Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>additive outlier (AO) model</td>
<td>64–5, 76–9</td>
</tr>
<tr>
<td>examples of 65–6</td>
<td></td>
</tr>
<tr>
<td>Agent-based Computational Economics (ACE)</td>
<td>454</td>
</tr>
<tr>
<td>models 456</td>
<td></td>
</tr>
<tr>
<td>Akaike Information Criterion (AIC)</td>
<td>69, 148–9, 276</td>
</tr>
<tr>
<td>American Time Use Survey (ATUS)</td>
<td>583</td>
</tr>
<tr>
<td>ARIMA model</td>
<td>132–3, 135</td>
</tr>
<tr>
<td>filters based on 134</td>
<td></td>
</tr>
<tr>
<td>augmented least squares estimator 177–8</td>
<td></td>
</tr>
<tr>
<td>autocorrelation function</td>
<td></td>
</tr>
<tr>
<td>Fourier transform 14–15</td>
<td></td>
</tr>
<tr>
<td>autoregressive conditional heteroskedastic (ARCH) model</td>
<td>16–17, 266</td>
</tr>
<tr>
<td>bivariate GARCH model 268, 270, 276</td>
<td></td>
</tr>
<tr>
<td>fractionally integrated generalized (FIGARCH) 18</td>
<td></td>
</tr>
<tr>
<td>generalized (GARCH) model 16–17, 151, 196, 266–8, 284, 550</td>
<td></td>
</tr>
<tr>
<td>integrated generalized (IGARCH) model 17–18, 85</td>
<td></td>
</tr>
<tr>
<td>univariate GARCH model 273–4</td>
<td></td>
</tr>
<tr>
<td>autoregressive moving average processes (ARMA) 4–5, 9–12, 54, 68, 95, 296–7, 335–6</td>
<td></td>
</tr>
<tr>
<td>error dynamic form of 11, 14</td>
<td></td>
</tr>
<tr>
<td>estimation of 87</td>
<td></td>
</tr>
<tr>
<td>finite order 170, 185</td>
<td></td>
</tr>
<tr>
<td>invertible 10–11</td>
<td></td>
</tr>
<tr>
<td>multivariate 335</td>
<td></td>
</tr>
<tr>
<td>vector 401</td>
<td></td>
</tr>
<tr>
<td>Ball–Mankiw–Romer theory concept of 272</td>
<td></td>
</tr>
<tr>
<td>bandpass filter 397</td>
<td></td>
</tr>
<tr>
<td>Bank of Spain 135</td>
<td></td>
</tr>
<tr>
<td>Bayes Factor (BF) 605</td>
<td></td>
</tr>
<tr>
<td>Bayes theorem 37–8, 160, 363–5, 429–30</td>
<td></td>
</tr>
<tr>
<td>concept of 366</td>
<td></td>
</tr>
<tr>
<td>ML theorem 458</td>
<td></td>
</tr>
<tr>
<td>Bayesian inference 371</td>
<td></td>
</tr>
<tr>
<td>Bayesian Information Criterion (BIC) 69, 195</td>
<td></td>
</tr>
<tr>
<td>Belgium manufacturing industry 235</td>
<td></td>
</tr>
<tr>
<td>Beveridge–Nelson (BN) decomposition 170 concept of 55</td>
<td></td>
</tr>
<tr>
<td>Blackburn theory 278–9, 283</td>
<td></td>
</tr>
<tr>
<td>support for 285</td>
<td></td>
</tr>
<tr>
