Index

Abbey, D.E. 156
acceleration effect, FSA 64
Advanced Combustion Engine (ACE)
R&D subprogram 40–41, 125–8, 132, 144, 148
annual approximations for 127
budget history 126–8
economic benefits of reduced fuel consumption 140
health benefits 141
reduced fuel consumption 139
time lag between research and its application 147
American Cancer Society cohort 156
Amoco 118
Amorphous Silicon and Polycrystalline Thin-Film programs 19
Arco Solar (now SolarWorld USA) 61
asthma 157, 158
Atomic Energy Commission (AEC) 3, 35
Office of Energy Research 41
Baker Hughes (PDC drill bit manufacturer) 111
barrel of oil equivalents (BOE) 85
barriers to innovation 5–6, 8–9
benefit-cost analysis
case studies 150
geothermal technologies 93–4, 104–7
Photovoltaic Energy Systems 6, 49–57
attribution to the DOE 57, 58, 87
demand-side policies, rebates and financial incentives: treatment 55–7
next-best technology alternative 52
primary data collection 50–52
summary results 88–9
technical and economic impact metrics 54–5
technology acceleration 53–4
technology cluster 74–9
polycrystalline diamond compact (PDC) drill bits 119–20
vehicle combustion engine technologies, overview in relation to 125–6
benefit-to-cost ratio (BCR) 13, 14, 102, 105, 119–20
binary cycle power plant technology 122
benefits attributable to DOE 94, 98, 99–100
economic benefits 99
economic return measures 100
energy security benefits 99
environmental benefits 99
geothermal technologies 38, 39
next-best alternative to 98
technology description 98
biofuels 2
Bjornstad, D. 111, 119
Block Purchase Program (large-scale production) 27
Boeing 33
BP Solar 34
brake thermal efficiency (BTE) 128, 130, 131, 132, 134, 146, 147, 148
bronchitis, acute 157
bronchitis, chronic 156
cadmium telluride (CdTe) 18
calcium aluminate phosphate (CaP) cement system 102, 103, 104
California, geothermal capacity in 93, 94
California Air Resources Board 129
Carter, President Jimmy 4
Public investments in energy technology

case studies, technical discussions 6, 14–15, 16–48
flat-plate solar array project 20–27
geothermal technologies 34–40
photovoltaic manufacturing technology project 27–31
solar technologies 18–20
Thin Film PV Partnerships 19, 31–48
vehicle combustion engine technologies 40–47
Caterpillar (company) 132, 146, 147
Cherry Hill Conference (1973) 19, 20
chip fabrication machines 91
Clean Air Interstate Rule (2005), Regulatory Impact Analysis 156
Clinton, President William J, 123
closed-loop heat transfer system 98
cluster analysis 120, 150
Co-Benefits Risk Assessment model see COBRA (Co-Benefits Risk Assessment) model
COBRA (Co-Benefits Risk Assessment) model 83, 84, 87, 88, 138, 142, 155–9
baseline emissions scenario and analysis scenario 156
changes in ambient PM concentrations 155–8
changes in emission 155–6
changes in health effects 156–8
changes in monetary impacts 158
limitations 158–9
combustion modeling 44–5, 124, 137
see also Advanced Combustion Engine (ACE) R&D subprogram
Combustion Research Facility (CRF) 41, 126, 133, 148
Combustion Research Program (ERDA) 40, 44
Congress 4–5
consumer price index (CPI) 90
copper indium diselenide (CIS) 18
corn ethanol 2
cost of illness (COI) 158
cost-benefit analysis see benefit-cost analysis
counterfactual approach 12, 154
counterfactual PV modules production cost per watt 64–7, 68
reliability 64
total economic benefits from higher-quality, lower-cost modules 67–70
CRF (Combustion Research Facility) 41, 126, 133, 148
crystalline silicon (c-Si) 18, 23, 24, 28, 31, 50
Cummins Engine (company) 132, 146
Czochralsi (Cz) ingot growth process 25
Davis, S.C. 136
demand-side policies, PV technology 55–7
Department of Energy (DOE), US benefit-cost analysis, PV technology 57, 58
benefits of technologies attributable to 95–6
binary cycle power plant technology 94, 98, 99–100
high temperature geothermal well cements 103
PDC drill bit technology 98, 105, 109, 119, 121
TOUGH series of reservoir models 101–2
Five-Year Plan (1983) 26
