Tables

3.1 Generation capacity in the USA, 1990–2002 57
3.2 Generation capacity in California and Texas 58
3.3 Generation capacity in Norway, England and Wales, Spain and Italy .. 59
3.4 Generation fuel mix in the USA, 1998–2002 60
3.5 Generation capacity changes in the USA, 1990–2002 63
3.6 Generation capacity changes in California and Texas 65
3.7 Generation capacity changes in England and Wales, Spain and Italy .. 66
3.8 1996 forecast costs of producing electricity, 2000 and 2015 69
3.9 2004 forecast costs of producing electricity, 2010 and 2025 70
3.10 Nuclear generation costs in the early twenty-first century 72
3.11 Nuclear generation costs in the 2003 MIT study 74
3.12 Nuclear versus gas CCGT cost of capital analysis 76
4.1 Three views of congestion ... 90
5.1 Reliability upgrade projects: New England regional expansion plan 2004 .. 143
5.2 Schedule of transmission network use of system generation charges, 2004/2005 .. 160
5.3 Schedule of transmission network use of system demand charges and energy consumption charges, 2004/2005 161
5.4 E&W system operator incentive mechanism under NETA 162
5.5 PJM interconnection charges: proposed Erie West HVDC .. 170
5.6 Market window ‘economic’ transmission projects in PJM as of November 2004 .. 174
5.7 Examples of transmission congestion mitigated by reliability investments in PJM .. 178
7.1 Impact of different factors on the total generation capacity needed to supply a 384-MW load, located close to a main consumption center, from two different locations, one close to the load center and the other close to an entry point for LNG .. 272
7.2 Comparison of the cost savings involved in supplying a 384-MW load located close to a main load center .. 274