Index

air pollution
downward trends in 113–16, 110, 111, 112
and environmental Kuznets curve
see environmental Kuznets curve
hedonic studies 208
and income effect 97, 98–9, 100, 102–13
income elasticity and 109–13
and willingness to pay 109–13
see also individual countries
AIRS (Aerometric Information Retrieval System) 97–8, 101–2, 109
Alaska, crab and salmon cycle 4
Amemiya–Tobin model 189, 192, 193
Anselin, Luc 211
ARCO (Atlantic Richfield Oil Company) 190, 198
Austin, Texas 87
Australia, air pollution and income levels 103–4, 105, 112, 115

Babbitt v. Sweet Home 65
Balcones Canyonlands Conservation Plan 87–8
barnacles, Brown/Roughgarden model 3, 5–7, 17
bathyspheric mapping 5
Belgium, air pollution and income levels 103–4, 105, 106, 112, 115
bison 41
black-capped vireo 87
black-footed ferrets 41, 42
Brazil, air pollution and income levels 103–4, 105, 106, 112, 115
Brown, Gardner
amenity studies 209
Contingent Valuation Method 224
‘Dynamic economic management of migratory wildfowl’ (1973) 3, 224

Ecological Economics 3
‘Economic Valuation of Shoreline’ (1977) 208, 209, 213, 220–21
‘Economics of antibiotic resistance’ (2001) 3
‘Economics of the Endangered Species Act’ (1998) 37, 63, 64
Green lake study 209–10
harvesting of renewable natural resources 139–41
‘The hedonic travel cost method’ (1984) 3
‘Implications of alternative measures of natural resource scarcity’ (1978) 134
metapopulation model (with Roughgarden) 3, 5–7, 17
optimal control theory 139, 140
‘Renewable natural resource management and use without markets’ (2000) 135
‘Resistance economics’ (1996) 3
Waterfowl and Wetlands 161, 168

Canada, air pollution and income levels 103–4, 105, 112, 115
capital theory 3
Chile, air pollution and income levels 103–4, 106, 109, 112, 115
China, air pollution and income levels 103–4, 105, 112, 115
Clark Fork River 189–90, 198, 202
circulation direction (advection) 7
currents 4–5, 7, 12
ecosystems 4, 13
intertidal organisms 4, 5
radar systems 5
see also fisheries management; shoreline
commitment costs, environmental valuation 166, 168, 169–73, 174
Cone, Ben 70, 79
conjoint analysis 225
conservation corners in metapopulations 41–2
conservation on private lands
agglomeration bonus 37–42, 48
border bonuses 39–41
compensation to landowners 36–42, 54–8
contiguous habitat strategy, second best 47, 48, 50, 53
coordination of 36–62
core target 41, 43, 44, 47–50, 51, 52–3, 54
corridor target 41, 43, 44, 48–50, 51, 52, 53, 54
cross target 41, 43, 44, 48, 51, 52, 53, 54
disease susceptibility 41–2
econometric analysis of complexity and experience 54–8
Fisher’s exact test 48–9, 50
forest management see forest management
four-corner target 41, 43, 44, 48, 49, 50, 51, 52, 53
fragmented habitat strategies 46, 47–8, 50, 52, 53, 54, 57–8
genetic sinks 41
grid game 38–9, 40, 42–58
individual behaviour 46–50
land retirement decisions 37, 41
Nash equilibria, multiple 38, 44, 45, 50
Pareto equilibria 44, 45, 50
payoff dominant strategy 38, 44, 46, 47–8, 49, 50, 52, 54–7, 58
and poaching 41
predators, edge-inhabiting 41
risk dominant strategy 38, 45
shoreline 209–10, 214–16
spatial targets 39–42
species bottlenecks 37, 41
species extinction 37
steady state behavior 51–3
stepping stone habitat patches 41
Conservation Reserve Program 37
consumer choice and quality
Kuhn–Tucker model 197–8
Linear Expenditure System 197–8, 201
Consumer surplus, environmental valuation 163, 184–5
corruption 129
currents 4–5, 12
and coastal geography 7
see also shoreline
Deacon, Robert T. 97–121, 232
Denmark, air pollution and income levels 106, 109, 112
developed countries
pollution 103, 113–14
see also individual countries
developing countries
corruption and natural resource extraction 129
pollution 97, 103
see also individual countries
discrete choice model
Montana sportfishing 191, 203–4
stated preference (SP) ratings data 224–5
discrete vs. continuous harvesting, fisheries and forest management 139–49
disease (SIS), optimal treatment 20–35
boundary solutions 22–3, 28–9
expenditure ceiling (budget constraint) 20, 25–30, 31–2
infinite horizon model 34–5
initial endowment with expenditure ceiling 25–6
interior segment 22, 28
investment endowment 20, 25–7, 31, 32
numerical example 31–2
optimum paths compared 31, 32
phase diagram 24–5, 26–7, 29–30
unconstrained budget 21–5, 26–7, 30, 31, 32
Dubin, Robin 211
Dutch Disease 132–3
Earth Day 114
Ecological Economics (Brown and Roughgarden) 3
Index