Geothermal Division 97
Office of Basic Energy Sciences 41
responsible for 41
and vehicle technologies 123–4, 138
see also EERE (Energy Efficiency and Renewable Energy), DOE; geothermal technologies; solar energy technologies, investments in; vehicle combustion engine technologies
Department of Energy Organization Act 1977 (Public Law 95-91) 4
Detroit Diesel Corporation (company) 132, 146
diesel engines, direct injection 45–7
Dockery, D.W. 157
DOE see Department of Energy (DOE), US
drilling Geothermal Technologies Program 35, 36
Index

horizontal 114, 118, 122
linear 122
PDC drill bit technology see
polycrystalline diamond compact (PDC) drill bit technology
vertical 122
econometric-based methodologies 10–11
economic benefits
binary cycle power plant technology 99
counterfactual PV modules 67–70
economic models for quantifying 62–4
Geothermal Technologies Program 104–5
high temperature geothermal well cements 103
model for estimating key terms and data sources 59–62
quantification of economic benefits 62–4
and next-best technology alternative 52
PDC drill bit technology 97, 111–14, 117
Photovoltaic Energy Systems
counterfactual PV module production cost per watt 64–7
model for estimating benefits 59–64
modules destined to non-US markets 71
technology acceleration and counterfactual PV module reliability 64
total benefits, from higher-quality, lower-cost modules 67–70
semiconductor industry, accelerated introduction of wire saw technology to 73–4
technology acceleration and counterfactual PV module reliability 64
total, from higher-quality, lower-cost PV modules 67–70
TOUGH series of reservoir models 101
UCC polysilicon production method 70–73
vehicle combustion engine technologies 125, 128–38
‘Economic Report of the President’ (Clinton) 7
economic return measures binary cycle power plant technology 100
demand-side policies, effect on 57
PDC drill bit technology 98
Photovoltaic Energy Systems 75, 77–9
TOUGH series of reservoir models 102
economics-based methodologies 12, 154
edge-defined film-fed growth method (EFG) 26
EERE (Energy Efficiency and Renewable Energy), DoE 47, 119, 152
formation (2001) 5, 124
technology life cycle stage of programs 6, 16, 17
vehicle combustion engine technologies 137, 145, 146
efficiency defined 59
fuel 130
capsulants, flat-plate solar array project 26
energy consumption distribution by energy source (US) 1–2
energy conversion, Geothermal Technologies Program 37–8
Energy Reorganization Act 1974 (Public Law 93-438) 4
Energy Research and Development Administration (ERDA) see ERDA (Energy Research and Development Administration)
energy security benefits attribution to the DOE, binary cycle power plant technology 99–100
binary cycle power plant technology 99
high temperature geothermal well cements 103
PDC drill bit technology 97–8
Public investments in energy technology

solar energy technologies, investments in 85–7
TOUGH series of reservoir models 101
vehicle combustion engine technologies 142–3
energy technology
importance 1–3
legislative background 3–5
new see technology, new: evaluation of public investment in research needs 2–3
ingenious cost recovery analyses
environmental benefits
binary cycle power plant technology 99
Geothermal Technologies Program 104–5
high temperature geothermal well cements 103
PDC drill bit technology 97, 114
Photovoltaic Energy Systems 79–83, 92
TOUGH series of reservoir models 101
see also environmental health benefits
environmental health benefits 79–85, 122
Geothermal Technologies Program 104–5
Photovoltaic Energy Systems 79–85, 92
vehicle combustion engine technologies 138–42
environmental movement 1
Environmental Protection Agency (EPA)
COBRA model developed by 155
Greenhouse Gas Equivalency Calculator 82
and heavy-duty diesel trucks 129
ERDA (Energy Research and Development Administration) 4, 19, 23, 24, 36, 57
Combustion Research Program 40, 44
ethylene vinyl acetate (EVA) 26
evaluation metrics 6, 12–14
vehicle combustion engine technologies 143, 145
