Index

Aaheim, H.A. 87, 101, 103, 107, 110, 111, 112
Abramowitz, M. 147
acidification 223
‘Action for global sustainability’ 249
Adriaanse, A. 329, 334, 379, 386, 388, 433
Africa, Sahel region, vegetation
productivity as a sustainability indicator 238–9
Ahmad, Y.J. 56
air pollution 278–9
Alcamo, J. 230
Alfsen, K.H. 334, 335
Allen, S.A. 292
alternative development prescriptions 179
alternative welfare index 160–61
Amann, C. 386, 388
Amir, S. 327
Andreasen, J.K. 276, 278, 329, 333, 334
Anielski, M. 423, 440
aquatic systems 272, 295
sustainability indicators and thresholds 229–32
Argyle, M. 84
Arrow, K.J. 126
Arthur, W. 15
Ashby’s Law of Requisite Variety 405
Asheim, G.B. 36, 98, 118, 122, 125, 126, 162
Asian financial crisis 174
Askildsen, T.C. 104
Atkinson, A. 155, 200–201
Atkinson, G.K. 35, 118, 129, 131, 140, 179, 187, 197, 430
Atkinson index of distributional inequality 155, 200–201
AtKisson, A. 418
Australia
ecological economic efficiency (EEE) ratio 356, 357–8
exploitative efficiency ratio 362–4, 370
GPI 441
growth efficiency ratio 360–62, 369
Index of Sustainable Economic Welfare (ISEW) 193
maintenance efficiency ratio 358–60, 361, 362, 369
natural capital exploitative efficiency ratio 367, 368
natural capital growth efficiency ratio 363
policy relevance of eco-efficiency indicators 355–75
psychic income 357
renewable natural capital growth efficiency ratio 365, 366
service efficiency ratio 356–8, 359
sustainable net benefit index (SNBI) 40, 143–5
Auty, R.M. 128
Ayres, L. 350
Baltic 21 Secretariat 292
Barkley, P. 167
Barkman, A. 231, 232
Barnett, H. 250
Barnhart, R.K. 320, 321, 322
Bartelmus, P. 80, 86, 98
Bauer, R. 90
behaviour, human 16
Behrens, A. 377
Bennett, J. 329
Bergen Fylkeskommune 107
Berkes, F. 210
Beyeler, S.C. 277, 333, 336
Binswanger, M. 389
bio-growth curve 110–11
biocapacity 44
biocentric view 30–31
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>biodiversity</td>
<td>23, 209, 225</td>
</tr>
<tr>
<td>biological capacity, comparison with</td>
<td></td>
</tr>
<tr>
<td>Ecological Footprint</td>
<td>255, 257</td>
</tr>
<tr>
<td>biomass</td>
<td>110</td>
</tr>
<tr>
<td>extraction data</td>
<td>384</td>
</tr>
<tr>
<td>biophysical view of the economy</td>
<td>432</td>
</tr>
<tr>
<td>bioproductive areas</td>
<td>252, 254</td>
</tr>
<tr>
<td>biosphere</td>
<td>432</td>
</tr>
<tr>
<td>Bird, P.M.</td>
<td>282</td>
</tr>
<tr>
<td>Birks, J.B.</td>
<td>405</td>
</tr>
<tr>
<td>Bishop, R.</td>
<td>43, 159, 326</td>
</tr>
<tr>
<td>Blamey, E.</td>
<td>440</td>
</tr>
<tr>
<td>Blaug, M.</td>
<td>431, 441</td>
</tr>
<tr>
<td>Blum, H.</td>
<td>21</td>
</tr>
<tr>
<td>Bonniot, O.</td>
<td>434</td>
</tr>
<tr>
<td>Bossel, H.</td>
<td>410, 413</td>
</tr>
<tr>
<td>Bothnian Sea</td>
<td>232</td>
</tr>
<tr>
<td>Boulding, K.E.</td>
<td>18, 29, 213, 354</td>
</tr>
<tr>
<td>bounded carrying capacity</td>
<td>305, 310</td>
</tr>
<tr>
<td>Braat, L.</td>
<td>435</td>
</tr>
<tr>
<td>Bradbury, R.</td>
<td>336, 337</td>
</tr>
<tr>
<td>Brekke, K.A.</td>
<td>98, 176</td>
</tr>
<tr>
<td>Bringezu, S.</td>
<td>384, 386</td>
</tr>
<tr>
<td>Brouwer, R.</td>
<td>123</td>
</tr>
<tr>
<td>Brown, L.R.</td>
<td>248</td>
</tr>
<tr>
<td>Brundtland Report</td>
<td>3, 252</td>
</tr>
<tr>
<td>Brunner, P.</td>
<td>390</td>
</tr>
<tr>
<td>Bruun, H.</td>
<td>309</td>
</tr>
<tr>
<td>Bulte, E.H.</td>
<td>44, 258</td>
</tr>
<tr>
<td>Burritt, R.</td>
<td>318, 320</td>
</tr>
<tr>
<td>Burton, I.</td>
<td>427</td>
</tr>
<tr>
<td>Cairns, J.</td>
<td>433</td>
</tr>
<tr>
<td>calcium, and forest health</td>
<td>278</td>
</tr>
<tr>
<td>‘Cambridge controversy’</td>
<td>44, 365–6, 441</td>
</tr>
<tr>
<td>Canada</td>
<td>271, 433–4, 440</td>
</tr>
<tr>
<td>Canada Forest Service, Criteria and</td>
<td></td>
</tr>
<tr>
<td>Indicators program</td>
<td>276</td>
</tr>
<tr>
<td>Canadian Council of Ministers of the</td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td>433</td>
</tr>
<tr>
<td>capital</td>
<td>17, 37, 38, 209</td>
</tr>
<tr>
<td>concept of</td>
<td>441–2</td>
</tr>
<tr>
<td>in forest context</td>
<td>274–5</td>
</tr>
<tr>
<td>human-made</td>
<td>17</td>
</tr>
<tr>
<td>and income</td>
<td>37, 38, 150, 151</td>
</tr>
<tr>
<td>capital maintenance</td>
<td>20, 21</td>
</tr>
<tr>
<td>capital theory</td>
<td>429–31</td>
</tr>
<tr>
<td>capitalism</td>
<td>29</td>
</tr>
<tr>
<td>Capra, F.</td>
<td>15, 16, 168, 353, 409</td>
</tr>
<tr>
<td>carbon dioxide</td>
<td>260, 261, 439</td>
</tr>
<tr>
<td>carbon sequestration</td>
<td>240</td>
</tr>
<tr>
<td>cardinal utility</td>
<td>59, 60</td>
</tr>
<tr>
<td>Caring for the Earth</td>
<td>249</td>
</tr>
<tr>
<td>Carley, M.</td>
<td>89</td>
</tr>
<tr>
<td>carrying capacity, bounded</td>
<td>305, 310</td>
</tr>
<tr>
<td>carrying capacity accounts</td>
<td>258, 259, 260</td>
</tr>
<tr>
<td>Cartwright, T.</td>
<td>338</td>
</tr>
<tr>
<td>Castañeda, B.</td>
<td>167, 175, 190</td>
</tr>
<tr>
<td>Catton, W.</td>
<td>44</td>
</tr>
<tr>
<td>Catton, W.R. Jr.</td>
<td>270</td>
</tr>
<tr>
<td>causal networks</td>
<td>243</td>
</tr>
<tr>
<td>Centre for Sustainability Studies</td>
<td>256</td>
</tr>
<tr>
<td>Chaffee, S.</td>
<td>29</td>
</tr>
<tr>
<td>change</td>
<td>15</td>
</tr>
<tr>
<td>Chatterjee, P.</td>
<td>318</td>
</tr>
<tr>
<td>Chen, X.</td>
<td>386</td>
</tr>
<tr>
<td>Chew, A.E.</td>
<td>327</td>
</tr>
<tr>
<td>Chew, R.M.</td>
<td>327</td>
</tr>
<tr>
<td>Chile</td>
<td>167</td>
</tr>
<tr>
<td>Chittenden, D.</td>
