## Index

Adams, R.M. 158

agricultural impacts 188–207, 256–7

CALVIN 189, 191, 202, 203, 205

climate change scenarios 199

method of study 190–99

results of scenarios 199–205

SWAP model, see SWAP model, agricultural impacts

water use 188

air conditioning, demand for 212

Alameda County

farmlands 44

infill trends 27

allocation densities, and forecasting procedures 20–21

American River

DP optimization model 171

floodplain management problem 170

implications of flooding for 174

lower area 171, 173, 181, 184–5

runoff analysis 123–4, 254

Anderson Snow Model, snow-to-rain ratios 129

Año Nuevo, sea level rise 237

Artemisia (sageworts), coastal sage scrub 94

baseline impact assessment 41–6

farmlands 44–6

hillside/steeply sloped land 42

riparian areas 43–4

wetlands 42–3

baseline scenarios

building 30–31, 31–2

and freeways 31

northern California 39–40

Sacramento region 41

San Joaquin Valley 39

socio-economic changes 3, 9

SWAP model 196–9

best linear unbiased estimator (BLUE), crop yields 151, 154

biodiversity changes 86–99, 250, 253–4

methods of study 88–92

limitations 91–2

objectives of study 88

results of study 92–7

all community types 92

California coastal sage scrub 94–7

landscape ecological diversity 93–4

study area 90

biogeochemistry module, MCI vegetation model 62–3

biogeography module, MCI vegetation model 62, 65

biomes, timber sector 103

BLUE (best linear unbiased estimator), crop yields 151, 154

building expenditure, and energy 212

CALFED (California and Federal Program), water and aquatic ecosystems, management 165, 169, 176, 177

California coastal sage scrub, see coastal sage scrub (CSS)

diversity of 60, 86

fire, burning by 67, 73–4, 75

future development, uncertainties 9

natural systems 60

northern 17–8, 39–40

population, see population southern, see southern California

statistics 2

urban footprints 33, 34, 35, 36

California Coastal Commission 233

California Farmland Mapping and Modeling Program (CFMMP) 17, 44

California and Federal Program, see CALFED (California and Federal Program)

California Gap Analysis Project (GAP) 88, 89

California Integrated Network, see CALVIN (California Value Integrated Network)

California Gap Analysis Project (GAP) 88, 89

California Integrated Network, see CALVIN (California Value Integrated Network)