<td>Blue Chip Consensus 400</td>
<td></td>
</tr>
<tr>
<td>Box–Cox parameter 83</td>
<td></td>
</tr>
<tr>
<td>Biault conjecture 272, 276, 283</td>
<td></td>
</tr>
<tr>
<td>support for 285</td>
<td></td>
</tr>
<tr>
<td>Brock–Mirman model 466–7, 469, 484</td>
<td></td>
</tr>
<tr>
<td>Brownian Bridge Process 193</td>
<td></td>
</tr>
<tr>
<td>normalized squared 193</td>
<td></td>
</tr>
<tr>
<td>Brownian motion 186</td>
<td></td>
</tr>
<tr>
<td>Brunner conjecture concept of 272</td>
<td></td>
</tr>
<tr>
<td>relationship with Logue–Sweeney theory 284</td>
<td></td>
</tr>
<tr>
<td>Bureau of Economic Analysis (BEA) 581–2</td>
<td></td>
</tr>
<tr>
<td>Burman–Wilson algorithm 133</td>
<td></td>
</tr>
<tr>
<td>Butterworth filter 14, 109, 120, 135</td>
<td></td>
</tr>
<tr>
<td>definition of 50</td>
<td></td>
</tr>
<tr>
<td>lowpass digital 108</td>
<td></td>
</tr>
<tr>
<td>Canada 245</td>
<td></td>
</tr>
<tr>
<td>canonical decomposition concept of 130</td>
<td></td>
</tr>
<tr>
<td>Cartesian product 6</td>
<td></td>
</tr>
<tr>
<td>Central Law Theorem 320</td>
<td></td>
</tr>
<tr>
<td>Cholesky decomposition 518–20, 526, 531</td>
<td></td>
</tr>
<tr>
<td>Cholesky factorisation 112</td>
<td></td>
</tr>
<tr>
<td>Cobb–Douglas production function 350, 578–9</td>
<td></td>
</tr>
<tr>
<td>complete joint density function 35–6</td>
<td></td>
</tr>
<tr>
<td>composite coincident index (CCI) 397</td>
<td></td>
</tr>
<tr>
<td>conditional heteroscedasticity 17</td>
<td></td>
</tr>
<tr>
<td>conditional predictive ability testing concept of 385</td>
<td></td>
</tr>
<tr>
<td>conjugate priors 372</td>
<td></td>
</tr>
<tr>
<td>Consumer Expenditure Survey 582</td>
<td></td>
</tr>
<tr>
<td>Consumer Price Index</td>
<td></td>
</tr>
<tr>
<td>natural log of 275–6</td>
<td></td>
</tr>
<tr>
<td>consumption asset-based pricing 223</td>
<td></td>
</tr>
<tr>
<td>contemporaneous means co-breaking 57</td>
<td></td>
</tr>
<tr>
<td>Cooley and Prescott aggregation 576, 579–80</td>
<td></td>
</tr>
<tr>
<td>Cowles Commission 39</td>
<td></td>
</tr>
<tr>
<td>Cramér–Wold factorisation 100, 106</td>
<td></td>
</tr>
<tr>
<td>Cukierman–Gerlach theory 280–81, 283</td>
<td></td>
</tr>
<tr>
<td>evidence for 281</td>
<td></td>
</tr>
<tr>
<td>support for 285</td>
<td></td>
</tr>
<tr>
<td>data generation process (DGP) 139, 141–2, 144, 149, 153–4, 195</td>
<td></td>
</tr>
</tbody>
</table>