Marshallian demand function 163, 176, 178
non-perishable goods 162, 163–73, 185
perishable goods 162, 173–85
price change effects 180–82
Slutsky equation 180–82
and substitutability 161, 163, 169–71, 173, 182–4
uncertainty 162, 163, 169, 171, 172, 174, 175, 182–4
welfare measurement 161, 168–9, 171, 182–5
willingness to accept 161–3, 166–71, 173, 175, 180, 185
willingness to pay 161–6, 168–75, 180, 185
European Union
air pollution and income levels 103–4, 105, 106, 109, 112, 115
Cohesion Fund 104
Directive 80/779/EEC 104
pollution control 104, 109
Structural Fund 104
Faustmann–Wicksell forestry rotation model 140–41, 148–9
FIA (Forest Service Inventory and Analysis) 71, 73–4, 76, 79, 82
Finland, air pollution and income levels 103–4, 105, 112, 115
Fish and Wildlife Service 63, 65, 66, 68, 69
Balcones Canyonlands Conservation Plan 87–8
‘bird letters’ 87–8
Blue Book Guidelines 70
Cone (Ben) case 70, 79
draft private lands manual 70
and golden-cheeked warbler 87–8
Habitat Conservation Plans 70–71, 73
Safe Harbor program 36, 70, 71
see also Endangered Species Act; Montana sportfishing
fisheries management
barnacles 7–9
continuous vs. discrete harvesting 139–49
and Faustmann–Wicksell optimal tree harvesting model 140–41, 148–9
harvest equilibrium 7, 9
Montana sportfishing see Montana sportfishing
multiple patch system 7
net investment 142–3
optimal 141–3, 148
optimal control theory (Gardner Brown) 139, 140
sole ownership 141–3, 148
specialization and trade 7
see also Fish and Wildlife Service; marine reserves
Fisher’s exact test 48–9, 50
Fishing Montana guidebook 199, 201, 202
forest management
Austin, Texas 87
commercial lumber companies 64
continuous vs. discrete harvesting 139–49
and Endangered Species Act 63–94
Environmental Defense Fund 70
Faustmann–Wicksell rotation model 140–41, 148–9
fishery-like 144–5
Forest Service Inventory and Analysis (FIA) 71, 73–4, 76, 79, 82
habitat recovery plans 65–6
habitat reduction 63–4
harvest age 72, 73, 74, 75–82, 85, 86
harvest rights 68
harvesting problem, optimal 143–9
incentives 65–6, 68
loblolly pine 72, 73, 77, 79
longleaf pine 72, 73, 77, 79
NCSU data 75, 76, 79, 82
non-timber land uses 75
North Carolina Sandhills region 68–9, 70, 71, 73–5, 76, 79, 82
northern spotted owl see northern spotted owl
Northwest forests 83–5
optimal rotation 66–7
optimal tree harvesting problem 143–9
Oregon 86
Pacific Coast 87
Pacific Northwest 86
pine straw harvest 70, 75, 79–82
pond pine 73, 77, 79
preemptive habitat destruction 66, 70, 71–2, 75–82, 87–8
private management see
 conservation on private lands
property claims to public lands 67–8
public ownership 64, 67–8, 82–3, 84–5
quail hunting 74, 75
red-cockaded woodpecker see red-cockaded woodpecker
Redwood National Park 87
residential sites 70, 75, 79, 80
rotation age 64, 66, 71, 76
‘shoot, shovel and shut up’ policy 63
slash pine 72, 73, 78, 79
Southeast pine forests 68–83
species preservation see Endangered Species Act
timber harvest rights 68
timber value 72, 73, 76, 79, 85
Washington 86
and Wickel capital theory problem 144–7, 148
Forest Service Inventory and Analysis (FIA) 71, 73–4, 76, 79, 82
Fort Bragg Army Base 82, 83
Fulcher, Charles M. 208–23

