Molina, Alfonso 290, 291–2
Moncada-PaternòCastello, P. 280
monopolistic water management 240–41
Mont, O. 36
Morgan, K. 48, 297
Morley, A. 297
Morton, B. 9, 13
Moss, T. 226, 229, 245
motivation and risk 282–5
Mulligan, M. 267
multi-level governance (MLG) 275, 294
multi-levelness 307–8
municipal sold waste (MSW) problem, China see waste disposal, China
Murphy, J. 46
Nakicenovic, N. 36
Nam, C.H. 154
National Academy of Engineering, US 30–31
National Five-year Plans, China 182
National IS programme (NISP), UK 84, 102–3
natural hazards 282, 285
natural materials, thermal insulation 157–61
nature 260–61
Nemerow, N. 34
Netherlands, construction industry 156, 162, 163, 164
network society 278–80
networked business model 72
networks, water management 245–9
New, S. 9, 13
new economic sociology 310
new industrial food production systems 133–4
newly industrializing countries 15–16
Ni, M. 177, 182
non-glazed solar collectors 161–2
Norgaard, R. 262
North West Chemicals Initiative (NWCI), UK 93, 94, 95
North West Development Agency (NWDA) 93
North West Regional Water management 245–6
novelty, search for 204–5
Novo Nordisk 37, 39
Nowotny, H. 277
O’Farrell, P.N. 209
obsolescence 232–3
Olwyler, K. 257
ontologies of consumption 220–24
openness versus closure 307
opportunity identification, IS programmes 95–6
organic food production systems 133, 140–41, 149, 258
organization, development of 233–4
organizational factors, IS developments 80–84, 97–9
organizational knowledge 277–8
packaging 226
Pae, J.H. 207, 215
Pakko, M. 70
Parkinson, S.T. 207
payback, solar heating 161–2, 163
Pearce, I.H. 259, 264
Pearce, Richard, 16, 69, 77–103
Peckham Experiment 259
Pedersen, O.G. 49
Penrose, Edith 214
PERFORM database 66
performance insulation materials 157–61
solar heating 161–2
performance effect 213
personal change 255–6
Peters, B.G. 273, 274, 275
Peterson, R.A. 225
Peterson, S.R. 156
Pierre, J. 273, 274, 275
political administration functions, IS programmes 96–7
political ecology challenges for governance 275–80
competing corporate governance models 280–81
governance and politics of manufacturing 290–98
governance and social change 281–90
significance of governance 272–5
political factors, IS developments 80–84
political governance 294
politics of manufacturing 290–98
politics, current and emerging responses in 288–90
pollution, India 114–19
Polyani, K. 4
Porter, M.E. 101, 155
Portney, P.R. 156
postmaterialism 283–4
practice theory view of consumption 149–50, 214–15
change in practices/consumption 230–31
contemporary example 233–4
historic example 231–3
implications of practice theories 234–5
institution and infrastructural settings 229
ontologies of 220–24
preamble to practice theory 224–7
theories of practice 227–9
see also food consumption; institutional consumption
Pries, F. 154
Princen, T. 14
privatization 241, 274
process-driven consumption 212–14
processing plants, frozen peas industry 139, 144
procurement, construction industry 165–7
PRODCOM energy database 62, 64
product design 123–4
production impacts 55–6
production-centred mass balance 62–4
Index

project partnering, public sector housing 167
psychological factors 259–60
Public Environment and Sanitary Departments, China 177
public sector housing 165–6, 167, 168–9
public utilities, developing countries 123–6
quantitative diagnostic tools 306–7
Quilley, S. 150