California Nevada River Forecast Center 126

CALVIN (California Value Integrated Network), and water resources 165, 166, 185

263
agricultural sector 189, 191, 202, 203, 205
assumptions 174
data flow schematic 168
demand areas/inflows and facilities 167
response options 170
and SWAP model 189, 202
water management, adaptive changes 176
Camp Pendleton, baseline scenario results 32
carbon budget, future 77, 78, 79, Plate 4
carbon density and fire regime 73–7
Hadley scenario 73–4, Plate 4
incremental scenarios 76–7
PCM scenario 74, 76, Plate 4
simulation results 65, 73–7
carbon dioxide concentrations, assumed 57
on crop yields 147
fertilization effect 148, 150, 155, 157, 158, 159, 160, 161, 162, 256
carbon, forest
calculation of changes in 103–4
Cascade Range, evergreen conifer forest in 70
Cayan, D.R. 122
Centauraea solstitialis (yellow star thistle) 86
Central Valley
agricultural water users in 184
energy impacts 231
population projections 22
SWAP model 193, 196
timber impacts 114
CENTURY model, and MCI vegetation model 62
CERES (biophysical simulation model) 148, 150
CFMMP (California Farmland Mapping and Modeling Program) 17, 44, 45
city boundaries, forecasting method 29
climate
historical
carbon density 65
fire regime 65–8, Plate 4
vegetation classes 65
Pacific Ocean 49, 50
see also climate change scenarios
climate change scenarios 4, 48–59, 68–79, 199
agricultural impacts 199
carbon density and fire regime 73–7, Plate 4
criteria 50, 52
current conditions 49–50
GCMs 52, 53, 54
incremental 71–2, 76–7
PCM model 70–71, 74, 76
selection 50–58
vegetation classes 68–72
climate change, and water resources impacts
effects 169, 170, 177–9, 181–2
urbanization combined with 182–3
Coachella Valley
baseline scenario results 38–9
agricultural land 197
Coast region, crop yields 149, 156, 160, 161
coastal impacts, see sea level rise, impacts
coastal locations, development 25
coastal sage scrub (CSS) biodiversity 94–7, 98, 253
current distribution 94
future urbanization and climate change, projected effects on 95
GAP-derived distribution, San Diego region Plate 8
potential or current distribution 96, Plate 6
potential distribution 96, Plate 7
threats to 98
coastal vulnerability index (CVI) 238
Colorado River
purchase of water from users 177
water, Colorado Aqueduct deliveries of 184
water supply, change in 255
commercial energy, percentage change Plate 10
Contra Costa, infill trends 27
crop biophysical simulation models 148
crop yields 5, 147–64, 250, 256
CO₂ levels 147
fertilization effect 148, 150, 155, 157, 158, 159, 160, 161, 162, 256
crop biophysical simulation models 148
crop yield functions, estimation 149
cropping systems 149
data and sources 150
estimation procedures 150–51
ET (evapotranspiration) 147, 148, 152, 154, 157, 162
irrigation water use equation 151–2
methods of study 148–52
results of study 152–60
simulating impact of climate changes on 155–60
statically based models 148
water use, simulating impact of climate changes on 155–60
yields, estimation 152–5
coefficients 154
R-squares 154
selected yield regression 153
CSS, see coastal sage scrub (CSS)
CVI (coastal vulnerability index) 238
Davis, F.W. 94
decentralization, job growth patterns 19, 30
Department of Finance (DOF), see DOF (California Department of Finance)
development densities, projection 27–8
Dixon, B.L. 148
DOF (California Department of Finance)
county-level population projections 21
Population Research Unit 20
Douglas fir–white fir forest/Douglas fir–tan oak forest, vegetation class distribution 69
DP (dynamic programming) 170, 171, 181
economic growth, and socio-economic changes 10–11
ecosystem changes, terrestrial 5, 60–85, 253
carbon density, historical climate 65
climatic data 64
fire regime, historical climate 65–8
future climate scenarios
carbon density and fire regime 73–7, Plate 4
vegetation classes 68–72
Hadley scenario 68–70, 73–4
historical climate
carbon density 65
fire regime 65–8, Plate 4
vegetation classes 65
incremental scenarios, vegetation classes 71–2
MCI vegetation model 61, 62–4
Hadley scenario, vegetation classes 68–70, Plate 3
methods of study 62–4
PCM scenario 70–71, Plate 3
results of study 65–82