GATT 97
GEMS database 97–8, 100–102, 108, 109
Germany, air pollution and income levels 103–4, 105, 109, 112, 115
golden-cheeked warbler 87–8
Grand Canyon 162, 163
Greece, air pollution and income levels 109
Green lake study 209–10
grid game, conservation on private lands 38–9, 40, 42–58
grizzly bears 37, 41
Hanemann, Michael 188–207
‘Measuring the benefits of water quality improvement’ (1986) 197

‘Willingness to pay and willingness to accept’ (1991) 161, 163, 168, 169–70, 171, 173
hedonic property modeling
direct representation 211
early 208–10
recent 210–12, 215, 216–20
spatial errors 211–12, 219
Hicksian welfare theory 161
high-tech sector 133
Hong Kong
air pollution and income levels 103, 106, 112, 115
natural resources and economic growth 123
Hotelling, Harold 150, 151–2, 156
Idaho Department of Fish and Game Habitat Improvement Program 36–7
income effect
and air pollution 97, 98–9, 100, 102–13
elasticity of 110–13
India, air pollution and income levels 103–4, 105, 112, 115
Iowa lake, water improvements in 171–3
Iran, air pollution and income levels 103–4, 105, 106, 111, 112, 115, 116
Ireland, air pollution and income levels 103–4, 106, 109, 112, 115
Israel, air pollution and income levels 103–4, 112, 115
Japan, air pollution and income levels 103–4, 105, 112, 114, 115
Johnson, Ronald N. 122–38
Kling, Catherine L. 161–87
Kuhn–Tucker model
compensating variation 195–6, 197, 203, 205
customer choice and quality 197–8
equivalent variation 196, 197
example 193–5
identically distributed error terms (IID) 203–4
Index

and Montana sportfishing 188–207
non-identical variances (INID) 202–4
welfare implications 203–5
welfare measures 195–7
Kuwait, natural resources and economic growth 123

La Niñas 4
Layton, David F. 224–44
Lee, S. Todd 224–44
Linear Expenditure System (LES) 197–8, 201
loblolly pine 72, 73, 77, 79
longleaf pine 72, 73, 77, 79
Lueck, Dean 63–94

Malaysia, air pollution and income levels 105, 112
manufacturing sector 132–3
marbled murrelet 87
marine reserves 3–19
biological modeling 13, 14
metapopulations see metapopulations
Marshallian demand function 163, 176, 178
metapopulations
adult movement 7
bioeconomics of 3–19
Brown/Roughgarden model 3, 5–7, 17
in conservation corners 41–2
dispersal mechanisms 7–10
harvest equilibrium 7, 9
larval dispersal 7, 14, 16
marine reserves 3–19
multiple patch system 7–8, 10–12, 14
and net profitability 12, 14, 16
one-patch model 14
optimal closures 13–16
optimal equilibrium biomass 10–12, 14–15
over-harvesting 13
sink/source systems 9, 10–12, 14, 16
spatial closures 4–5, 13–14
two-patch sink/source system 10–12
Michael, Jeffrey A. 63–94
mining 125, 126–8, 129, 130, 131, 132, 133, 134, 135–6
Mohn, Craig 188–207
Montana sportfishing
Amemiya–Tobin model 189, 192, 193
ARCO (Atlantic Richfield Oil Company) 190, 198
Clark Fork River 189–90, 198, 202
data used 198–201
demand system model 191–2, 201, 203
discrete choice model 191, 203–4
examination results 201–5
Fishing Montana guidebook 199, 201, 202
fishing pressure data 199–200
and Kuhn–Tucker conditions see Kuhn–Tucker model
Montana DFWP 199–200
Montana Outdoor Recreation Survey 198–9, 200
pollution 189–90, 198
recreational activity 198–200, 201–2
repeated choice framework 190–93
Research Triangle Institute 198
river and lake sites used 202
Solver Bow Creek 189–90
travel costs 200–201
welfare implications of demand model 203–5