exhaust gas recirculation (EGR) 46
exploration, Geothermal Technologies Program 35, 36–7
Falcone, S. 111, 119
Federal Energy Office, Executive Office (White House) 3
Federal Nonnuclear Energy Research and Development Act 1974 4
financial incentives, PV technology 55–7
First Solar 34, 52
Five-Year Plan (1983), DOE 26
flash cycle technology 98, 122
Flat-Plate Solar Array project (FSA), (1975–1985) 19–27
benefit-cost analysis 75–7
Block Purchase Program 27
encapsulants 26
process development and automated module assembly 26
silicon material refinement 24–5
silicon sheet formation 25–6
solar cells, high efficiency 6, 26
technology acceleration 53, 77–8
Ford, President Gerald R. 4
fossil fuel, dependence on 2
FreedomCAR 123
Friedman, D.J. 50, 51, 90
FSA see Flat-Plate Solar Array project (FSA), (1975–1985)
fuel economy 134, 135, 136, 137, 138
General Electric 107–8, 118
general-purpose technology (GPT) 44
Geothermal Energy Research, Development and Demonstration (RD&D) Act, 1974 35, 36
geothermal technologies 34–40
advantage of geothermal energy 93
attribute to the DOE high temperature geothermal well cements 103
net benefits 95–6
PDC drill bit technology 98
TOUGH series of reservoir models 101–2

Michael P. Gallaher, Albert N. Link and Alan C. O’Connor - 9780857931573
Downloaded from Elgar Online at 12/01/2018 09:01:38AM
via free access
Index

background on GTP 35–38
binary cycle power plant technology 98–100
case studies 97–104
binary cycle power plant technology 98–100
high temperature geothermal well cements 102–4
PDC drill bit technology 97–8
TOUGH series of reservoir models 100–102
cluster approach 120
economic benefits
binary cycle power plant technology 99
Geothermal Technologies Program 104–5
high temperature geothermal well cements 103
PDC drill bit technology 97
TOUGH series of reservoir models 101
economic return measures
binary cycle power plant technology 100
high temperature geothermal well cements 103–4
PDC drill bit technology 98
TOUGH series of reservoir models 102
energy conversion 37–8
energy security benefits
binary cycle power plant technology 99
high temperature geothermal well cements 103
PDC drill bit technology 97–8
TOUGH series of reservoir models 101
environmental benefits
binary cycle power plant technology 99
Geothermal Technologies Program 104–5
high temperature geothermal well cements 103
PDC drill bit technology 97, 114
TOUGH series of reservoir models 101
high temperature geothermal well cements 39–40
investments in 93–122
next-best alternative 109–10
polycrystalline diamond compact drill bits 97–8
roller-cone bits 97, 105, 107, 110, 111
selection of 38–40
technologies selected for analysis 38–40
TOUGH series of reservoir models 100–102
Geothermal Technologies Program (GTP) 5, 6, 17, 18, 34–40, 93
background 35–6
benefit-cost analysis 104–7
drilling 35, 36
economic and health benefits, quantified 104–5
exploration 35, 36–7
funding and demonstration projects 94
PDC drill bit technology 151–2
detailed impact assessment 105–9
reservoir engineering 35, 37
Germany, Photovoltaic Energy Systems 55, 90
Geysers, The (California) 37
Global Solar 34
Golden Photon 33
Green, M. 50
Greenhouse Gas Equivalency Calculator (EPA) 82
greenhouse gas (GHG) emissions 2, 79, 85, 138
Griliches, Z.: model of 12, 14, 49, 154
GTP see Geothermal Technologies Program (GTP)
Halliburton 103
heart disease 156
high temperature geothermal well cements 39–40
attribution to the DOE 103
economic benefits 103
economic return measures 103–4
energy security benefits 103
environmental benefits 103
next-best alternative to 102
high-pressure electronically controlled fuel injection 46
homogenous charge compression ignition (HCCI) 46
horizontal drilling 114, 118, 122
hospital admissions 157
hydrogen fuel cells 123
Idaho National Laboratory (INL) 36
inflation adjustment 90
ingot growth, silicon sheet formation 25–6
innovation barriers to 5–6, 8–9
role of government in 7
