additive outlier (AO) model 64–5, 76–9
examples of 65–6
Agent-based Computational Economics (ACE) 454
models 456
Akaike Information Criterion (AIC) 69, 148–9, 276
American Time Use Survey (ATUS) 583
ARIMA model 132–3, 135
filters based on 134
augmented least squares estimator 177–8
autocorrelation function
Fourier transform 14–15
autoregressive conditional heteroskedastic (ARCH) model 16–17, 266
bivariate GARCH model 268, 270, 276
fractionally integrated generalized (FIGARCH) 18
generalized (GARCH) model 16–17, 151, 196, 266–8, 284, 550
integrated generalized (IGARCH) model 17–18, 85
univariate GARCH model 273–4
autoregressive moving average processes (ARMA) 4–5, 9–12, 54, 68, 95, 296–7, 335–6
error dynamic form of 11, 14
estimation of 87
finite order 170, 185
invertible 10–11
multivariate 335
vector 401
Ball–Mankiw–Romer theory
concept of 272
bandpass filter 397
Bank of Spain 135
Bayes Factor (BF) 605
Bayes theorem 37–8, 160, 363–5, 429–30
concept of 366
ML theorem 458
Bayesian inference 371
Bayesian Information Criterion (BIC) 69, 195
Belgium
manufacturing industry 235
Beveridge–Nelson (BN) decomposition 170
concept of 55
Blackburn theory 278–9, 283
support for 285
Blue Chip Consensus 400
Box–Cox parameter 83
Briault conjecture 272, 276, 283
support for 285
Brock–Mirman model 466–7, 469, 484
Brownian Bridge Process 193
normalized squared 193
Brownian motion 186
Brunner conjecture
concept of 272
relationship with Logue–Sweeney theory 284
Bureau of Economic Analysis (BEA) 581–2
Burman–Wilson algorithm 133
Butterworth filter 14, 109, 120, 135
definition of 50
lowpass digital 108
Canada 245
canonical decomposition
concept of 130
Cartesian product 6
Central Law Theorem 320
Cholesky decomposition 518–20, 526, 531
Cholesky factorisation 112
Cobb–Douglas production function 350, 578–9
complete joint density function 35–6
composite coincident index (CCI) 397
conditional heteroscedasticity 17
conditional predictive ability testing
concept of 385
conjugate priors 372
Consumer Expenditure Survey 582
Consumer Price Index
natural log of 275–6
consumption asset-based pricing 223
contemporaneous means co-breaking 57
Cooley and Prescott aggregation 576, 579–80
Cowles Commission 39
Cramér–Wold factorisation 100, 106
Cukierman–Gerlach theory 280–81, 283
evidence for 281
support for 285
data generation process (DGP) 139, 141–2, 144, 149, 153–4, 195
Index

Denmark
 Copenhagen 166

Devereux hypothesis
 concept of 270–71

Dickey– Fuller (DF) test 67–8, 73, 76–7, 81, 83, 87, 185
 augmented (ADF) 69, 72–3, 84, 88, 185, 200
 detrended ADF 74
 Difference (D) 208–9, 323
 discrete-time system 102, 301
 Dotsey–Sarte conjecture 272, 278–80, 283
 support for 285
 dynamic panel relationships
 heterogeneous 241–3
 homogenous 242–3
 dynamic regression model

 continuous time model 293
 DSGE-V AR 433–4, 441, 443, 445, 456, 463
 estimated/estimation 374, 458, 464, 471, 488–9, 515
 Federal Reserve Board model 400
 GMM estimation of 28, 465, 468
 linearized 401, 470, 486, 501
 use of long-run growth in 455
 model files 463
 software guide for 593–4

empirical growth models 229
 Engle–Granger definition 12
 error correction model (ECM) 173, 178, 201
 classic 174
 non-linear dynamics 201
 error dispersion matrices 111–12
 Euler Consumption Function 437–8
 European Union (EU) 583
 EuroCOIN 249
 Expectation Maximization (EM) algorithm
 335, 351
 Expected Utility Maximization (EUM) 453–4
 filter 122
 ARIMA-based 134
 bi-directional 100–101
 concept of 95
 frequency-domain 96, 110, 122, 124, 127