<td>415</td>
</tr>
<tr>
<td>Christensen, P.</td>
<td>326</td>
</tr>
<tr>
<td>Chu, E.W.</td>
<td>272</td>
</tr>
<tr>
<td>Clark, R.N.</td>
<td>282</td>
</tr>
<tr>
<td>Clarke, D.</td>
<td>330, 331</td>
</tr>
<tr>
<td>Clarke, M.</td>
<td>167, 168, 169, 180</td>
</tr>
<tr>
<td>Clayton, A.</td>
<td>168</td>
</tr>
<tr>
<td>Clemens, M.</td>
<td>118</td>
</tr>
<tr>
<td>Clements, F.</td>
<td>426</td>
</tr>
<tr>
<td>Cleveland, C.J.</td>
<td>209, 210</td>
</tr>
<tr>
<td>Clevering, O.A.</td>
<td>235</td>
</tr>
<tr>
<td>climate, and choice of transport</td>
<td>106–9</td>
</tr>
<tr>
<td>climate change</td>
<td>223</td>
</tr>
<tr>
<td>cost of</td>
<td>196–9</td>
</tr>
<tr>
<td>economic impacts</td>
<td>105–13</td>
</tr>
<tr>
<td>and green accounting</td>
<td>96–116</td>
</tr>
<tr>
<td>impact on forestry</td>
<td>109–12</td>
</tr>
<tr>
<td>and input–output schemes</td>
<td>104–5</td>
</tr>
<tr>
<td>macroeconomic impacts</td>
<td>112–13</td>
</tr>
<tr>
<td>physical estimates of change</td>
<td>102</td>
</tr>
<tr>
<td>Cobb, C.W.</td>
<td>80, 142, 187, 188, 190, 191, 192, 196, 197, 200, 202</td>
</tr>
<tr>
<td>Cobb, J.B.</td>
<td>28, 30, 80, 82, 139, 142, 154, 166, 178, 180, 186, 187, 188, 190, 191, 192, 196, 197, 200, 202</td>
</tr>
<tr>
<td>coevolution</td>
<td>14–15</td>
</tr>
<tr>
<td>and path dependency</td>
<td>15</td>
</tr>
<tr>
<td>positive</td>
<td>15</td>
</tr>
</tbody>
</table>
coevolutionary depiction of sociosphere, economy and ecosphere 16
coevolutionary worldview 4, 14–16
socio-economic process as 14–16
cognition, and human values 269–70
Colwell, R.R. 273
Commission of the European Communities 56, 70, 202
Common, M. 440
competitiveness 261–3
complex systems 309–10
generic needs 410–16
complexity 353, 399, 405, 423
composite environmental performance index 443, 444
composite indicators 433
composite sustainable development index 443
conservation targets 252
consumer durables, cost 148
consumer price index (CPI) 154
consumerism 27, 85
consumers, and resources 310
consumption 223
and welfare 79, 80, 84–6, 152–3
consumption pressure index 443
control of systems 405–10
Corden, M. 69
CORINE 223, 227
cost–benefit analysis 59, 60, 67
and damage costs 129
Cramer, W. 239, 240
Crampton, P. 425
Crawford, T. 433
critical natural capital
defining 234–5
indicators and measures 221–45
in wetlands 232–6
Cronin, K. 426
Cross, G. 85
Dahl, A. 317, 337
Daily, G. 23
Dale, V.H. 277, 333, 336
Daly, H. 18, 21, 28, 29, 30, 33, 42, 43, 80, 82, 83, 139, 153, 159, 166, 167, 178, 180, 186, 190, 191, 196, 209, 210, 348, 360, 366, 418, 431, 432, 433
damage assessments, and green accounting 101–3
damage costs 102–3, 129
environmental degradation 97
Daniels, P.L. 378
Dasgupta, P. 61, 119, 125, 126, 281
Dasmann, R. 426
David, P. 15
Davis, P. 425
De Angelis, D. 428
De Bruin, R. 233
de Groot, R.S. 221
De Haan, M. 79
de Haes, U. 390
de-linking, relative and absolute 383
debt 28
defensive expenditures 87, 149–50, 156–7, 201–2
definition of 201
dematerialisation 388
department 377
Deolalikar, A. 178
DeSimone, L.D. 318, 319
DeSouza-Huletay, J.A. 333
development 70
developing countries 167–8, 182
Diefenbacher, H. 142, 166, 180, 190
Diesendorf, M. 418
Dietz, T. 292
discount rates, and uncertainty 217
disequilibria 15
disinvestment 55, 59, 67
disservices generated by economic activity 149
distress syndrome’ 272, 273
division of labour 387
Dixon, C. 177
Dixon, J. 216
Dodds, S.H. 399
Doelman, J.A. 339
Dopfer, K. 168
Dovers, S.R. 292
driving forces–pressures–state–impact–response (DPSIR) 382
drylands
natural capital index 238
Sahel, case study 238–9
soil erosion 237
soil organic matter 237
sustainability indicators and thresholds for ecosystems 236–9
threats and indicators 237–8
vegetation productivity 237
Dryzek, J.S. 292
Dutch Disease 66, 68–71, 72
Dye, T.R. 337
Dyke, C. 353

Earth
as a dissipative structure 15
subsystems 15
uniqueness for life 21
Easterlin, R. 85, 147
Easton, B. 425
eco domestic product (EDP) 88, 96
eco-efficiency 42–3
disciplinary perspectives of 322–9
eo-system ecology approaches 324–5, 327–8
etymological origins of term 320–22
and humankind’s dependence on the
ecosphere 349–50
meaning of 318–22
and natural and human-made
capital 349
neoclassical economic approaches 324, 326–7
solutions and the coevolutionary paradigm 351
thermodynamic approaches to 323–5
WBCSD definition 319
eco-efficiency indicators 383–4
analytical validity 333
applied to Australia 355–75
appropriate data transformations 333
appropriate scale 333–4
clarity of message 335
criteria for ideal 322–5
data availability and cost
effectiveness 334–5
definitions of 317–18, 319, 329
efficient representation of a concept 334
limitations of 335–7
literature 317–18
philosophical bias 333
for policy 317–43
policy relevance 334
semitic view 329–32
strengths of 337–8
theoretical support for 332, 349–55
eco-efficiency ratios, and the
coevolutionary worldview 354–5
eco-intelligent products 388
ecological deficit 256
ecological economic efficiency (EEE) 42–3
ratio, Australia 356, 357–8
ecological economics, and
thermodynamics 432–3
Ecological Footprint 43–5, 162, 251–7, 270, 284
comparison with biological capacity 255, 257
and ecosystem health 270–73
limitations of analysis 258–60
measurement 271–2
methodology 251
New Zealand 438–9, 443
Ecological Footprint accounts 246–63
interpretation of results 260–63
ecological imbalance, and pathogens 273
ecological integrity 272