internal rate of return (IRR) 12–13, 75, 102, 105, 120
International Electrotechnical Commission Standards 24
Ito, K. 157
Japan, Photovoltaic Energy Systems 53, 55, 90
Jet Propulsion Laboratory (JPL), NASA 19, 23, 27, 152
Jordan, G. 91
KIVA codes, LANL 44, 48
Komp, R. 50
laser absorption spectrometry (LAS) 43
laser and optical diagnostics 41–3, 126
laser diagnostics and optical engine technologies 41–3, 124, 125, 126, 134, 137, 147
see also Advanced Combustion Engine (ACE) R&D subprogram
laser Doppler velocimetry (LDV) 42
laser Raman spectroscopy (LRS) 41–3
laser-induced fluorescence (LIF) 43
laser-induced incandescence (LII) 43
Lawrence Berkeley National Laboratory (LBNL) 36, 44
Lawrence Livermore National Laboratory (LLNL) 36, 44
levelized cost of electricity (LCOE) 55, 62
Linden, L. 20
linear drilling 122
Link, A.N. 8, 119
liquid-dominated resources 93, 122
Los Alamos National Laboratory (LANL) 36, 44
lumped parameter models 100
Mansfield, E. 14, 49
market failures 7, 151
and barriers to innovation 8–9
Massachusetts Institute of Technology (MIT), Energy Laboratory 20
McLean, W. 133, 147
McMahon, T.J. 50
method, vs. methodology 14
Mie scattering 42–3
Ministry of International Trade and Industry, Agency of Industrial Science and Technology within 53
minor restricted-activity days (MRAD) 158
Mobil Solar 26
module assembly (automated), flat-plate solar array project 26
Moolgavkar, S.H. 157
mortality research 156
MRADs (minor restricted-activity days) 158
NASA (National Aeronautics and Space Administration) 19, 23
National Aeronautics and Space Administration (NASA) 19, 23
National Center for Photovoltaics (NCPV) 48
National Photovoltaics Program 19
National Renewable Energy Laboratory (NREL) 19, 28, 50, 153
National Science Foundation (NSF) 19
Neas, L.M. 157
net present value 13–14
Nevada, geothermal capacity in 93, 94
New Sunshine Project, The 53–4
next-best alternatives benefit-cost analysis 52
to binary cycle power plant technology 98
to high temperature geothermal well cements 102
to PDC drill bit technology 97
to TOUGH series of reservoir
models 100
Nixon, President Richard 3, 4
Norris, G. 158
Nuclear Regulatory Commission 4

Oak Ridge National Laboratory
(ORNL) 36
Office of Conservation and Solar
Energy 5, 124
Office of Energy Research, Atomic
Energy Commission 41
Office of Management and Budget
(OMB) 14–15
Circular A-94 13–14
oil crisis (1970s) 1
oil embargo (OPEC), 1973 3, 19
OPEC see Organization of the
Petroleum Exporting Countries
(OPEC)
operational efficiency 59
Organization of the Petroleum
Exporting Countries (OPEC), oil
embargo (1973) 3, 19
Osterwald, C.R. 50
Ostro, B.D. 158
O’Sullivan, M. 102

Papadakis, M, 119
particle image velocimetry (PIV) 42
particulate matter (PM)
changes in ambient concentrations 155–7
hospital admissions associated with
157
Partnership for a New Generation of
Vehicles (PNGV) 123
payback analyses 90
PDC see polycrystalline diamond
compact (PDC) drill bit
technology
PDCWEAR (SNL computer program)
108, 109, 118
Peters, A. 156
Photovoltaic (PV) Energy Systems
benefit-cost analysis 6, 49–57
attribute to the DOE 57, 58, 87
demand-side policies, rebates and
financial incentives: treatment
55–7
next-best technology alternative 52
primary data collection 50–52
summary results 88–9
technical and economic impact
metrics 54–5
technology acceleration 53–4
technology cluster 74–9
budget history 57, 58
calculation of benefits 91
core of 49–50
counterfactual PV modules 64–7
country comparison 90–91
economic benefits
of accelerated introduction of
wire-saw technology to
semiconductor industry 73–4
attribution to the DOE 76
counterfactual PV module
production cost per watt
64–7, 68
economic models for quantifying
62–4
lower-bound benefits/measures 76,
77, 87
modules destined to non-US
markets 71
from modules installed in US 69
technology acceleration and
counterfactual PV module
reliability 64
total, from higher-quality, lower-
cost modules 67–70, 87–8
of UCC polysilicon production
method 70–73