Nigar Hashimzade and Michael A. Thornton - 9780857931023
Downloaded from Elgar Online at 04/28/2019 10:09:08PM
via free access
Denmark
 Copenhagen 166
Devereux hypothesis
 concept of 270–71
Dickey–Fuller (DF) test 67–8, 73, 76–7, 81, 83, 87, 185
 augmented (ADF) 69, 72–3, 84, 88, 185, 200
detrended ADF 74
Difference (D) 208–9, 323
discrete-time system 102, 301
Dotsey–Sarte conjecture 272, 278–80, 283
 support for 285
dynamic panel relationships
 heterogeneous 241–3
 homogenous 242–3
dynamic regression model 374
 continuous time model 293
 DSGE-V AR 433–4, 441, 443, 445, 456, 463
 estimated/estimation 374, 458, 464, 471, 488–9, 515
 Federal Reserve Board model 400
 GMM estimation of 28, 465, 468
 linearized 401, 470, 486, 501
 use of long-run growth in 455
 model files 463
 software guide for 593–4
empirical growth models 229
Engle–Granger definition 12
error correction model (ECM) 173, 178, 201
 classic 174
 non-linear dynamics 201
error dispersion matrices 111–12
Euler Consumption Function 437–8
European Union (EU) 583
 EuroCOIN 249
Expectation Maximization (EM) algorithm 335, 351
Expected Utility Maximization (EUM) 453–4
filter 122
 ARIMA-based 134
 bi-directional 100–101
 concept of 95
 frequency-domain 96, 110, 122, 124, 127
 gain effect 102
 least-squares derivation of 117–19
 linear 100–101, 103, 105
 phase effect 102
 squared gain of 103–4
 finite impulse-response (FIR) filter 97, 100
 first-differencing (FD) 229–31
 2SLS 240–41
 fixed effects (FE) estimator 229–30, 237–9
 2SLS 241
 corrected 230
 moment conditions 234
 Fourier transform 14–15, 105, 121, 302
 matrix of 120
 ordinates of 123–4
 fractional noise process 337
France, manufacturing industry 235
Friedman hypothesis 280–81, 283, 286
 support for 285
 fully modified least squares (FMLS) 178
Gauss–Newton algorithm 358–9
Gaussian linear auxiliary model 355
generalized least squares (GLS) 14, 33, 88, 141, 145, 239, 243, 253–4, 263
 adjustment 81
 demeaned/detrended tests 73–4, 77, 87
 estimator 146, 253, 261, 347
Generalized Method of Moments (GMM)
 concept of 313
 Continuous Updating (CUGMM) 314, 325–8
 dynamic panel estimation 234–5
 estimation 2, 28–9, 39, 223, 315–16, 324, 328, 465, 468
 iterated estimator 322, 327
 minimand 324–5, 327
 modified 238–9
 partial-sum 209
 restricted estimator 319, 324
 standard asymptotic distribution theory 317
 two-step estimator 322, 329
 use of K-statistic in 328–9
Generalized Moment Selection 329–30
Germany
 Fall of Berlin Wall (1989) 64
 manufacturing industry 235