ecological overshoot 247–8, 253, 259, 263
measuring 251–61
Ecological Principles of Resource Management 426
ecological resilience 273, 310, 429
ecological succession 426–8
ecological wealth 62
ecology, origin of word 322
economic activity, sustainability 158
economic growth
costs 166
and policy 177
and public policy 175
economic policy
misled by faulty accounting 67–8
uses of national and environmental
accounts 81–2
economic welfare measure 80
economy
biophysical view of 432
sociosphere and ecosphere
atomistic–mechanistic depiction 14
coevolutionary depiction 16
and sustainability 249
economy-wide material flow accounting (MFA) 379–81
categories of material flows 380–81
general scheme for 381
indicators 382
methodological foundations 379–80
ecosphere 15, 22
sociosphere and economy
atomistic–mechanistic depiction 14
coevolutionary depiction 16
ecosystem approach to sustainable development 433–4
ecosystem change 268–9
ecosystem ecology approaches, to eco-efficiency 324–5, 327–8
ecosystem health 272
assessments 44–5
definition of 272–3, 273
and Ecological Footprints 270–73
ecosystem quality 223, 225, 229
ecosystem services 216, 218, 226–7
ecosystems
definition 268
goods and services provided by 227–9
monitoring technology 283–4
preservation 24
resilience 273
education 202
Edwards-Jones, G. 418
EEA (European Environment Agency) 376
EEAC (European Environmental Advisory Councils) 376
efficiency, derivation of word 320–21
Egypt 260, 261
Ehrlich, A. 248
Ehrlich, P.R. 23, 210, 248, 309, 426
Eickhout, B. 241
Eisenmenger, N. 386, 387
Ekins, P. 221, 234, 236, 282, 378, 390
Ekland, L. 238
El Sarafy method see user cost method
El Sarafy, S. 33, 61, 64, 65, 67, 127, 128, 158, 193, 400
El Sarafy Rule 36
employment
link with gross domestic product (GDP) 28
unpaid 28, 368
Energy Efficiency and Conservation Authority 317
England, R.W. 201, 217
English Nature 221
entropy law 432
environment, information on 270
Environment Agency, Japan 379
environmental accounting approaches to 79–80
monetary approach 83–4
monetary environmental accounts 86–9
and policy making 78–95
policy uses 81–2
problems of monetary valuation 86–7
purpose 81, 90
environmental costs, in money terms 80
environmental degradation 98
damage costs 97
environmental governance, new approaches 377
environmental indicators 89–90, 422
environmental input–output tables 88
environmental Kuznets curve (EKC) 383
environmental policy 377
environmental sustainability index (ESI) 278, 439–40
environmentally sustainable growth 383
equilibrium ecology 426–8
equilibrium-based approach 323
Erkkilä, J. 294, 295, 296
An Essay on the Principle of Population 270
Etzioni, A. 337
EU Natura 2000 nature protection area 293
Europe
monetary value of natural capital 226, 227
NCI 223
European Commission 376, 378
EUROSTAT 379, 380, 381, 382, 386
eutrophication 223, 229, 273
exchange 29
existence 27
existential balance 26
exploitative efficiency, of natural
capital 347
exploitative efficiency ratio, Australia
362–4
extractive activities 67–8

Faber, M. 16, 212, 213, 351, 352, 353
families 413–14
indicators of viability 414
Fankhauser, S. 197
FAO (Food and Agriculture
Organization) 239, 241, 384
State of the World’s Forests 276
Farley, J. 418
Faucheux, S. 430, 441
Femia, A. 385
Ferreira, S. 130
Fields, G. 177
Finger, M. 318
Finland
forestry and reindeer management
311
indicators of bounded carrying
capacity 305
Ministry of Agriculture and
Forestry 297
pasture degradation 302
quality of sustainability indicators
308
Reindeer Husbandry Research
programme 308
RENMAN project 302–8
sustainable reindeer management
296–308
carrying capacity 301
comparison and MoAf and
RENMAN indicators 304
deficiencies of indicators 302, 304
free range reindeer 305
indicators 300–301
legislation 301
path dependent history 306
policy measures 306
policy-guiding value of scenario-
framed indicators 308–11
pressure of numbers 298
PSR indicator framework 297
reindeer herding co-operatives 299
revised indicators 307–8
slaughter of reindeer 306
Finland, Vuossari harbour project
293–6, 310–11
tri-butyl tin (TBT) 294–6
Finnish Game and Fisheries Research
Institute 297
fiscal policy 70–71
Fischer, H. 387
Fischer-Kowalski, M. 39, 388
Fisher, H. 6, 17, 18, 36
Fisher, I. 146, 188, 201
fisheries 233
Flavin, C. 192
Flyvbjerg, B. 292, 308
Folke, C. 21, 210, 348
Foran, B. 386
Forbes, B.C. 297, 302, 306, 309
Forest Capital Index (FCI) 270,
274–80, 284
aggregation of indicators 277–9
audiences and users 280–81
benchmarks 279–80
changes over time 279–80
collection and upkeep of data 279
construction 276
linking to economic and social
indices 282–3
selection of indicators 277
spatial scales for 282
Forest Stewardship Council 276
forests
and biodiversity 240
carbon sequestration 240
cultural values 241
degradation and deforestation 241–2
forest health and calcium 278
forestry and reindeer management
311
fuel wood 240
impact of climate change 109–12
importance 240
indicators of condition 276
lost old-growth forests 159, 160
monitoring 275
sentinel species in 278
as a sink 110
slope stabilisation 241
sustainability indicators and thresholds for forest systems 239–42
threats to 241–2
water supply 240
Førland, E.J 106
fossil fuels 260
extraction data 284
Fox, K. 421
France, national income 81
Frank, R. 85
Frankhauser, S. 119
Frederick, S. 218
free-market 29
French Natural Patrimony Accounts 79
Friend, G. 317
Gallopin, G.C. 330, 332, 333, 334, 434