environmental and environmental
health benefits 79–85, 92
failed modules, disposal of 79
on-grid centralized and distributed
systems, environmental health
benefits 83, 84
industry progress (1976–2008), US
21–2
measures of economic return for
technology cluster 75, 77–9
model for estimating economic
benefits 62–4
key terms and data sources 59–62
modules 18, 23
off-grid systems, environmental health benefits 85
R&D funding 28
sensitivity analysis on economic return measures (cluster) 77–9
solar energy technologies, investments in 49–92
as solid-state energy systems 60–61
technology acceleration and counterfactual PV module reliability 64
technology cluster 18, 49
benefit-cost analysis 74–9
measures of economic return 75
sensitivity analysis on economic return measures 77–9
timeline of warranty introduction 61
see also solar energy technologies, investments in
Photovoltaic Manufacturing Research and Development Program 19
benefit-cost analysis 52, 75–7
combining with TFP 66–7
goals 28
measures of return for FSA and PVMaT/TEP 75–7
phases, conducted in 28, 29, 30, 31
renaming as PV Manufacturing R&D Project (2000) 48
wire-saw technology 26, 73–4
polycrystalline diamond compact (PDC) drill bit technology 97–8, 122
attribution share 115–19
benefit-cost analysis 119–20
benefits attributable to DOE 98, 105, 109, 119, 121
benefits calculations 110–15, 116
cost reductions per foot in crude oil and natural gas 114, 115
detailed impact assessment 105, 106
economic benefits 97, 117
cost reductions 111–14
profits, for PDC drill bit producers 111, 112
economic return measures 98

energy security benefits 97–8, 114
environmental benefits 97, 114
geothermal technologies 38, 39
history of PDC technology 107–10
next-best alternative to 97
technology description 97
polycrystalline silicon 25
polysilicon feedstock 24
Pope, C.A. 156, 157
Portland cement 39, 102, 103
power, solar spectrum 59–60
Project Independence (1973) 3
public investment
economic rationale 2–3, 7–9
government, role in innovation 7
market failure and barriers to innovation 5–6, 8–9
in new technology, evaluation of 10–15
public sector
expertise to reflect capabilities required to execute R&D 152–3
innovations 12
role in setting and funding R&D agenda 151–2
PVMaT see Photovoltaic Manufacturing Technology (PVMaT) Project (1991–2008)
R&D (research and technology) 3, 18
Advanced Combustion Engine R&D subprogram see Advanced Combustion Engine (ACE) R&D subprogram
diversity to be cornerstone of energy agenda 153–4
econometric-based methodologies 10–11
evaluation, role in developing and modifying agendas 154
geothermal 35
government, role in innovation 7
market failures and barriers to innovation 8–9
need for 149
photovoltaic (PV) technology 28
public sector
expertise to reflect capabilities required to execute R&D 152–3
role in setting and funding R&D agenda 151–2
silicon material refinement 24–5
time frame for energy technology programs to reflect incubation time required 152
Rayleigh scattering 42, 43
ReedHycalog (PDC drill bit manufacturer) 111
Regulatory Impact Analysis, Clean Air Interstate Rule (2005) 156
research and technology see R&D (research and technology)
reservoir engineering, Geothermal Technologies Program 35, 37
reservoir modeling see TOUGH series of reservoir models
respiratory disorders 156, 157, 158
ribbon growth, silicon sheet formation 25, 26
roller-cone bits 97, 105, 107, 110, 111
Rothschild, S. 158
Ruegg, R. 91
Sandia Corporation 40
Sandia National Laboratories (SNL) 24, 33, 36, 40, 50, 115–16
computer programs 108, 109, 118
Schwarz, J. 157
Scott, J.T. 8
Security-DBS (PDC drill bit manufacturer) 111
semiconductor industry, accelerated introduction of wire-saw technology to 73–4
sensitivity analysis, economic return measures for photovoltaic energy systems cluster 77–9
Sheppard, L. 157
Siemens 73
Siemens Solar 34
silane-to-silicon process, Union Carbide Corporation 25
silicon material refinement 24–5
silicon sheet formation 25–6