simulation results evaluation 79–82
future climate scenarios 68–79
historical climate 65–79
vegetation classes
Hadley scenario 68–70, Plate 3
historical climate 65
incremental scenarios 71–2
PCM scenario 70–71, Plate 3
EIA (Energy Information Agency) 215, 216
El Niño/Southern Oscillation (ENSO) 49, 50, 61, 144
empirical models, energy impacts 208
Endangered Species Act, and CSS 94
energy impacts 6, 208–32, 257
building characteristics, climate-sensitive 216–7
building expenditures, and energy 212, 214
climate change simulations 225–9
climate warming 210
cooling, probability of 214, 218, 222, 229
logit regression 216, 222
cross-sectional studies 208, 209, 213, 216, 257
data 215–6
degree-days, cooling and heating 217
demand for energy 209–10
long-run model 218, 219
short-run model 217, 219
demographic characteristics 221
cooking and cooling seasons 211–2
results 218–22, 220, 228, 230
cost-minimizing 209, 225
Energy Information Agency (EIA) 215, 216
demographic characteristics 221
engineering models, energy impacts 208
ENSO (El Niño/Southern Oscillation) 49, 50, 61, 144
EPIC (biophysical simulation model) 148, 150
*Eriogonum* (buckwheats), coastal sage scrub 94
ET (evapotranspiration) crop yields 147, 148, 152, 154, 157, 162 demand curve, runoff 127 evergreen forests Hadley scenario 68, 70 incremental scenario 71–2 PCM scenario 71 exceedance probabilities, runoff, changes in 135, 144
farmlands baseline impact assessment 44–6 ‘of state importance’ 44 S&LI 44, 45 Faustmann equation, rotation age of forestry 106, 107, 115 Feather River (Oroville Dam), runoff analysis 123, 254 Federal Emergency Management Agency (FEMA) 17 Ferndale (Humboldt Bay), sea level rise 237 fire disturbance module, MCI vegetation model 63–4 fire regime, simulation results evaluation 81 future climate scenarios 73–7, 78, Plate 4 historical climate 65–8, Plate 4 fire rotation period, distribution Plate 5 fire-line intensity, distribution Plate 5 firm model, energy impacts 214–5 Fish and Wildlife Service (USFSW) 94 flood frequency 171–2 flood hydraulics 173 FLOOD (own-site variable), growth model calibration 17, 18 flooding, water resources impacts 181–3 Folsom Reservoir, and flood control 171–2 forecasting method assumptions/caveats 29–31 greenfield population growth 28 growth model calibration 14–8 infill growth shares 27, 28 inputs, updating 28–9 job growth patterns 19–20 population projections 21–5, 26 procedures 20–21 short-term and long-term forecasts 14 Forest Service land, California 80 forestry Douglas fir–white fir forest/Douglas fir–tan oak forest 69 evergreen forests, see evergreen forests ponderosa forests 69, 70 see also timber impacts freeways, and baseline scenarios 31 FRWY_DISTSQ (own-site variable), growth model calibration 17 Galbraith, H. 87 Gan, T.Y. 122 GAP (California Gap Analysis Project) 88, 89 GCMs (general circulation models) biodiversity changes 89 climate change scenarios 52–7, 89 crop yields 156 energy impacts 228–9 streamflow volumes, changes in 122, 126, 127, 128, 144 timber sector 102, 112, 114 GDP (gross domestic product) 211, 234 Geological Service (USGS) 150, 152, 238 GIS (geographic information systems) 16, 21, 88, 89 Global Change Research Program, National Assessment of Climate Change Impacts on the United States 61 global warming biodiversity changes 86–7 energy impacts 210 regional-scale impacts 82 snowmelt-driven streamflows (Sierra Nevada) 122–3 grassland, vegetation class distribution 72 Great Basin sagebrush scrub, vegetation class distribution 70 Great Central Valley carbon density and fire regime, Hadley scenario 73 vegetation class distribution Hadley scenario 68, 69, 70 incremental scenario 72 PCM scenario 70, 71 greenfield population growth and forecasting method 28 projected 21 greenhouse gases 1, 208, 251 grid cells, and spatial autocorrelation 16 growth model calibration (forecasting method) 14–8 adjacency and neighborhood variables 17 demand variables 16 geographic information systems 16
grid cells 16
logit models 16
non-spatial and spatial data 14
own-site variables 17
regulatory and administrative variables 17
Sacramento region 18
San Joaquin Valley 18
urban growth process 15