Geist, H.J. 241
genuine progress indicator (GPI) 31, 36–42, 139, 140–42, 431, 440–41, 444
compared to ISEW 142
improved valuation methods 160–61
items used to construct 147–52
theoretical foundation 142–7
USA, 1950 to 1995, items used to calculate 141
valuation methods used to calculate 152–60
genuine savings (GS) 34–5, 36, 117–35, 431, 441–2
accounting for environmental pollution 129–30
assumption of constant population 125–6
based on inter-temporally efficient economy model 123, 131
basic meaning of 117–18
criticisms of 122–30
empirical estimates 118–21
and exogenous shocks 123–4
exogenous technical progress 124
natural capital depreciation 126–8
non-constant discount rate 125
as a percentage of GNP 120
policy usefulness 130–32
positive contribution of 121–2
and resource abundance 121
terms-of-trade effects 124
George, S. 28, 151
Georgescu-Roegen, N. 18, 213, 348, 432
on production theory 210–12
Germany, national income 81
Gilbert 321
Giljum, S. 377, 386, 388, 390, 391
Gini Coefficient 154, 155, 200, 201, 203
Glauser, M. 317, 319
Global Footprint Network 254
global system 15, 212–15
fund elements 212–13
logos of 15
global warming 22
globalisation 387–8
Goedkoop, M. 390
Goldberg, E. 425
Goldemberg, J. 359
Golley, F.B. 322, 327, 328
Goodland, R. 433
Gordon, P.L. 129
Gorz, A. 85
The Government’s Approach to Sustainable Development, New Zealand 444
green accounting 55–77
aims 97–9
change in prices 96–7, 113
and climate change 96–116
cost estimate 102
and damage assessments 101–3
greening methods 71
measurement 97–9
and welfare 58–61
green gross domestic product (GDP) 422, 440–41
green national accounts 97
green national income 79–80, 83, 88, 90, 91
green net national product (gNNP) 117
Green, P.A. 230
greenhouse gases 269
social cost 196–7
Grice, H. 331
Groombridge, B. 292
Index

gross domestic product (GDP) 33, 55, 98, 140, 431
data sets 384
inadequacies 146
link with employment 28
Thailand 175
gross national product (GNP) 78, 82, 140, 193
Grove 329
growth addiction 27
growth efficiency, of natural capital 346
growth efficiency ratio, Australia 360–62
Guenno, G. 142, 190
Gustavson, K. 334
Guyer, M. 85
Hagen, J.B. 328
Hagerty 176
Hajer, M.A. 292
Ham, C. 337
Hämäläinen, R. 390
Hamilton, C. 142, 166, 180, 190, 197, 202, 418, 441, 444
Hamilton, K. 35, 117, 118, 124, 125, 126, 127, 129, 152, 156, 216, 442
Hamiltonian 60–61
Hammer, M. 386
Hammond, A.A. 329
Hans-Böckler-Stiftung 387
Hardi, P. 333
Hardin, G. 270
Harris, R. 89
Hartwick, J.M. 68, 97, 117, 127, 430
Hartwick Rule 68, 118, 122
Hauge, K. 107
Hawley, A.H. 270
Hayward, B. 416
headline indicators for sustainability, definition 423–4
Headline Indicators for Tracking Progress to Sustainability in New Zealand 421, 443
health 273
Heikkinen, H. 303, 305, 307, 309, 312
Hein, L.G. 233, 234, 235, 236
Helm, D. 326
Helsinki processes 275, 283
Heywood, V.H. 240
Hicks, J. 20, 32, 59, 60, 97, 98, 167, 326, 430
Hicksian income 193
Hill, M. 337
Hirsch, F. 29, 85
Hodgson, G. 16, 29
Holling, C.S. 292, 429
holons, economy, ecosphere and sociosphere as 16
Hooker 321
Hope, C. 443
Hotelling, H. 127
Howarth, R. 159
Hubacek, K. 386, 391
Hueting, R. 82, 98, 123
Hughes, T.P. 309
human capital, investment in 119
human demand, on nature 246–8
human development 27
human development index 179, 421
human futures, sustaining 274
human values, and cognition 269–70
human–environment interaction 291–316
human-made capital 17, 19, 27, 37, 146
labour as 18
maintenance efficiency of 346
and psychic income 18
service efficiency of 345–6
and technology 20
human-made capital account 372–3
Huq, A. 273
hybrid measurement technique, sustainable development 123, 131
hydrologic cycle 210
ignorance 351
closed and open 353–4
reducible and irreducible 353
taxonomy of 352
income
and capital 37, 38, 150, 151
definition of 20
Hicksian definition 32
relative to others 85
Index

and subjective well-being (SWB) 84–5
versus wealth 61–3
income distribution 155
income inequality 200–201
income redistribution 177–8
index of distributional inequality 148, 154–6
Index of Sustainable Economic Welfare (ISEW) 31, 36–42, 45, 80, 139, 140–42, 218, 431, 440–41
adjusting private consumer expenditure for income inequality 200–201
alternative development prescriptions 179
alternative names for 139, 186
application of 168–72
Australia 193
capture of sustainability paths 179
changes in methodology 186
compared to GPI 142
construction and uncertainty 180–82
core components 188
cost of consumer durables 148
cost of sacrificed natural capital services 151–2, 157–60
criticisms of 186–206
cumulative cost of long-term environmental damage 196–200
deduction of defensive expenditures 201–2
defensive and rehabilitative expenditure 149–50, 156–7
and derivative studies 187
disservices generated by economic activity 149
improved valuation methods 160–61
index of distributional inequality 148, 154–6
lack of theoretical foundation 187
net capital investment 150
net foreign lending/borrowing 150–51
Netherlands 198
policy implications 166–85
private consumption expenditure 147–8, 152–4, 188, 200–201
resource production or resource consumption 190–91
resource rents or replacement costs 191–3
services provided by volunteer and non-paid household work 149
services yielded by existing consumer durables 148
services yielded by publicly provided human-made capital 148–9
standardisation 161
Sweden 198
systems analysis 178–9
Thailand, case study 166–85