Smith Bits (PDC drill bit manufacturer) 111
solar cells, high efficiency 6, 26
Solar Energy Research Institute 19, 24
solar energy technologies, investments in 6, 49–92
economic benefits 64–7, 69
of accelerated introduction of wire-saw technology to semiconductor industry 73–4
counterfactual PV module production cost per watt 64–7, 68
key terms and data sources 59–62
model for estimating 59–64
of PV modules destined to non-US markets 71
technology acceleration and counterfactual PV module reliability 64
total, from higher-quality, lower-cost PV modules 67–70
of UCC polysilicon production method 70–73
energy security benefits 85–7
environmental and environmental health benefits 79–85
Photovoltaic Energy Systems benefit-cost analysis 49–57, 74–9
budget history 57, 58
economic benefits see above technology cluster 74–9
see also Photovoltaic (PV) Energy Systems
Solar Energy Technologies Program (SETP) 6, 16, 18
energy security benefits 85–7
see also solar energy technologies, investments in
Solar Research, Development, and Demonstration Act (1974) 19
solar technologies 18–20
Solarex 30, 73
source-receptor (S-R) matrix 155–6
Spain, Photovoltaic Energy Systems 55, 90
spectroscopic methods 41–3
Spire Corporation 30
S-R (source-receptor) matrix 155–6
Stratapax (PDC cutter) 108
STRATAPAX (SNL computer program) 108
sulfates 157
Swanson, R.M. 50
technology acceleration 53–4, 64, 91
geothermal see geothermal technologies
life cycle stages 3, 6, 16, 17, 153
new, evaluation of public investments in 10–15
econometric-based methodologies 10–11
economics-based methodologies 12, 154
evaluation metrics 6, 12–14, 143, 145
solar see solar energy technologies, investments in
ThermaLock cement 103
Thin Film PV Partnerships (TFP) Program (1994–2008) 19, 32–4
benefit-cost analysis 75–7
combining with PVMaT 66–67
Three Mile Island incident (1970s) 1
TOUGH series of reservoir models 48
attribution to the DOE 101–2
economic benefits 101
economic return measures 102
energy security benefits 101
environmental benefits 101
geothermal technologies 38–9
next-best alternative to 100
technology description 100
tracer-based LIF 43
trucks, heavy-duty diesel 125, 126, 142
emissions standards 128–9, 131
statistics 135
21st Century Truck Partnership 123
Underwriters' Laboratories (UL) standards 24
Union Carbide Corporation (UCC) polysilicon production method, economic benefits 70–73
silane-to-silicon process 25
Uni-Solar 33
United States (US)
budget deficits 154
Department of Energy see Department of Energy (DOE), US
energy consumption distribution by energy source 1, 2
and geothermal energy/electric power generation 93, 94, 114
Photovoltaic Energy Systems see Photovoltaic (PV) Energy Systems
see also specific Presidents
University of Utah Earth and Geoscience Laboratory 36
US Army Tank-Automotive Research and Development Command, Department of Defense 123
value of statistical life (VSL) 158
Vanguard I satellite 23
vehicle combustion engine technologies 5, 40–47
Advanced Combustion Engine R&D subprogram see Advanced Combustion Engine (ACE) R&D subprogram
benefit-cost analysis 125–6
combustion and emission control 125
combustion modeling 44–5, 124, 125, 137
diesel trucks, heavy-duty 125, 126
emissions standards 128–9, 131
statistics 135
direct injection diesel engine 45–7
economic benefits 125, 128–38
economic evaluation analysis 143–5
energy security benefits 142–3
environmental and health benefits 125, 138–42
estimation of benefits 128–43
investments in 123–48
laser diagnostics and optical engine technologies 41–3, 124, 125, 126, 134, 137, 147
Laser Raman Spectroscopy 41–3
next-best alternative 134
regression results 136, 137
Solid State Energy Conversion 125
Vehicle Technologies Program (VTP) 5, 6, 17, 18
activity areas 124
annual approximations for 127
vertical drilling 122

wafering technologies, silicon sheet formation 25–6, 91
wire-saw technology 26, 30
accelerated introduction to semiconductor industry 73–4
Witt, C.E. 50, 90