Hadley scenario (HadCM2)
agricultural land 199–205, 200
carbon budget, future 77, 78, Plate 4
carbon density 73–4, Plate 4
coastal sage scrub (CSS), potential or current distribution Plate 6
crop yields 158
energy impacts 229
flood control 172
GCM selection criteria 53, 54
Hadley 2100, water management 177
precipitation 128–9, 134, 135, Plate 1
runoff study 254
timber impacts 110, 114
vegetation classes 68–70, Plate 3
water flows, climate change effects
precipitation 128–9, 134, 135
temperature 128
water supply 255
water use, and crop yields 158

Halvorsen, R. 219
hard structure armoring, and coastal protection 235, 236
Hillel, D. 147
hillsides/steeply sloped land, baseline impact assessment 42
Household Energy Consumption and Expenditures Survey (1990) 215
hydropower, California system 256

Imperial Beach
developed shoreline in 239
and sea level rise 237
Imperial County
agricultural land, decrease in 197
baseline results 32
population projections 21
riparian areas 43
IN_CITY variable, growth model calibration 17
INC_ACCESS90 demand variable, growth model calibration 16
incremental scenarios
carbon density and fire regime 76–7
GCM selection criteria 55
vegetation classes 71–2

infill development
and forecasting method 27, 28
projected 20, 30
Inland Empire
baseline scenario results 38
farmlands 45
intrametropolitan decentralization, job growth patterns 19
inundation mapping, and sea level rise, impacts 237
IPCC (Intergovernmental Panel on Climate Change)
on future temperature changes 4
on global agricultural production 259
on sea level rise 234, 236
irrigation water use equation 151–2

Jeton, A. E. 122
job accessibility measures, forecasting method 29
job growth patterns, forecasting method 19–20
JOB_ACCESS90 demand variable, growth model calibration 16, 17

Kern County
baseline scenarios 39
riparian areas 43
Kings River (Pine Flat Dam)
runoff analysis 124, 254
precipitation 129
Knowles, N. 122