policy implications 175–8
results 172–5
theoretical foundation 142–7
theoretical superiority 147–52
total resource rents or user cost method 193–6
UK 199
US 199
for USA and Europe 41
weighting of private consumption expenditure 148
indicators 404–5, 421–3
definitions of 329
for tracking sustainability in a nation state 421–48
Indonesia 128
Industrial Commodity Statistics, UN 384
inflation 70
information on environment 270
Inglehart, R. 85
input productivity 67
input–output (IO) analysis 385
input–output schemes 103–4
‘institutional sclerosis’ 29
institutions defined 29
integrated analysis 102–3
integrated sustainability modelling 386–7
intergenerational equity 429–31
Intergovernmental Forum on Forests (IFF) 275
internalising externalities 431–2
International Energy Agency (IEA) 384
International Monetary Fund (IMF) 28, 66, 69
international trade data sources 384
Islam, S.M.N. 167, 168, 169, 180
ITTO (International Tropical Timber Organisation) 275

Jackson, T. 142, 166, 180, 188, 190, 196, 197, 200, 201
Jansson, A. 209–10
Jansson, B. 209–10
Jansson, A. 43
Japan, Economic Council 80
Johnson, L. 30
Jollands, N. 320
Jordan, A. 378
Jorgensen, E. 336

Kaikkonen, R. 294
Kaosa-ard, M. 175
Karr, J.R. 272
Kates, R. 427
Kay, J. 327, 428
Kempainen, J. 308
Kenny, C. 27
Keuning, S. 79
Keynesians 81
Khalil, E.L. 323
Killock, T. 178
King, D. 81
Kleijn, R. 386
Klein, E. 320
Klinge, M. 233
Klingemann, H.-D. 85
Kneese, A.V. 79
Knight, F. 351
Koestler, A. 328
Kokkelenberg, E. 61
Kondepudi, D. 323
Koskinen, H. 308
Krautkramer, J. 246, 250
Kreuter, M. 31
Kunte, A. 122
Kurtz, J. 329, 332, 334, 335
Kuznets, S. 81
Kyoto Accord 269, 281

labour, as human-made capital 18
Laitinen, J. 294, 295
Lambin, E.F. 241
land, developed and undeveloped 213
Lapland 306, 307

Laszlo, E. 15, 354
Lazarsfeld, P. 81
Lebergott, S. 180
Lee, K.N. 292
Lee, V. 273
Leemans, R. 239, 241
Leibenstein, H. 326
Leipert, C. 157, 201
leisure time 160
Lenssen, N. 192
Lenzen, M. 44
Leontief, W. 103
Lerner, J. 308
Lessing, H. 308
Levett, R. 190
Liebowitz, S.J. 309
life cycle assessment (LCA) 390
Limits to Growth 438
Lindblom, C.E. 337
Lindeman, R.L. 327
Lindsey, G. 335, 336
linear throughput representation of the socio-economic process 16–19
Lintott, J. 81
living planet index 443
Lochner, K. 31
logos, of the global system 15
Lone, O. 79
long-term environmental damage 159, 160, 196–200
lost natural capital services account 372
lost natural capital services (uncancelled cost) 19, 38, 42, 143–5, 344
Lotka, A.J. 321, 327
Lovelock, J. 22–3
low entropy resources 20
Lüdeke, M.K.B. 238
McCarthy, J.J. 241
McDonald, G. 425
machines of work 323
McKay, A. 178
McLeod, J. 29
McMichael, A.J. 273
Index

macroeconomy 15, 16
maximum sustainable scale 43–4
as a subsystem 16
Maffi, L. 273
Mager 283
maintenance cost approach 87
maintenance efficiency, of human-made capital 346
maintenance efficiency ratio, Australia 358–60
Maler, K. 152, 156
Mäler, K.-G. 97, 98
Malthus, T. 270
Manning, I. 175
Manoliadis, O. 336
Mant, A. 408
marginal abatement cost 129
marginal social cost 197, 200
Margolis, S.E. 309
market economy 29
Marks, N. 166, 180, 190
Marshall, A. 67, 71
Martinez-Alier, J. 327, 388
Maslow, A. 24
Maslow’s hierarchy of human needs 24–6, 27
Massa, I. 305
material flow accounting (MFA) 378
aggregation and valuation of material flows 389–91
economy-wide 379–81, 391
physical input–output tables (PIOTs) 391
shortcomings 389–91
material flow-based indicators 376–96, 443
availability 385–6
calculation procedures 384–5
direct material input (DMI) 382
domestic material consumption (DMC) 382–3, 383
domestic processed output (DPO) 382
eco-efficiency indicators 383–4
integrated sustainability modelling 386–7
on the macro level 382–6
main input indicators 382
micro–macro links and analyses of rebound effects 388–9
physical trade balance (PTB) 383
policy-oriented application 386–9
total material consumption (TMC) 383
total material requirement (TMR) 382
materials balance approach 79
matter-energy, throughput of 17, 146, 433
Matthews, E. 276, 280, 379, 386
Max-Neef, M. 6, 37, 40, 139, 189, 401, 411
Maxwell, S. 178
May, R. 428
Mayor, F. 399
Mazzucato, V. 238
Meadows, D.H. 21, 247, 248, 438
measure of domestic progress (MDP) 186
Mendelsohn, R. 110
metal ores and minerals, extraction data 284
Meybeck, M. 230
Meyer, B. 387
Mikesell, R.F. 128
Millennium Ecosystem Assessment 225–6, 236, 246
Miller, T. 426
Mills, T.J. 282
Ministry for the Environment 333
MIPS (material input per service unit) indicator 317, 389
Mishan, E. 431
Mitchell, B. 433
Mitchell, W. 28, 369
Moll, S. 385, 386
monetary environmental accounts to monitor progress 87–8
Montreal processes 275, 283
Montreal protocol 269
Moore, S. 378
moral capital 29–30
measurement 31
Morris, M. 320
Morris, W. 320
Morse, C. 250
Mortensen, L.F. 334, 335
MOSUS (modelling opportunities and limits for restructuring Europe towards sustainability) 385, 386
Mulder, P. 14
Muller, P. 317, 319
Mündl, A. 386
Muradian, R. 388
Murray, S. 44

Nair, I. 323
NAMEA system 66, 79
national accounts system 70
 accuracy 66
 as a database for economic analysis 102
 demand-side valuation 100
 input–output schemes 103–4
 for macroeconomic analysis 103
 policy uses 81–2
 role of prices 99–101
 shadow prices 100
 supply-side valuation 100
 valuation by analogy 100
national impacts assessment, sector studies applied to 105–13
national income 36, 37, 79, 97
 accounting, choice of framework 81