Ramaswamy, Ramesh 11, 15, 16, 17, 28–41, 106–27, 238
Randles, Sally 3–23, 47, 175–98, 220–35
Ravetz, J. 16, 45–73, 280
REAP model 64–6, 69
 benchmarking application 66–7
Reckwitz, A. 228
recruitment, IS programmes 84–5, 89–91, 93–4
recycling
 China 176
 effectiveness 34–5
 US 232–3
 waste resources 121
redesign
 challenges for government 275–80
 competing corporate governance models 280–81
 from science and technology to psychology and beyond 256–65
 governance and politics of manufacturing 290–98
 governance and social change 281–90
 overview 255–6
 significance of governance 272–5
REEIO model 59–60
reformed behaviour, superiority of 230
regional administration functions, IS programmes 96–7
Regional and Welsh Appraisal of Resource Productivity and Development (REWARD) programme see REWARD programme
regional assemblies, England 88
Regional Development Agencies (RDAs), UK 46–7, 59, 88, 91, 102
regional economies, innovative approach to 79–80
Regional Economy-Environment Input-Output (REEIO) model see REEIO model
regional governance bodies, UK 88
regional industrial ecology
 applications to innovation systems 68–73
 context 46–9
 and developing countries 111
 overview 45–6
 resource productivity framework 49–56
 resource productivity models 56–67
 regional innovation in context 68–9
 regional IS programmes 89–96
 regional spatial framework, water management 238, 244–5
 relative advantage, innovations 80–84
Renn, O. 279
replacement decisions 209–10
research network/research agenda 21–3
resource efficiency, need for 86
Resource Flow Analysis 113–15, 116, 121, 122, 125, 126
resource flows 40, 50–51
 developing countries 106–8
 India 111–19
resource impact assessments 120
resource optimization 32–4
resource productivity
 applications to innovation systems 68–73
 context 46–9
 developing countries 124, 126
 overview 45–6
 resource productivity framework 49–56
 resource productivity models 56–67
 UK definition 87
resource productivity framework
 identifying ‘capital’ 51–2
 mapping productivity 52–5
 set of cycles 49–51
resource productivity models
 benchmarking applications 66–7
mass balance approach 60–62
material flow models in the UK 62–4
overview 56–9
REEAP model 64–6
REEIO model 59–60
REWARD programme 59
resource utilization maps (RUMs) 121, 124, 125, 126
Resources and Environment Analysis Programme (REAP) see REAP model
REWARD programme 45, 59
Rhodes, R. 274, 275
Richards, A. 8
risk and motivation 282–5
risk society 279–80, 281–2, 285–8, 295–6, 297
Roberts, P. 48
Roberts, S. 9
Robertson, P.L. 204, 213, 215
Robinson, J. 50, 210–11
Rogers, E.M. 79, 80, 100
Roper, S. 47, 71
Røpke, I. 14, 220
Rosenberg, L.J. 206, 209
Rosenthal, C.E. 33
rotary kiln pyrolysis 191–6
Rothwell, R. 7
Rotmans, J. 292, 293–4
routines, consumption as 214–15, 226–8
Rubbish Theory (1978) 232
Ryan, C. 221
Salter, A. 156
sanitary landfill, China 181–2, 184, 189
Sanne, C. 221
Saviotti, P.P. 211
Savolainen, I. 101
scale, questions of 307–8
Schleicher-Tappeser, R. 47, 68
Schumpeter, J. 11
Schutz, H. 60
Schwartzman, S. 277
Scientific American 30–31
Scitovsky, T. 204, 214
Scjwarz, E.J. 101
Scotland
construction industry 168–9
public sector housing 165, 167
Scott, P. 277
security threats 285–6
service economy 36, 276
service substitution 221
services, new/existing 212–14
services/goods, interlinked nature of 211–12
Shackley, S. 59
shareholder-dominated governance 280–81, 295
Sharfman, M. 221
Shaw, B. 207
Shearer, G. 258
Shem, S. 264
Shenzhen Mitsubishi incineration plant, China 185
Shepard, E.M. 154
Shepherd, I. 280
Shove, E. 224, 226, 229, 232, 233, 234
showering 233–4
Simonis, U.E. 32
single loop learning 101–2
Slaughter, E.S. 164
small and medium sized enterprises (SMEs)
developing countries 107, 109
water usage/waste water release 246–9
Small, M.J. 222
Smits, R. 241
Smolenaars, T. 81
social capital 51–5
social change and industrial futures 285–8
social characteristics, developing countries 110
social demands 270
social ecology
challenges for government 275–80
competing corporate governance models 280–81
from science and technology to psychology and beyond 256–65
governance and politics of manufacturing 290–98
governance and social change 281–90
Index

overview 255–6
significance of governance 272–5
social flows 50–51
social values and governance 295–6
social/health logics 243, 244
socio-economic inputs/structures, frozen peas industry 145–7
socio-structural rigidities 224–7
socio-technical systems of provision 7–8
socio-technical transitions 290–94, 296
Socolow, R. 36
Solar Heating and Cooling (SHC) Programme 162
solar heating see active solar heating (ASH) systems
Soel, K.E. 100
solid waste see waste disposal
Soltherm Europe Initiative 162
Soukup, W.R. 207
source segregation, waste 182–3, 195
Southerton, D. 14, 224, 225, 226, 229, 233, 234
sovereignty, surrender of 274
Spaargaren, G. 223
spaces of innovation
agency and role of the agent 310–11
knowledge/information/information failure 308–9
overview 305
questions of scale and multi-levelness 307–8
validity of the metaphor 306–7
way forward 311–12
Sri Lanka, water use 107
stakeholder-dominated governance 280–81, 295
Stallibrass, A. 259
Starkey, R. 156
Stathel, W.R. 36
Statoil 37, 39
Stavins, R.N. 156
Steele, P. 47, 68
Steininger, K.W. 101
Stern, L.W. 206, 209
stickiness of consumption 235
Stigler, G.J. 204
Stockholm Environmental Institute 64
Strang, V. 243
Strasser, S. 224, 232, 235
strategic partnering, public sector housing 167
structural change and resource productivity 69–71
structuring structures 12–13
supermarkets 139–40, 142, 147
support, IS programmes 85, 91–3, 96
Surrey, J. 264
sustainability 261
industrial symbiosis networks 100–102
studies in developing countries 122
Sustainable Consumption and Production Programme, UK 56
sustainable production 13–14
sustainable technologies see construction industry
Swann, G.M.P. 211, 214, 231
Sweden
construction industry 156, 162, 163, 164
solar heating 162, 163
sweetener effect 213
switching costs 209–10
Sawyedouw, E. 243
synergies, IS programmes 85, 91–3, 95–6, 100
system level approaches 29, 307
system strategies, food systems 132–4
Tamil Nadu, leather industry 116–18
Tannen, D. 265
Tatum, C.B. 154
technical factors, IS developments 80–84, 97, 98–9
technological revolutions 272–3
technology promotion 124–5
temporal quality of consumption 210–11
Tether, B. 8, 11, 17
textile industry, Tirupur 113–15
thermal insulation 157–61, 168
Thermal-Physical Engineering Institute, Japan 186
thermophilic compost 184
Thomas, R. 207
Thompson, Michael 232
Thorp, J.P. 164
Index