LA, see Los Angeles region
La Niña, and climate 50
Landis, J. 89, 91
landscape ecological diversity, biodiversity changes 93–4
Lawrence Berkeley National Laboratory, and water resources 166
Lenihan, J.M. 89
Lettenmaier, D.P. 122
liquefied petroleum gas (LPG) 221
Livesay, N. 237
local change component (LCC), job growth patterns 20
logit models, growth model calibration 16
logit regression, and probability of cooling 216
Los Angeles region
baseline scenario results 32
coastal centers 25
conservation–development conflicts 95
Highway 101 corridor 32, 40
incremental scenarios 55
infill trends 27
job growth patterns 19
population projections 22
sea level protection costs 245
sea level sites 239
LPG (liquefied petroleum gas) 221
Manne, A. 226
MAP (mean-area precipitation) 126
MAPPSS rule base, MCI vegetation model
(biogeochemistry module) 62
Marin County, baseline scenarios 40
Martin, R. 67
MAT (mean-area temperature) 126
MBTU (Million British Thermal Units) 209
MCI vegetation model
aggregation scheme 66
biogeochemistry module 62–3
biogeography module 62, 65
ecosystem changes 61, 62–4
evaluation 79
fire disturbance module 63–4, 65–6, 67
maritime evergreen conifer forest 70
timber sector 102, 103
uncertainties 91
mean-area precipitation (MAP) 126
mean-area temperature (MAT) 126
Mendelsohn, R. 210, 211, 213, 215, 217
Merced County, baseline scenarios 39
Merced River (Pohono Bridge)
runoff analysis 124, 254
precipitation 128, 129
snow-to-rain ratios 129
metropolitan statistical area (MSA) 19
Miller, N.L. 122
Modoc Plateau, and vegetation class
distribution
Hadley scenario 68, 69–70
PCM scenario 70–71
Mojave Desert
carbon density and fire regime
Hadley scenario 73
PCM scenario 74
vegetation class distribution 70
Monterey Bay Area, baseline scenarios
39, 40
Monterey Valley, farmlands 44
Morrison, W. 210, 213, 215, 217
Mountain and Northeast region, crop
yields 149, 156, 160, 161
MSA (metropolitan statistical area) 19
Napa County, baseline scenarios 40
National Agricultural Statistics Service
(NASS) 150
National Assessment of Climate Change,
on crop yields 147
National Assessment of Climate Change
Impacts on the United States,
Global Change Research Program 61
National Climatic Data Center 126
National Weather Service River Forecast
System 123
National Wetland Inventory (NWI) 42
needleleaf dominance/mixed
needleleaf–broadleaf dominance,
vegetation class distribution 68, 72
net primary productivity (NPP) 103–4,
110, 114, 115
Neumann, J. 211, 237
Nevada County, baseline scenarios 41
North American Free Trade Agreement 198
Northeast and Mountain region, crop
yields 149, 156, 160, 161
northern California, baseline scenarios
39–40
northern juniper woodland, vegetation
class distribution 70
NPP (net primary productivity) 103–4,
110, 114, 115
NWI (National Wetland Inventory) 42
Orange County
baseline scenario results 32
farmlands 44
infill trends 27
population projections 22
ordinary least squares (OLS), crop yields
151, 152
Pacific Decadal Oscillation (PDO) 49, 50,
144
Pacific Ocean, and climate 49, 50
Palo Alto, sea level rise 237, 239
Palo Verde, agricultural land, decrease in
197
Parallel Climate Model, see PCM
(Parallel Climate Model) scenarios
Park, R. 234, 237
PCM (Parallel Climate Model) scenarios
agricultural land 199–205, 200
carbon budget, future 77, 78, Plate 4
carbon density and fire regime 74, 76,
Plate 4
coastal sage scrub, potential or current
distribution Plate 6
crop yields 158, 178
energy impacts 229
estimated changes Plate 2
GCM selection criteria 53, 54
PCM 2100, water management 177, 178, 179
peak flows 255
precipitation 129, 134, 135, Plate 2
runoff study 254
timber impacts 110, 112, 114
vegetation classes 69, 70–71, Plate 3
water flows, climate change effects
precipitation 129, 134, 135
temperature 128
water resources (PCM 2100) 177, 178, 179
water supplies, changes in 175, 255
water use, and crop yields 158
winter precipitation, declines in 81
PDO (Pacific Decadal Oscillation) 49, 50, 144
peak flows, PCM scenario 255
ponderosa pine–black oak
forest/ponderosa pine–Jeffrey pine
forest, vegetation class distribution
69, 70
population
country-level growth, and forecasting
procedures 20
greenfield population growth, projected 28
growth in California
land use, changes in 3
twentieth century 8
parameters and data layers, updating
28–9
projections 21–2, 23–5, 26, 30
size 13
and socio-economic changes 9–10
precipitation
exceedance probabilities 135, 144
greenhouse gases 251
Hadley projection 128–9, 134, 135
PCM projection 128, 129, 134, 135
runoff, changes in 128–44, 130–33, 136–43
snow water equivalent (SWE) 129, 134
snow-to-rain ratios 129
snowmelt 134
streamflow 135
wet and dry Plate 1
price changes, analysis, timber impacts
114–8
prices, and impact models 251
PRIME_FARM (own-site variable),
growth model calibration 17, 18
RCC (ring change component), job

growth patterns 19, 20
RCMs (regional climate models) 55
redevelopment shares, and forecasting
procedures 20
regional growth component (RGC), job
growth patterns 19
regression analysis, energy impacts 219, 220
regression lines, development densities
and infill share, projection 27–8
Reilly, M. 89, 91
residential energy, percentage change in
Plate 9
residential model, energy impacts 211–4
Revelle, R.R. 122
RGC (regional growth component), job
growth patterns 19
Richels, R. 226
ring change component (RCC), job
growth patterns 19, 20
riparian areas, baseline impact
assessment 43–4
Riverside County
baseline scenario results 32, 38
hillsides/steeply sloped lands 42
population projections 22
riparian areas 43
Rosenzweig, C. 147, 158
runoff, changes in 5, 122–46, 250, 254–5
cumulative streamflow 135
exceedance probabilities 135, 144
GCMs 122, 126, 127, 128, 134
incremental perturbations 126
methods 123–7, 125
limitations 127
precipitation, see precipitation
results 127–44
scenario perturbations 126–7
streamflow 122, 135
temperature 128
S&LI (state and locally important)
farmlands 44, 45
SAC-SMA Model, see Sacramento Soil
Moisture Accounting (SAC-SMA)
Model
Sacramento region
baseline scenarios 41
corn yields, estimation 152
flooding implications 174
growth model calibration (forecasting
method) 18
incremental scenarios 55
infill trends 27
job decentralization 30
Index