National Research Council, US 292
natural asset deterioration/losses 55, 59
natural capital 17, 19, 20, 31
 assessment of importance 225–7
 components of 210, 215
 critical survey 209–10
 definitions of 210, 215–16
 depreciation 126–8, 131
 determining criticality 242
 and ecological sustainability 21
 exploitative efficiency of 347
 framework to determine criticality 222–7
 growth efficiency of 346
 indicators and measures of critical natural capital 221–45
 information gaps concerning 281–2
 life-support function 21–2, 44
 meanings of 217–18
 measurement of 36, 216–17
 monetary value in Europe 226, 227
 net depreciation 119
 revision of concept 212–16
threat assessment 223–5
 transformation into human-made capital 20
natural capital accounting 43–4, 373
natural capital exploitative efficiency ratio, Australia 367, 368
natural capital growth efficiency ratio, Australia 363, 364
natural capital index (NCI) 223, 225, 228–9
drylands 238
natural capital stock 431
 measurement of 209–20
natural resources
erosion 63
 scarcity 326
 value of depletion 87
Natural Step 249
natural wealth 400
nature
 human demand on 246–8
 parasitism of society 271
Nature’s Numbers 61
Nectoux, F.J. 90
needs 248–9
 being fully human 417
 bicycle example 408, 413
 classification of 401
 in a complex system 408–10
 ethical basis of an approach 403–4
 frog example 408–9, 413
 generic needs of complex systems 410–16
 issue of need 400–404
 Maslow’s hierarchy 24–6, 27
 satisfaction of 402, 415
 satisfying as a social control system process 407
 stakeholder involvement 415–16
 and sustainable development indicators 399–420
 and system orientors 415
neoclassical economic approaches, eco-efficiency 324–5, 326–7
net adjusted savings 118–19
net capital investment 150
net foreign lending/borrowing 150–51
net psychic income 18, 38, 42, 149, 344, 348
 account 371–2
Index of Sustainable Economic Welfare (ISEW) 198
Neumayer, E. 40, 65, 120, 122, 123, 124, 127, 128, 131, 140, 152, 155, 156, 157, 158, 159, 162, 180, 187, 189, 190, 192, 193, 197, 202
New Zealand 421
criteria for sustainability indicators 436
Ecological Footprint 438–9, 443
environmental accounts 425
environmental performance indicators (EPI) 424
evaluation of headline sustainability indicators 436–44
The Government’s Approach to Sustainable Development 444
initiatives in sustainability indicators 424–5
measurement of social progress 425
Ministry for the Environment and the Department of Statistics 424, 436
Programme of Action for Sustainable Development 444
Resource Management Act 1991 433
Ng, S. 167
Ng, Y. 167
Nicholson, S.E. 238
Nielsen, N.O. 273
Niemeijer, D. 238
nitrogen 229
critical loads 230–32
dissolved inorganic nitrogen (DIN) 229–30, 231
in rivers, as a sustainability indicator 229–30
non-declining capital 35
non-declining natural capital 36
non-equilibrium ecology 428–9
non-renewable resources 24, 33, 159, 189
depletion 190–202, 203
Nordhaus, W.D. 61, 80, 175, 178, 180, 186
Noredeng, T.E. 106
Norgaard, R.B. 15, 43, 159, 192, 327, 409, 410
North, D.C. 309
Norway 103–4
bio-growth curve for forests 110–11
impact of climate change on forestry 109–12, 114
macroeconomic model of travelling patterns and forestry 112–13
RegClim project 106
transport choice and climate 107–9, 114
Norwegian Natural Resource Accounting System 79
Notarnicola, B. 390
novelty 353–4
Nyborg, K. 87, 101
O’Connor, J. 323
O’Connor, M. 29, 123, 131
Odum, E.P. 327, 328, 427
Odum, H.T. 328, 426
OECD 263, 292, 317, 376, 377, 378, 382, 422
Oegema, T. 142, 166, 180
Olson, M. 29
Olsson, L. 238
O’Neill, R.V. 328
Opschoor, H. 44, 434
optimal macroeconomic scale 39
ordinal utility 59
organisational reliability 309
Ott, W.R. 278, 335, 337
output, estimating 58
overgrazing 274
ozone concentration 223
ozone depletion 159, 160, 196
ozone layer 269
Page, S.E. 242
Pan European Forest Certification 276
Pandey, K.D. 122
Pareto, V. 321
Index

Parker, J. 443
pars pro toto trap 328, 336, 337
path dependency indicators 310
pathogens, and ecological imbalance 273
Patterson, M.G. 421, 425, 439, 440, 441, 442, 444
Patz, J.A. 273
Peacock, K. 271
Pearce, D. 21, 30, 35, 83, 84, 118, 123, 155, 258, 259, 260, 348, 430, 431
Pearce, D.W. 201
Pearse, P. 281
Peet, J. 403, 410, 413, 418
Peet, K. 403, 418
Peng, C. 329, 334
Perrings, C. 19, 212, 348
Perrow, C. 309, 310
Peskin, H. 98
Petty, W. 81
Pezzey, J. 36, 118, 162
Pezzoli, K. 426
physical input–output tables (PIOTs) 391
Pigou, A.C. 37, 59, 60, 167, 178
Pinkerton, R.C. 328
Pitt, D. 28
planning theory, and public policy 433–4
Poldy, F. 386
policy
eco-efficiency indicators for 317–43
and economic growth 177
emphsis on non-economic subsystems 178
pro-poor policies 177–8
policy making, and environmental accounting 78–95
‘political will’ 269
polluter pays principle 130
pollution 62–3, 70, 71, 83, 91
air 278–9
and forests 242
and genuine savings (GS) 129–30
particulate emissions 122, 129
transboundary and global 129–30
population 125–6
density 223
Portney, P.R. 217
Posch, M. 230
positive coevolution 15
poverty 27, 177–8, 182, 401–2
pressure–state–response (PSR)
indicator system 291–2, 295, 382, 405
prices, role in national accounts 99–101
Prigogine, I. 323
Prince, R. 129
Prince, S.D. 238
Principles 67
private consumption expenditure 147–8, 152–6
adjusting for income inequality 200–201
measurement 153
pro-poor policies 177–8
production activities, and psychic income 18
production theory 326