Tibbs, Hardin 31–2
Tiger, L. 204
Tinker, J. 50
Tirupur, textile industry 113–15
Tomlinson, M. 8, 13
trans-disciplinarity in action 3–4
transition management 292–4
transport, developing countries 126
Trow, M. 277
Tsinghua University, Japan 186
Tübecke, A. 280
Tylecote, A. 275, 280–81
Tyteca, D. 46

Udo de Haes, H.A. 220
UK
business environment 86
corporate governance system 281
government policies/legislative framework 87–8
industrial symbiosis see industrial symbiosis, UK
material flow models 62–4
regional agenda for resource productivity see resource productivity
regional governance bodies 88
water use 233–4
ultrasonics 256

Underconsumption 229
Unilever/BirdsEye 135, 139, 148
University of Western Sydney 260
urbanization, China 176–7
Urry, N. 226, 229
US
recycling sector 232–3
water use 107
utility 210–11

Vaaland, T.I. 206
vacuum solar collectors 161–2, 163
values 14–15, 23
shifts in 283–5
van Asselt, M.B.A. 292, 293–4
van der Leun, K. 162, 163
van der Linde, C. 155
van der Voet, E. 220
van Lente, A. 241
Van Vliet, B. 14, 226, 229
van Wassenhove, L.N. 221
van Waveren, B. 241
van Weele, A. 207
Vaze, P. 49
Veblen, T. 224
Vellinga, P. 6
Verbong, G. 292, 293–4
Voisin, A. 262, 264
von Hippel, E. 207, 209, 213
von Weizsäcker, E.V. 35, 46

Wackernagel, M. 55
Wagner, Caroline S. 273
Walsh, V. 8, 13
Wang, Q.-Y. 179
Warde, Alan 19, 205, 214, 220–35
wastage, control of 123–4
waste
exchange schemes, UK 86
pea processing 144
in practice theory 231–3
sociology of 231–3
source identification 120
systematic recycling 121, 122
waste disposal, China
landfill/composting solutions 181–3
municipal solid waste (MSW) problem/solutions 176–81
overview 175–6
waste incineration technologies before 1999 185
waste-incineration-for-energy (WIE) 185, 186–96
waste disposal, India 115
waste minimization clubs’ projects, UK 86
waste water
India 114–15, 117
SMEs 246–9
waste-incineration-for-energy (WIE) technologies 183–91, 196
segmentation of markets 191–6
water management and intermediary organizations
diversity and work of 241–4
ecology of intermediaries 249–50
emergence of 239–41
intermediary space 244–9
overview 238–9
water pollution, China 178–9
water usage, SMEs 246–9
water, optimal use of 266–7
water-related issues
developing countries 106–7, 110
India 113–15, 116–18
Weber, Mathias 13, 272–98
Weinstein, O. 210
Welford, E. 156
Western technology 192, 194–6
White, I. 245
White, Robert 13, 134
Wiedmann, T. 55
Wilbersaari, M. 101
Wilber, K. 257, 265
Wilkinson, D. 280
Williams, R. 7
Williamson, G.S. 259, 264
Winch, G. 156, 164

Withers, J. 232
Woo, H.K.H. 204
Wood, S.L. 214
Woolley, T. 159
World War II 232, 233
Wu, T.F. 215
Wubben, E. 155
Wylie, P. 47, 71
Wynstra, F. 207

Yan, J. 177, 182
Yeomans, K. 260
Yeomans, P.A. 20, 260, 265–8
Yip, L. 207, 215
Young, R. 81
Yu, T.F. 204, 213

Zahra, S. 207
Zhang, Z.-M. 179
Zhuang, X. 179