National Wildlife Federation 69, 70
natural resource economics
division between renewable and non-renewable resources 150, 151–2, 155
grand unified theory of 150–58
Hotelling rule 150, 151–2, 156
and logistic growth 150, 151–2, 156–8
mixed resource 152–4
resource consumption across time 151, 154–5
natural resources and economic growth, USA
agriculture, forestry and fishing 124–9, 131, 132, 133, 134, 135, 136
corruption 129
curse of natural resources 122–8, 131–3
Dutch Disease 131–3
and education 128–9, 133, 136
fishery policy 135
Gross State Product 124–5, 126–8, 129, 130, 131, 132, 133, 135, 136
high-tech sector 133
inter-state competition 130
mining 125, 126–8, 129, 130, 131, 132, 133, 134, 135–6
oil and gas extraction 124, 125, 126–8, 129, 130, 131, 132, 133, 134, 135–6
and population growth 136
precautionary principle, call for 136
rent-seeking 129–31, 134–5
resource depletion 135–6
Sachs and Warner primary exports model 122, 123–8, 132, 135
state and local government size 129–31, 133
and taxation 128, 130, 133
Netherlands
air pollution and income levels 103–4, 112, 115
Dutch Disease 131–3
natural gas 132
New Zealand, air pollution and income levels 103–4, 106, 112, 115
non-perishable goods, environmental valuation 162, 163–73, 185
see also perishable goods
Norman, Catherine S. 97–121
North Carolina Sandhills region 68–9, 70, 71, 73–5, 76, 79, 82
North Pacific ecosystem 4
northern spotted owl 37, 41, 63, 65, 66
and forest management 83–5
history of 84
land use change in Northwest forests 84–5, 86
and marbled murrelet 87
Portland Audubon Society v. Hodel 84, 85
see also forest management
Northwest forests 83–5
Norway, natural capital and education 128
oceanographic circulation 4–5
oil and gas extraction 124, 125, 126–8, 129, 130, 131, 132, 133, 134, 135–6
oil pollution 114
oil reserves 123
Oregon 86
Pacific Decadal Oscillation 4
Palmquist, Raymond B. 208–23
Parkhurst, Gregory M. 36–62
particulates see TSP
perishable goods
division between renewable and non-renewable 150, 151–2
environmental valuation 162, 173–85
see also non-perishable goods
pesticides 114
pine straw harvest 70, 75, 79–82
Plummer, Mark L. 87, 88, 150–58
poaching 41
Poland, air pollution and income levels 103–4, 106, 111, 112, 115, 116
pollution
air see air pollution
and GDP relationships 102–9
Montana sport fishing 189–90, 198
pond pine 73, 77, 79
Pontryagin's maximum principle 140
population growth 136
Portland Audubon Society v. Hodel 84, 85
Portugal, air pollution 104
prairie dogs 41, 42
price change effects, environmental valuation 180–82
private lands, conservation on see conservation on private lands
prospect theory 161
public ownership
forest management 64, 67–8, 82–3, 84–5
shoreline valuation 209–10
quail hunting 74, 75
Random Utility Model (RUM) 226–7, 231, 239
ranking model 231, 233–5, 236–42
red-cockaded woodpecker 37, 41, 63, 66.
age structure and density of trees 69
Cone (Ben) case 70, 79
ecological characteristics 69
foraging habitat 69–70
FWS ‘Blue Book Guidelines’ 70
Habitat Conservation Plans 70–71, 73
and harvest age 75–82
‘incidental takes’ of habitat 70–71 on military bases 82–3
NCSU data 75, 76, 79, 82
and pine straw production compatibility 79
policy history 69–71
preemptive habitat destruction 66, 70, 71–2, 75–82
on public land 82–3
Recovery Plan 69, 70
Sierra Club v. Lyng 83
and Southeast pine forests 68–83
US Forest Service Inventory and Analysis (FIA) 71, 73–4, 76, 79, 82
voluntary participation by landowners 70–71
see also forest management
Redwood National Park 87
remote vehicle sensing 5
renewable and non-renewable goods division between 150, 151–2
see also perishable goods
rent-seeking 129–31, 134–5
repeated choice framework, Montana sportfishing 190–93
Research Triangle Institute 198
Rowthorn, Robert 20–35
Sachs and Warner primary exports model 122, 123–8, 132, 135
Safe Harbor Plans 36, 70
Sanchirico, James N. 3–19
Saudi Arabia, natural resources and economic growth 123, 135
sea surface patterns 5
Shaﬁk, N. and S. Bandyopadhyay 99, 108
Shogren, Jason F. 36–62, 63, 64
shoreline coastal circulation direction 7
costal radar systems 7
economic valuation of 208–23
ecosystem local small-scale events 4
Green lake study 209–10
hedonics, early 208–10
hedonics, recent 210–12, 215, 216–20
hedonics, spatial errors 211–12, 219
lake proximity 215, 218–19
and private land 209–10, 214–16
protection of intact ecosystems 13
and public land 209–10
study results 216–20
Wake County 213–20
see also coast
Siberia, agriculture 135
Sierra Club v. Lyng 83
Singapore, natural resources and economic growth 123
slash pine 72, 73, 78, 79
Slutsky equation 180–82
smoke emissions and income levels 108, 111, 112
see also air pollution
snail darter 65
Solver Bow Creek 189–90
South Korea, natural resources and economic growth 123
South Paciﬁc, rockﬁsh evolutionary strategy 4
Southeast pine forests, and red-cockaded woodpecker 68–83
Spain, air pollution and income levels 103–4, 106, 112, 115
spruce ﬁr moss spider 87
state and local government size 129–31, 133
stated preference (SP) ratings data conjoint analysis 225
Contingent Valuation Method 224
discrete choice formulations 224–5
econometric analysis of 224–44
elicitation methods 226–8
ordinal utility theory 230
Random Utility Model (RUM) 226–7, 231, 239
ranking model 231, 233–5, 236–42
ratings data, ad hoc approaches to 238–9
ratings data ordered models 230–32, 237, 239–42
Index