 gain effect 102
 least-squares derivation of 117–19
 linear 100–101, 103, 105
 phase effect 102
 squared gain of 103–4
 finite impulse-response (FIR) filter 97, 100
 first-differencing (FD) 229–31
 2SLS 240–41
 fixed effects (FE) estimator 229–30, 237–9
 2SLS 241
 corrected 230
 moment conditions 234
 Fourier transform 14–15, 105, 121, 302
 matrix of 120
 ordinates of 123–4
 fractional noise process 337
 France, manufacturing industry 235
 Friedman hypothesis 280–81, 283, 286
 support for 285
 fully modified least squares (FMLS) 178
 Gauss–Newton algorithm 358–9
 Gaussian linear auxiliary model 355
 generalized least squares (GLS) 14, 33, 88, 141, 145, 239, 243, 253–4, 263
 adjustment 81
 demeaned/detrended tests 73–4, 77, 87
 estimator 146, 253, 261, 347
 concept of 313
 Continuous Updating (CUGMM) 314, 325–8
 dynamic panel estimation 234–5
 estimation 2, 28–9, 39, 223, 315–16, 324, 328, 465, 468
 iterated estimator 322, 327
 minimand 324–5, 327
 modified 238–9
 partial-sum 209
 restricted estimator 319, 324
 standard asymptotic distribution theory 317
 two-step estimator 322, 329
 use of K-statistic in 328–9
 Generalized Moment Selection 329–30
 Germany
 Fall of Berlin Wall (1989) 64
 manufacturing industry 235

Nigar Hashimzade and Michael A. Thornton - 9780857931023
Downloaded from Elgar Online at 05/03/2019 01:10:23AM
via free access
Gibbs sampling algorithm 369–70, 373, 375
empirical Bayes priors 376–7
non-normal priors 378
Gillman–Kejak theory 276, 283
support for 285
Gomme and Rupert measurement 576, 580, 583
Granger, Clive 166, 173
Granger causality tests 388–91, 394, 398–9
in-sample 395
Granger Representation Theorem 25, 169
error-correction form 169
Great Depression 64, 128
Great Moderation 214, 225, 391–2, 398, 400, 549
Group of Seven (G7) 270
Hamiltonian Quadratic Approximation 462
Hannan–Quinn Information Criterion (HQIC) 276
Hansen, Bruce 190, 195
Hansen, Lars 313
development of GMM 464
Heaviside partial-fraction decomposition 98
Hendry, David 166
heterogeneity 229
heteroscedasticity and autocorrelation consistent (HAC) estimator 176–7, 185, 386, 390
Newey–West type 260
heteroscedasticity autocorrelation covariance (HAC) estimator 321–2
highest posterior density (HPD) interval 372
Hodrick–Prescott (H–P) filter 14, 46–9, 52, 108–10, 119–20, 125–8, 135, 397, 602
frequency response function 46–7
limitations of 125
lowpass 126
Hooker, Reginald 45
hyperparameters 342–3
impulse dummy 65–6
impulse response functions (IRFs) 427–9, 601
indirect inference (II) 487
estimation 488
Industrial Production Index 275–6
infinite impulse-response (IR) filter 97
linear 97
inflation 18, 72, 86–8, 123, 219, 264, 267–72, 285, 289, 334, 364, 398
frequency-domain 124
persistency in 284
potential impact of real variability on 271
steady state 506
innovation outlier (IO) models 65, 77
tests of 65, 78–9
instrumental variables (IV) 28, 32, 34
estimation 316
estimator 31, 33, 236
modified 238
regression 236
restricted estimation 316
weak 239
Japan 245
Jevons, William 45
Johansen, Søren 166, 181, 183–4, 201–2
Jugler, Clément
credit cycle theory 45
Kaiser–Guttman criterion 257
Kalman Filter (KF) 28, 45, 56, 302, 339–41, 344, 400, 487, 497, 502
augmented 342, 345, 347–8
concept of 335, 339
extended 354
projections 507
smoother (KFS) 352
unscented 354–5
Kalman iteration 294
Karanasos conjecture 272, 279
support for 284
cornell estimators 70
kernel estimators 70
limitations of 70
Kolmogorov, Andrei Nikolaevich 105
Kyriakoulis, Kostas 318
Lagrange Multiplier (LM) 141, 191–2, 196, 208, 213, 323, 328
Portmanteau and Breusch–Godfrey–LM test 149–50
Law of Large Numbers 320
least absolute shrinkage and selection operator (LASSO) algorithm 377
least generalized variance (LGV) 181–2
least-squares (LS) 207
estimation 296
Lebesgue measure 308
Likelihood Ratio (LR) 276
restrictions 560–61
Limited Information Maximum Likelihood (LIML) 237–8
bias 238
linear-quadratic (LQ) approximation 446–50, 463
log-likelihood (LL) function 37
conditional 35
Logue–Sweeney theory
relationship with Brunner conjecture 284
Index