dimensionality of funds and flows 210–11
Georgescu-Roegen on 210–12
production waste 21
Proops, J. 130, 351
property rights 123
psychic income 18, 150
Australia 357
and human made capital 18
measurement 153, 201–2
and the natural environment 18
and non-economic pursuits 18
and production activities 18
public policy, and planning theory 433–4
pulsing paradigm 429
Pykh, Y. 329
Pykkönen 294
Qiao, L. 386
quality of life 32, 262, 401, 403
quasi-immortality 22
Radcliffe, N. 168
RAINS model 230
Rametsteiner 283
Ramsar Convention 269
Randall, A. 326
Randla, T. 317
Rapport, D.J. 44, 270, 272, 273, 274, 275, 277, 282
Ravetz, J. 416
rebound effects 388
recycling 21, 210
Redclift, M. 292
Reddy, A. 359
Redefining Progress 139, 141, 160, 190, 191, 256
Rees, W. 44, 250–51, 438
Rees, W.E. 271, 378
regrettables 180–81
regulation policies 377
rehabilitative expenditure 149–50, 156–7
Reijnders, L. 390, 434
reindeer, sustainable management 296–308
renewable natural capital growth
 efficiency ratio, Australia 365, 366
renewable resources 246, 251
rent, and royalty 71
Repetto, R. 87
replacement cost approach 157, 158, 159, 191–3, 203
resilience 273, 310, 429
resource extraction 24, 33–4, 119, 120, 122, 131
resource prices 250
resource production or resource consumption 190–91
‘resource rents’ 68, 126–7, 157, 158, 190, 191–3, 203
total resource rent method 193–6
resources, and consumers 310
Rietkerk, M. 310
rights and privileges 30
Rio Earth Summit 3
risk, and uncertainty 351–2
Ritthof, M. 389
Rive, N. 112
Robè, K.-H. 249
Robertson, J. 418
Robinson, J. 147, 345
Roche eco-efficiency rate (EER) 317
Rochlin, G.I. 309
Roe, E. 309
Romero, J.A. 235
Rosenberg, D. 190
Rosenberg, K. 142, 166, 180
Rosser, J.B. Jr. 209
Ruth, M. 323
Ryan, G. 123, 131
Saddler, H. 441, 444
Saebo, H.V. 334, 335
Sahel syndrome 238
Salim, E. 270, 274, 275, 281
Sametz, A. 178
Samuelson, P.A. 61, 175
Sanders, R. 19, 40, 139, 146, 159, 160, 166, 180
Sanders, R.D. 190, 193
Sanderson, S. 292
satellite accounts 56, 57, 62, 63, 66, 79, 162
 purpose 80
Satellite System for Integrated Environmental and Economic Accounting (SEEA) 80, 88
Saudi Arabia 120–21, 127, 132
scarcity 123, 326
Scasný, M. 386
scenario-framed indicators, policy-guiding value 308–12
Schaltegger, S. 318, 320
Schantl, H. 386
Scheffler, M. 235, 292, 310
Schjolden, A. 103, 110
Schmidheiny, S. 317, 318, 319, 349
Schmidt-Bleek, F. 383, 388
Schnaiberg, A. 27
Schneider, E. 428
Schneider, E.D. 327
Schröder, T. 213
Schumacher, E. 84
Schumpeter, J. 81
Schütz, H. 384, 386, 388
Seitovsky, T. 85
Seckler, D. 167
Seers, D. 81
self-organisation 15, 21
semiotics
 definition of 330
 and signs 330–31
Sen, A. 181
sentient non-human beings 30, 31, 32
Seppälä, T. 383, 390
service efficiency, of human-made capital 345–6
service efficiency ratio, Australia 356–8
services 211, 251, 350
shadow prices 67, 100, 117, 131
Shipley, J.T. 320
Simon, J. 250
Simon, S. 282, 390
Simpson, J. 320, 321, 329, 330
sink functions 432
Skeat, W. 320, 322
Slobodkin, L.B. 327
Smeets, E. 44
Smil, V. 213
Smith, Adam 61
Smith, G.A. 85
social accounting matrices (SAMs) 70
social capital 16
measurement 31
social and environmental indicators 89–90
social indicators movement 421
social processes 407
social product 60
social security 178
‘social trap’ 3
social values 407
society, subsystems 168, 178
socio-economic process
coevolutionary worldview 14–16
linear throughput representation 16–19
sociosphere 15
economy and ecosphere
atomistic–mechanistic depiction 14
coevolutionary depiction 16
Sohngen, B.L. 110
solar energy 192, 213
Söllner, F. 326
Solow, R.M. 61, 117, 430
Spangenberg, J. 377, 383, 384, 387, 434
speciation 23
species extinction 23
Spellerberg, A. 31
Speth, J.G. 248
Stahmer, C. 381, 391
standardisation 161
State of the World’s Forests, FAO 276
statistics 82
data sources 384
Stephens, R. 425
Stiller, H. 317, 318, 319
Stockhammer, E. 142, 156, 157, 190, 196
Stockhammer, L. 166, 180
Stockholm Environment Institute 246
Stone, W. 31
Strand, G.-H. 110
strong sustainability 36, 61, 63–5, 72, 83–4, 89, 186
and green accounting 64–5
structural inertia 15
Sturm, A. 261, 318
Stymne, S. 142
Sub-Saharan Africa 66, 132, 177
genuine savings (GS) 120
subjective well-being (SWB) 84–5
substitution 20, 21, 64, 80, 246
surprise
concept of 351, 354
sources of 352
sustainability 20, 246, 248–9, 262, 263
definition of headline indicators 423–4
definitions of 426
ecological interpretations 426
of economic activity 158
and economy 249
headline indicators 421–48
measuring 251–61
and path dependence 309
social construction 292
see also strong sustainability; weak sustainability
‘sustainability gap’ 390–91
sustainability indicators
general selection criteria 434–5
history and rationale 421–3
initiatives in New Zealand 424–5
theoretical bases 425–34
sustainability paths 179
sustainability scenarios 291–316
sustainable development 83, 275
broad definition 31–2
definitions of 13–19
dimensions of 433
ecological and biophysical factors 20–24
economic factors 27–8
ecosystem approach to 433–4
hybrid measurement technique 123
as increasing eco-efficiency 42–3
as increasing economic welfare 36–42
as increasing Hicksian income 32–4
indicators 275
as non-declining capital 34–5
as non-declining natural capital 35–6
as overshoot avoided 43–5
psychological factors 24–7
social/cultural factors 29–31
sustainable development indicators 3, 317
and human needs 399–420
policy-guiding value 11, 45