economic growth and natural resources see natural resources and economic growth, USA
Elgin Air Force Base 82
Endangered Species Act (ESA) see Endangered Species Act
Environmental Defense Fund 70
Environmental Protection Agency (EPA) 97
Fish and Wildlife Service see Fish and Wildlife Service
forest management see forest management
Forest Service 69, 71, 73–4, 76, 79, 82, 83, 84
Fort Bragg Army Base 82, 83
Grand Canyon 162, 163
Green lake study 209–10
Gross State Product 124–5
Habitat Conservation Plans 36
Idaho Department of Fish and Game Habitat Improvement Program 36–7
Iowa lake 171–3
land retirement decisions 37
Montana sportfishing see Montana sportfishing
National Wildlife Federation 69, 70
natural resources and economic growth see natural resources and economic growth
North Carolina Sandhills region 68–9, 70, 71, 73–5, 76, 79, 82
northern spotted owl in see northern spotted owl
Northwest forests 83–5
Oregon 86
Portland Audubon Society v. Hodel 84, 85
red-cockaded woodpecker in see red-cockaded woodpecker
Redwood National Park 87
Safe Harbor Plans 36, 70
shoreline studies see shoreline
Sierra Club v. Lyng 83
Solver Bow Creek 189–90
Wake County 213–20
Washington State see Washington State
urchins 4

ratings data ordinal content 228–32
ratings data ordinal model 232–6
ratings data structure 228–30
ratings scale, use of 225–8
standard econometric models 226–8
task-dependence of 226
Washington State trout anglers 236–42
willingness to pay 224, 239–42
subpopulations, linked 5
substitutability and environmental valuation 161, 163, 169–71, 173, 182–4
sulfur dioxide emissions
downward trends in 113–16
and income levels 108, 111, 112
see also air pollution
taxation 128, 130, 133
temperature 4
Thailand, air pollution and income levels 103–4, 105, 109, 112, 115
trawl survey work 5
TSP (suspended particulates) see air pollution
and income levels 108, 111, 112
see also air pollution
UK, air pollution and income levels 103–4, 106, 112, 115
uncertainty, and environmental valuation 162, 163, 169, 171, 172, 174, 175, 182–4
United Arab Emirates, natural resources and economic growth 123
United States
agglomeration bonus 37–8
air pollution and income levels 102, 103–4, 112, 113, 115
ARCO (Atlantic Richfield Oil Company) 190, 198
Austin, Texas 87
Babbitt v. Sweet Home 65
Balcones Canyonlands Conservation Plan 87–8
Bureau of Land Management 84
Clark Fork River 189–90, 198, 202
compensation to landowners 36–8
Conservation Reserve Program 37

Robert Halvorsen and David F. Layton - 9781847202963
Downloaded from Elgar Online at 04/09/2019 03:14:36AM
via free access
Venezuela, air pollution and income levels 103–4, 106, 112, 115

Wake County 213–20
Washington State forest management 86
tROUT anglERS 236–42
weather prediction 5
Weitzman, Martin L. 139–49
welfare implications
Kuhn–Tucker model 203–5
Montana sportfishing demand model 203–5
welfare measurement
environmental valuation 161, 168–9, 171, 182–5
Kuhn–Tucker model 195–7
whole population model 3, 4
Wicksell capital theory problem 144–7, 148
Wilen, James E. 3–19

Willingness to accept, environmental valuation 161–3, 166–71, 173, 175, 180, 185
Willingness to pay and air pollution 109–13
environmental valuation 161–6, 168–75, 180, 185
stated preference (SP) ratings data 224, 239–42
wind 4–5, 12
wolves 41
World Bank
natural capital and education 128
resource abundance and economic growth measurement 123, 135
World Development Report 97
Yugoslavia, air pollution and income levels 103–4, 105, 112, 115, 116
Zhao, Jinhua 161–87