Lucas Critique 425
concept of 411
responses to 413

Markov Switching (MS) 63, 80, 189, 222, 542
Maximum Likelihood (ML) 2, 145, 277, 314, 458, 464, 487–8
application to simple regression model 34
direct estimation 14, 28
estimator 34, 36–7, 147, 236, 254, 345–6, 359
full information (FIML) 37
optimality of 314
Mean Square Forecast Error (MSFE) 382–4
comparision 386
measurement equation 335
Method of Moments (MM) 28–9, 313, 326
estimator 319
Simulated (SMM) 2–3, 464–5, 470–72, 479
Metropolis–Hastings (MH) 430–32, 486–7, 490, 496–7, 502–4
algorithm 369–71, 502, 606
concept of 370
Random Walk (RWMH) 431, 502
ratio 370
Michigan Panel Study in Income Dynamics (PSID) 241
minimum means-squared error (MMSE/MSE) 50, 56, 106, 110–11, 152–3
estimator 51, 56
optimal predictors 111
model confidence set (MCS) 386
modified information criterion 69
Monte Carlo 38, 85–6, 184, 230, 234, 239, 243, 245, 254, 258–9, 303, 353, 367, 387, 471–3, 479, 605
sequential 356
Moore, Henry Ludwell 45
moving average (MA) 155, 262, 297–300
disturbances 302
finite order 303
structural representation 157–8
Wold MA representation 155

National Income and Product Accounts (NIPA) 472, 579, 582, 585, 587
data on housing sector 581
New Keynesian (NK) 412
macroeconomic curve 314–15
New Keynesian Phillips Curve (NKPC) 206, 225, 272, 314, 426–7
hybrid 219
non-accelerating inflation rate of
unemployment (NAIRU) 334
non-linear least-squares (NLS) 212, 219–20
normal joint density function 112
ordinary least squares (OLS) 28, 31, 141, 145, 147, 173, 212, 216, 261, 382, 384, 386
estimation 175–6, 185, 214
modified 238
regressions 75, 217
residuals 367
sequential testing strategy 218–19
use of MAIC 73, 87
Organisation for Economic Co-operation and Development (OECD) 241–2
Statistical Compendium 275–6
orthogonalization 519
concept of 518
out-of-sample testing 382
parameter instability
model instabilities 206–7
other parameter instabilities 206–7
parameter breaks 206
paramaterization
stable 206
particle filter
auxiliary 357
bootstrap/SIR filter 357
Penn World Table 28
Phillips, Peter C.B. 166
Phillips and Perrons test 76, 85
Z test 69–70, 72
Pindyck theory 279–81, 283
Poisson process 197
polynormal regression
calculation of 114–16
practical unit root testing 64
present value models 174
principle component (PC) analysis 252–3, 259
estimator 254, 259–62
GLS estimator 253–4
prior
Minnesota prior 146
random forcing functions 304
random sampling 165
random walks
vector of 167