population projections 22
runoff changes, analysis 124
Sacramento River, runoff analysis 123, 254
Sacramento Soil Moisture Accounting (SAC-SMA) Model, streamflow sensitivities 123, 127
Sacramento Valley
agricultural impacts 205
crop yields 149, 154, 160
water supply reductions, vulnerable to 260
wetlands, baseline impact assessment 43
Sacramento–San Joaquin drainage
runoff, changes in 122, 123
Salvia (sages), coastal sage scrub 94
San Bernardino County
baseline scenario results 38
farmlands 44
population projections 22
riparian areas 43
San Clemente, land at risk 239
San Diego Bay, and sea level rise 237
San Diego County
baseline scenario results 32
coastal centers 25
coastal sage scrub (GAP-derived), current distribution Plate 8
conservation–development conflicts 95
farmlands 44
hillsides/steeply sloped land 42
Orange–Imperial subregion, baseline scenario results 32
population projections 22
riparian areas 43
water, shadow price for 201
San Francisco Bay Area
baseline scenarios 40
coastal wetlands, future losses 87, 261
CVI data 238–9
job decentralization 30
job growth patterns 19
riparian areas 43
sea level protection costs 245, 246
wetlands, baseline impact assessment 43
San Francisco County
coastal centers 25
population projections 21
San Gabriel mountains, and Los Angeles County 32
San Joaquin Valley
baseline scenarios 39
crop yields 149, 152, 154, 156, 160, 256
farmlands 44, 45
growth model calibration (forecasting method) 18
job decentralization 30
Kern County 39
riparian areas 43, 246
wetlands, baseline impact assessment 43
see also Sacramento–San Joaquin drainage
San Luis Obispo County, northern California 39
San Mateo, infill trends 27
Santa Barbara County, baseline scenario results 32
Santa Clara County
baseline scenarios 40
farmlands 44
infill trends 27
population projections 22
Santa Maria, baseline results 32
Santa Monica, land at risk 239
Santa Ynez mountains, and Santa Barbara County 32
Sapsis, D. 67
sea level rise, impacts 6, 233–49, 250, 258
adaptation to rise 246–7
beach nourishment 235, 236
capital investment, ‘just-in-time’ need for 241
and climate change 233, 234
cost estimates, present value 240
on costs 241
economic model 234
costs 242, 243, 244
hard structure armoring 235–6
information types 234
and inundation mapping 237
method of study 235–9
protect–abandon decision 236
results of study 237, 239–45
scaling factors 237–8
sites chosen 237, 238
Segerson, K. 148
sensitivity analysis 252
streamflow 122
timber impacts 115–6
Shannon–Wiener indices, landscape ecological diversity 93
Sierra Nevada region
carbon density and fire regime 74
snow water content (Mountains) 51
streamflows, snowmelt-driven 122–3
and vegetation class distribution 68, 69, 70
Silicon Valley, northern California 39
simulation results
evaluation 79–82
future climate scenarios 68–79
  carbon density and fire regime 73–7
  Plate 4
  vegetation classes 68–72
historical climate
  carbon density 65
  fire regime 65–8, Plate 4
  vegetation classes 65
SLOPE (own-site variable), growth model calibration 17
Smith River, runoff analysis 123, 254
snow water equivalent, runoff, changes in 129, 134
snow-to-rain ratios
  runoff, changes in 129
snowmelt
  runoff, changes in 134
socio-economic changes 8–12
  baseline scenarios 3, 9
  and climate change 251
economic growth 10–11
  population 9–10
sea level rise, impacts 236
Sohngen, B. 115
Solano County, baseline scenarios 40
Sonoran Desert, carbon density and fire regime 74
South Coast area, sea level protection costs 245
southern California 13, 17, 30
  baseline scenario results 32, 38–9
  borderline impact assessment 42
GAP distribution 96
urban growth in 184
spatial autocorrelation, and grid cells 16
spatial and non-spatial data, growth model calibration 14
Stanislaus County
  baseline scenarios 39
  infill trends 27
  riparian areas 43
Statewide Water and Agricultural Production (SWAP) model, see SWAP model
streamflow 135
  sensitivity to climate change 122
  see also runoff, changes in
SWAP model, agricultural impacts 190–96, 206, 256
  baseline scenarios 196–9
  calibration 191
  and CALVIN 189, 202
crop categories used 195
crop yield estimations 147
  parameters, change of 196
quadratic used 192
  regions covered 193, 194
  ‘shadow value’ per unit of water, estimation 190, 191
  strengths 193
SWE (snow water equivalent), runoff, changes in 129, 134
SWM 2020/2100, water management 177, 178
temperature
  cost-minimizing 209, 225
  energy impacts 225, 229–30
  future changes 4
  mean-area temperature (MAT) 126
  moderate and large changes in 251
  runoff, changes in 126, 128
  see also energy impacts
terrestrial biosphere model, timber sector 103
terrestrial communities, diversity 253–4
terrestrial ecosystem changes, see ecosystem changes, terrestrial
TIGER file (2000 Census) 43
timber impacts 100–121, 254
  baseline case projects, timber markets 104, 105, 107, 108
  biomes 103
  climate change, effects 100–101, 102, 108, 109, 111
  economy of California, and timber sector 100
  Faustmann equation 106, 107, 115
  Hadley scenario 110, 114
  limitations of study 120
  methods 102–7
    acreage, dividing of harvests by 105
    rotation age, calculation 106
  PCM model 110, 112, 114
  price changes, analysis 114–8
  sensitivity analysis 115–6
  slow growth and fast growth projections 117
  public lands, harvests from 104–5
  regulation of forests 104
  results 107–18
  scale, critical issue of 101
  softwood land 106, 107, 108–9, 110
  within-state analysis 107–14
  see also forestry
UIUC (University of Illinois at Urbana-Champaign General Circulation Model) 114
urban growth forecasting process 15
  urban share, updating of 29
Index