Nigar Hashimzade and Michael A. Thornton - 9780857931023
Downloaded from Elgar Online at 04/28/2019 10:09:08PM
via free access
Gibbs sampling algorithm 369–70, 373, 375
empirical Bayes priors 376–7
non-normal priors 378
Gillman–Kejak theory 276, 283
support for 285
Gomme and Rupert measurement 576, 580, 583
Granger, Clive 166, 173
Granger causality tests 388–91, 394, 398–9
in-sample 395
Granger Representation Theorem 25, 169
error-correction form 169
Great Depression 64, 128
Great Moderation 214, 225, 391–2, 398, 400, 549
Group of Seven (G7) 270
Hamiltonian Quadratic Approximation 462
Hannan–Quinn Information Criterion (HQIC) 276
Hansen, Bruce 190, 195
Hansen, Lars 313
development of GMM 464
Heaviside partial-fraction decomposition 98
Hendry, David 166
heterogeneity 229
heteroscedasticity and autocorrelation
consistent (HAC) estimator 176–7, 185, 386, 390
Newey–West type 260
heteroscedasticity autocorrelation covariance
(HAC) estimator 321–2
highest posterior density (HPD) interval 372
Hodrick–Prescott (H–P) filter 14, 46–9, 52, 108–10, 119–20, 125–8, 135, 397, 602
frequency response function 46–7
limitations of 125
lowpass 126
Hooker, Reginald 45
hyperparameters 342–3
impulse dummy 65–6
impulse response functions (IRFs) 427–9, 601
indirect inference (II) 487
estimation 488
Industrial Production Index 275–6
infinite impulse-response (IR) filter 97
linear 97
inflation 18, 72, 86–8, 123, 219, 264, 267–72, 285, 289, 334, 364, 398
frequency-domain 124
potential impact of real variability on 271
steady state 506
innovation outlier (IO) models 65, 77
examples of 65, 78–9
instrumental variables (IV) 28, 32, 34
estimation 316
estimator 31, 33, 236
modified 238
regression 236
restricted estimation 316
weak 239
Japan 245
Jevons, William Stanley 45
Johansen, Soren 166, 181, 183–4, 201–2
Jugler, Clément
credit cycle theory 45
Kaiser–Guttman criterion 257
Kalman Filter (KF) 28, 45, 56, 302, 339–41, 344, 400, 487, 497, 502
augmented 342, 345, 347–8
concept of 335, 339
extended 354
projections 507
smoother (KFS) 352
unscented 354–5
Kalman iteration 294
Karanasos conjecture 272, 279
support for 284
kernel estimators 70
limitations of 70
Kolmogorov, Andrei Nikolaevich 105
Kyriakoulis, Kostas 318
Lagrange Multiplier (LM) 141, 191–2, 196, 208, 213, 323, 328
Portmanteau and Breusch–Godfrey–LM test 149–50
Law of Large Numbers 320
least absolute shrinkage and selection operator
(LASSO) algorithm 377
least generalized variance (LGV) 181–2
least-squares (LS) 207
estimation 296
Lebesgue measure 308
Likelihood Ratio (LR) 276
restrictions 560–61
Limited Information Maximum Likelihood
(LIML) 237–8
bias 238
Lebesgue measure 308
Likelihood Ratio (LR) 276
restrictions 560–61
Limited Information Maximum Likelihood
(LIML) 237–8
bias 238
linear-quadratic (LQ) approximation 446–50, 465
log-likelihood (LL) function 37
conditional 35
Logue–Sweeney theory
relationship with Brunner conjecture 284
Lucas Critique 425
concept of 411
responses to 413
Markov Switching (MS) 63, 80, 189, 222, 542
Maximum Likelihood (ML) 2, 145, 277, 314, 458, 464, 487–8
application to simple regression model 34
direct estimation 14, 28
estimator 34, 36–7, 147, 236, 254, 345–6, 359
full information (FIML) 37
optimality of 314
Mean Square Forecast Error (MSFE) 382–4
comparison 386
measurement equation 335
Method of Moments (MM) 28–9, 313, 326
estimator 319
Simulated (SMM) 2–3, 464–5, 470–72, 479
Metropolis–Hastings (MH) 430–32, 486–7, 490, 496–7, 502–4
algorithm 369–71, 502, 606
concept of 370
Random Walk (RWMH) 431, 502
ratio 370
Michigan Panel Study in Income Dynamics (PSID) 241
minimum means-squared error (MMSE/MSE) 50, 56, 106, 110–11, 152–3
estimator 51, 56
optimal predictors 111
model confidence set (MCS) 386
modified information criterion 69
Monte Carlo 38, 85–6, 184, 230, 234, 239, 243, 245, 254, 258–9, 303, 353, 367, 387, 471–3, 479, 605
sequential 356
Moore, Henry Ludwell 45
moving average (MA) 155, 262, 297–300
disturbances 302
finite order 303
structural representation 157–8
Wold MA representation 155
National Income and Product Accounts (NIPA) 472, 579, 582, 585, 587
data on housing sector 581
New Keynesian (NK) 412
macroeconomic curve 314–15
New Keynesian Phillips Curve (NKPC) 206, 225, 272, 314, 426–7
hybrid 219
non-accelerating inflation rate of unemployment (NAIRU) 334
non-linear least-squares (NLS) 212, 219–20
normal joint density function 112
ordinary least squares (OLS) 28, 31, 141, 145, 147, 173, 212, 216, 261, 382, 384, 386
estimation 175–6, 185, 214
modified 238
regressions 75, 217
residuals 367
sequential testing strategy 218–19
use of MAIC 73, 87
Organisation for Economic Co-operation and Development (OECD) 241–2
Statistical Compendium 275–6
orthogonalization 519
correct of 518
out-of-sample testing 382
parameter instability
model instabilities 206–7
other parameter instabilities 206–7
parameter breaks 206
paramaterization
stable 206
particle filter
auxiliary 357
bootstrap/SIR filter 357
Penn World Table 28
Phillips, Peter C.B. 166
Phillips and Perrons test 76, 85
Z test 69–70, 72
Pindyck theory 279–81, 283
Poisson process 197
polynormal regression
calculation of 114–16
practical unit root testing 64
present value models 174
principle component (PC) analysis 252–3, 259
estimator 254, 259–62
GLS estimator 253–4
prior
Minnesota prior 146
random forcing functions 304
random sampling 165
random walks
vector of 167