sustainable economic welfare (SEW) 38, 39
alternative measures 139–65
measurement 161–2
sustainable living, as a goal 416
sustainable net benefit index (SNBI) 40, 139, 142, 146
Australia 40, 356
sustainable net domestic product (SNDP) 32–4, 38, 142, 146–7, 148, 149
sustainable resource management, obstacles to 250–51
Svedang, H. 235
Sverdrup, H. 231
Sweden 260–61, 262
Index of Sustainable Economic Welfare (ISEW) 198
Sykkö, S. 295
System for Integrated Environmental Economic Accounting (SEEA) 56, 378, 379, 422
system of national accounts (SNA) 56, 160, 378, 379
systems
Bossel’s orientors and fundamental properties of environment 411–12
control of 405–10
generalised 411
systems analysis 178–9
taxation 177–8
Tcherneva, P. 369
technological progress 248
technological systems 309
technology 20, 103, 104
Ten Brink, B.J.E. 223, 225
Thailand
comparison of ISEW per capita and GDP per capita 176
corruption 180
GDP 175
ISEW, case study 166–85
policy implications 175–8
results 172–5
thermodynamic approaches to eco-efficiency 323–5
thermodynamics
and ecological economics interpretations 432–3
first law of 21
second law 21, 181, 432
Theys, J. 79
threshold hypothesis 139, 140, 161–2, 167, 189
and replacement costs 192
throughput of matter-energy 17, 146, 433
Tietenberg, T. 281
Tiezzi, S. 142, 190
Tobin, J. 80, 175, 178, 180, 186
Tol, R.S.J. 110
Tomassello, M. 291
Total Wealth Indicator, World Bank 423
trade 387–8
transport, choice and climate 106–9
tri-butyl tin (TBT) 294–6
Turner, K. 431
Turner, R. 348
Turner, R.K. 123, 221, 232
UK
England, national income 81
Index of Sustainable Economic Welfare (ISEW) 199
Ulanowicz, R.E. 327
Ullsten, O. 270, 274, 275, 281, 284
Ulph, A. 201
UN (United Nations) 62, 63, 80, 89, 99, 379, 421
Agenda 21 3
Industrial Commodity Statistics 384
UN (United Nations) Forest Forum (UNFF) 275
uncancelled benefit 38, 39, 40, 42, 142, 368
uncancelled benefit (net psychic income) account 371–2
uncancelled cost 38, 39, 40, 42, 142, 143–5, 345
uncancelled cost (lost natural capital services) account 372
UNCED (United Nations Conference on Environment and Development) 275, 317
uncertainty 180–82
and discount rates 217
and risk 351–2
UNDP (United Nations Development Programme) 179, 246, 272
unemployment 27–8
UNEP (United Nations Environmental Programme) 58, 246, 249, 272
Global Environment Outlook program 275
World Conservation Monitoring Centre 254, 256
Union of Concerned Scientists 249
United States Geological Survey (UNGS) 384
universal well-being 247
UNSD (United Nations Statistical Division) 56, 57, 65, 156
unused domestic extraction (UDE) 384
US
Ecological Footprint 271
GPI, 1950 to 1995 141
Index of Sustainable Economic Welfare (ISEW) 41, 199
Office of Management and Budget 217
user cost method 59, 64, 65, 67, 71, 72, 158, 159, 193–6, 203, 369
utility satisfaction 18
valuation techniques 161, 162
value judgements 180, 181
value-added, estimation 98
Van Berkum, J.A. 234
van den Bergh, J. 14, 44, 258, 260
Van der Veen, R.J.H.M. 235
van der Voet, E. 390
van Eeten, M.J.G. 309
van Kooten, G.C. 44, 258
van Tongeren, J. 98
van Vuuren, D. 44
variable, use of term 332
Vaze, P. 79
Verbruggen, H. 44, 258, 260
Verheyen, R. 377
Vibrio cholerae 273
Vincent, J.R. 130
Vitousek, P.M. 44, 268, 309, 432
Volterra equation 110
voluntary sector 401
volunteer and non-paid household work 149
von Weizsäcker, E.U. 376
Vos, J. 435
VROM council 258
Wachtel, P. 85
Wackernagel, M. 44, 162, 250–51, 258, 261, 271, 378, 438
Walz, R. 334
Warr, P. 166, 177
waste generation 24, 258
water 240, 258
Waterboard Groot Salland 234
Waterhouse, J. 428
Watkins, K. 166, 177
Watson, R.T. 240
Watt, K. 426
Watts, M. 369
Waugh, A. 336
WBCSD (World Business Council for Sustainable Development) 319, 349
WCED (World Commission on Environment and Development) 3, 252, 275, 349
WCN (World Conservation Union) 249
weak sustainability 64, 72, 83–4, 87, 117, 122, 131, 132, 259, 430
wealth
measurement 62
versus income 61–3
Wealth of Nations 61
Weiner, E. 320, 321, 329, 330
Weisskopf, W. 26
Weiszacker, E. 359
Weitzman, M.L. 61, 98, 217, 218
welfare 72, 78, 81, 82
alternative welfare index 160–61
and consumption 79, 80, 84–6
definitions of 176, 186
economic welfare measure 80
and green accounting 58–61
income-adjusted measures 178
welfare comparisons 60
welfare economics 59, 326
welfare monitoring 89
welfare theory 431–2
Welford, R. 318, 320
well-being, universal 247
wetlands
critical natural capital in 232–6
studies of services and values 232
Weyant, J.P. 217
White, H. 178
Whitehead, A. 336
Whitford, W. 273, 274, 277
Wiegert, R.G. 328
Wiens, J. 428
Williams, J.M. 319
‘willingness to pay’ 86–7, 90, 100, 122,
131, 216
Wilson, E.O. 252
Wilson, M. 142
Wilson, M.C. 190
Wiltage, C. 162
Winners and Losers in Global
Competition 261
Withagen, C. 36, 118
Wolf, S.A. 292
Woodward, R.T. 232, 326
Woodwell, G.M. 279
Work and Ecology 387
World Bank 31, 56, 65, 66, 69, 118,
119, 121, 126, 129, 131, 178, 246,
272
Total Wealth Indicator 423
World Commission on Forests and
Sustainable Development 270,
274
World Conservation 269, 272
World Conservation Union (IUCN)
249
World Economic Forum 261, 278, 439
World Resource Institute (WRI) 272,
386
Pilot analysis of Global Ecosystems
276
World Wide Fund for Nature (WWF)
249, 256
Wray, R. 369
Wright, J. 333, 425, 435
Wui, Y. 232
Wulff, F. 327
Wuppertal Institute 317, 384, 434
Yount, D. 258
Ziman, J. 434
Zolatas, X. 167
Zorraquin, F. 349