urbanization, and combined climate change 182–3
urbanization scenarios 13–47, 87
baseline impact assessment 41–6
baseline scenario 31–41
forecasting method 14–31
limitations 91
and terrestrial ecosystem 253
urbanized land areas, by county 37–8
USFWS (US Fish and Wildlife Service) 94
USGS (US Geological Service) 150, 152, 238
vegetation carbon, distribution Plate 4
vegetation classes
Hadley scenario 68–70, Plate 3
historical climate 65
incremental scenarios 71–2
PCM scenario 70–71, Plate 3
simulation results 65, 68–72
Ventura County, baseline scenario results 32
Waggoner, P.E. 122
water demands, changes in 174–5, 201
water flows, climate change effects, see runoff, changes in
water management, adaptive changes for 176–81
water resources impacts 165–87, 255–6
CALFED (California and Federal Program) 165, 169, 176, 177
CALVIN, see CALVIN (California Value Integrated Network), and water resources
climate change effects 169, 170, 177–9, 181–2
urbanization combined with 182–3
construction costs 173
damages 173
demands, changes in 174–5
economic-engineering perspective 169–70
flood frequency 171–2
flood hydraulics 173
flooding 181–3
groundwater storage 169
land use values 173
limitations 173–4
management, adaptive changes for 176–81
methods 166–73
responses, integration 170
results 174–83
statewide impact assessment 169
supplies, changes in 175
water supplies, changes in 175
Western Regional Climate Center (WRCC) 150
wetlands, baseline impact assessment 42–3
white fir–ponderosa pine forest, vegetation class distribution 69
World Trade Organization 198
WRCC (Western Regional Climate Center) 150
Yohe, G. 234, 235, 237
Yolo County, baseline scenarios 41