Nigar Hashimzade and Michael A. Thornton - 9780857931023
Downloaded from Elgar Online at 04/28/2019 10:09:08PM
via free access
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobin's Q 234</td>
</tr>
<tr>
<td>Tong, Howell 189–90</td>
</tr>
<tr>
<td>threshold model 220</td>
</tr>
<tr>
<td>total factor productivity (TFP) 491, 595–6</td>
</tr>
<tr>
<td>growth 506</td>
</tr>
<tr>
<td>labor-neutral 492</td>
</tr>
<tr>
<td>TRAMO–SEATS program 131–3, 135</td>
</tr>
<tr>
<td>Signal Extraction in ARIMA Time Series (SEATS) module 129</td>
</tr>
<tr>
<td>Time Series regression with ARIMA Noise, Missing Observations and Outliers (TRAMO) 129</td>
</tr>
<tr>
<td>transition equation 335–6, 338</td>
</tr>
<tr>
<td>Tunnicliffe-Wilson, Granville 132–3</td>
</tr>
<tr>
<td>two-stage least squares (2SLS) 28, 32, 34, 179–80, 207, 212, 218, 220, 237</td>
</tr>
<tr>
<td>estimator 33, 217, 219, 221, 239–40, 243</td>
</tr>
<tr>
<td>FD 240–41</td>
</tr>
<tr>
<td>FE 241</td>
</tr>
<tr>
<td>regression 216</td>
</tr>
<tr>
<td>residuals 240</td>
</tr>
<tr>
<td>Ungar–Zilberfarb theory 272, 279</td>
</tr>
<tr>
<td>support for 285</td>
</tr>
<tr>
<td>union of rejection (UR) strategies 87</td>
</tr>
<tr>
<td>United Kingdom (UK) 116, 266, 285</td>
</tr>
<tr>
<td>economy of 290</td>
</tr>
<tr>
<td>GDP per capita in 128</td>
</tr>
<tr>
<td>manufacturing industry 234–5</td>
</tr>
<tr>
<td>United States of America (USA) 245, 291, 388, 506, 524, 538, 591</td>
</tr>
<tr>
<td>9/11 attacks 522–3</td>
</tr>
<tr>
<td>Bureau of Census 128</td>
</tr>
<tr>
<td>Chicago Fed National Activity index (CFNAI) 249, 525</td>
</tr>
<tr>
<td>decomposition of GDP 324–3</td>
</tr>
<tr>
<td>economy of 527, 532, 588</td>
</tr>
<tr>
<td>Federal Reserve System 208, 400, 431, 520, 522, 525, 539–40, 542, 544, 546, 582</td>
</tr>
<tr>
<td>industrial production growth 391</td>
</tr>
<tr>
<td>interest rates 521</td>
</tr>
<tr>
<td>manufacturing industry 237</td>
</tr>
<tr>
<td>monetary policy of 520</td>
</tr>
<tr>
<td>monthly consumption data 293</td>
</tr>
<tr>
<td>output growth 398</td>
</tr>
<tr>
<td>real GDP 86</td>
</tr>
<tr>
<td>Treasury 86</td>
</tr>
<tr>
<td>University of Chicago Cowles Commission 179</td>
</tr>
<tr>
<td>unobserved component (UC) 45, 54</td>
</tr>
<tr>
<td>decomposition 52</td>
</tr>
<tr>
<td>structural models of 49–50</td>
</tr>
<tr>
<td>Uribe, Martin 496</td>
</tr>
</tbody>
</table>

