1. Hadley changes in wet and dry seasonal precipitation and temperature for 2080–99 compared to baseline
2. PCM changes in wet and dry seasonal precipitation and temperature for 2080–99 compared to baseline
3. Distribution of the vegetation classes simulated (a) for the historical period (1961–90) and for the future period (2070–99) of the (b) Hadley and (c) PCM climate scenarios
4. Distribution of (a) average total ecosystem carbon and (b) average annual total vegetation carbon for the historical period (1961–90) and for simulated changes in (2070–99) due to predicted Hadley and PCM climate changes
5. The distribution of the (a) fire rotation period and (b) average fire-line intensity per event for the historical period (1895–1994) and for simulated changes in (2000–2099) due to predicted Hadley and PCM climate changes
6. Potential distribution of CSS (a) with current conditions, (b) under 92 million population, (c) under the Hadley climate change scenario and 92 million population, (d) under the PCM climate change scenario and 92 million population
7. Potential distribution of CSS by (a) 2020 under all climate change scenarios and 45.5 million population, (b) 2060 under all climate change scenarios and 67 million population, (c) 2100 under all climate change scenarios and 92 million population
8. Current distribution of GAP-derived CSS (1 ha resolution) in San Diego region; with estimated distribution of (a) 67 million urbanization and (b) 92 million urbanization. Figure also identifies areas designated as critical habitat units for the California gnatcatcher by the USFWS (2000)
9. Percentage change in residential energy for a 3°C warming with an 18 percent increase in precipitation
10. Percentage change in commercial energy for a 3°C warming with an 18 percent increase in precipitation