Nigar Hashimzade and Michael A. Thornton - 9780857931023
Downloaded from Elgar Online at 05/03/2019 01:10:23AM
via free access
rational transfer function
stability of 98
Real Business Cycle (RBC) 411, 422, 424, 443, 453, 455, 463, 487, 594, 596
investment costs 416–17
models of 412, 414–16, 420–21, 428–9, 444, 599–600, 604, 607
New Keynesian (NK) model 420–26, 428–9, 431–4, 457
steady state 418–19
without investment costs 414–16
regression variance parameter 373
Sampling/Importance Resampling (SIR) 357
Sargan test 233
Schmitt-Grohe, Stephanie 496
Second World War (1939–45) 64, 105, 586
Self-Exciting Threshold Autoregressive (SETAR) model 190, 192–4, 196, 198, 201
three-regime 81–2
Shannon–Nyquist sampling theorem 103
Sims, Chris 432
simultaneous equations model (SEM) 36–7
dynamic 23–4
normalization 26
simulation smoother
concept of 355–6
smooth transition autoregressive (STAR) model 80, 82, 221–2
Exponential (ESTAR) 80–81
standard Brownian motion 12
state space model 348, 353, 400
augmented 347
stochastic process 307
concept of 5
non-stationary 7
simulation of 6–7
stationary 7–8, 104
vector 19
STOPBREAK model 66
structural break hypothesis 64
Switching-Mean Autoregressive model 66–7
Taylor Rules 491, 500
concept of 447
Taylor series expansion 354
threshold autoregressive (TAR) model 80, 82, 220
framework of 81
state variable 220–21
time-consistent (TC) feedback rule 451
time series modelling (TSM) 276
non-linear 353
Tobin’s Q 234
Tong, Howell 189–90
threshold model 220
total factor productivity (TFP) 491, 595–6
growth 506
labor-neutral 492
TRAMO–SEATS program 131–3, 135
Signal Extraction in ARIMA Time Series (SEATS) module 129
Time Series regression with ARIMA Noise, Missing Observations and Outliers (TRAMO) 129
transition equation 335–6, 338
Tunnicliffe-Wilson, Granville 132–3
two-stage least squares (2SLS) 28, 32, 34, 179–80, 207, 212, 218, 220, 237
estimator 33, 217, 219, 221, 239–40, 243
FD 240–41
FE 241
regression 216
residuals 240
Ungar–Zilberfarb theory 272, 279
support for 285
union of rejection (UR) strategies 87
United Kingdom (UK) 116, 266, 285
economy of 290
GDP per capita in 128
manufacturing industry 234–5
United States of America (USA) 245, 291, 388, 506, 524, 538, 591
9/11 attacks 522–3
Bureau of Census 128
Chicago Fed National Activity index (CFNAI) 249, 525
decomposition of GDP 324–3
economy of 527, 532, 588
Federal Reserve System 208, 400, 431, 520, 522, 525, 539–40, 542, 544, 546, 582
industrial production growth 391
interest rates 521
manufacturing industry 237
monetary policy of 520
monthly consumption data 293
output growth 398
real GDP 86
Treasury 86
University of Chicago
Cowles Commission 179
unobserved component (UC) 45, 54
decomposition 52
structural models of 49–50
Uribe, Martin 496
analysis 142–3, 202, 249
athoretical 519
Bayesian (BVARs) 400, 402, 486, 491, 525, 550, 555, 562, 569, 607
bivariate process 153–4, 267
Blanchard–Quah type 533
closed 21
coefficient matrices 149
cointegrated (CVAR) 18, 25–6, 36, 178, 202
concept of 19, 21–2
DSGE-VAR 433–4, 441, 443, 445, 456, 463
dummy variable in 564
factor augmented (FAVAR) 525, 550, 555, 562–3, 569
finite-order 173
first-order 167
Gaussian process 152–3
global (GVAR) 456
identification of 523–5, 528, 532
impulse responses 520
infinite order 160
k-variables in 519
large-dimensional 156
Markov switching (MS) 486
moving average (VARMA) 300, 303, 487, 547–8
open 21, 28
panel 569
recursive 521, 558
reduced-form 22–3, 36, 151–2, 155, 159, 515–16, 526, 535, 547, 563
regime-switching 555, 562, 569
regression error 542
residual autocorrelation 149–50
semistructural 523–4, 526, 539
sign-identified 533–7, 540, 546, 548
stationary 20, 24–5, 150, 158
structural (SVAR) 18, 22–4, 36, 39, 139, 141, 143–4, 147, 155–6, 159–60, 433, 491, 515–16, 518, 520, 523, 526–8, 532–6, 542–3, 545–50, 565
threshold 569
time varying parameter (TVP) 338, 486, 550, 555
use in foreign exchange intervention 567–8
vector equilibrium correction model (VEqCM) 26
vector error correction model (VECM) 26, 57, 201
cointegrating 185
first order 27, 181
vector moving average (VMA) 21, 23
Volcker, Paul
Chairman of Federal Reserve Board 208

Wald test 147, 154, 192–2, 196, 207–9, 213, 215, 225, 323, 385–6, 392
sequential 215–16
Wiener, Norbert 105
Wiener–Kolmogorov (W–K) filter 120–21, 124
classical 119
lowpass 107–8
purpose of 105
Wiener–Kolmogorov (W–K) theory 96, 107, 130
adaptation of 110

Yale University 166
Yule, G. Udny 165–6