Rational transfer function

Real Business Cycle (RBC) 411, 422, 424, 443, 453, 455, 463, 487, 594, 596

investment costs 416–17

models of 412, 414–16, 420–21, 428–9, 444, 599–600, 604, 607

New Keynesian (NK) model 420–26, 428–9, 431–4, 457

steady state 418–19

without investment costs 414–16

regression variance parameter 373

Sampling/Importance Resampling (SIR) 357

Sargan test 233

Schmitt-Grohe, Stephanie 496

Second World War (1939–45) 64, 105, 586

Self-Exciting Threshold Autoregressive (SETAR) model 190, 192–4, 196, 198, 201

three-regime 81–2

Shannon–Nyquist sampling theorem 103

Sims, Chris 432

simultaneous equations model (SEM) 36–7

dynamic 23–4

normalization 26

simulation smoother

concept of 355–6

smooth transition autoregressive (STAR) model 80, 82, 221–2

Exponential (ESTAR) 80–81

standard Brownian motion 12

state space model 348, 353, 400

augmented 347

stochastic process 307

concept of 5

non-stationary 7

simulation of 6–7

stationary 7–8, 104

vector 19

STOPBREAK model 66

structural break hypothesis 64

Switching-Mean Autoregressive model 66–7

Taylor Rules 491, 500

concept of 447

Taylor series expansion 354

threshold autoregressive (TAR) model 80, 82, 220

framework of 81

state variable 220–21

time-consistent (TC) feedback rule 451

time series modelling (TSM) 276

non-linear 353
analysis 142–3, 202, 249
 atheoretical 519
Bayesian (BVARs) 400, 402, 486, 491, 525, 550, 555, 562, 569, 607
bivariate process 153–4, 267
Blanchard–Quah type 533
closed 21
coefficient matrices 149
cointegrated (CVAR) 18, 25–6, 36, 178, 202
concept of 19, 21–2
DSGE-VAR 433–4, 441, 443, 445, 456, 463
dummy variable in 564
factor augmented (FAVAR) 525, 550, 555, 562–3, 569
finite-order 173
first-order 167
Gaussian process 152–3
global (GVAR) 456
identification of 523–5, 528, 532
impulse responses 520
infinite order 160
k-variables in 519
large-dimensional 156
Markov switching (MS) 486
moving average (VARMA) 300, 303, 487, 547–8
open 21, 28
panel 569
recursive 521, 558
reduced-form 22–3, 36, 151–2, 155, 159, 515–16, 526, 535, 547, 563
regime-switching 555, 562, 569
regression error 542
residual autocorrelation 149–50
semistructural 523–4, 526, 539
sign-identified 533–7, 540, 546, 548
stationary 20, 24–5, 150, 158
structural (SVAR) 18, 22–4, 36, 39, 139, 141, 143–4, 147, 155–6, 159–60, 433, 491, 515–16, 518, 520, 523, 526–8, 532–6, 542–3, 545–50, 565
threshold 569
time varying parameter (TVP) 338, 486, 550, 555
use in foreign exchange intervention 567–8
vector equilibrium correction model (VEqCM) 26
vector error correction model (VECM) 26, 57, 201
cointegrating 185
first order 27, 181
vector moving average (VMA) 21, 23
Volcker, Paul
Chairman of Federal Reserve Board 208

Wald test 147, 154, 192–2, 196, 207–9, 213, 215, 225, 323, 385–6, 392
sequential 215–16
Wiener, Norbert 105
Wiener–Kolmogorov (W–K) filter 120–21, 124
classical 119
lowpass 107–8
purpose of 105
Wiener–Kolmogorov (W–K) theory 96, 107, 130
adaptation of 110

Yale University 166
Yule, G. Udny 165–6