Index

Adams, P.C. 44
adjacency matrix 464, 465, 474, 475–7, 484
aggregation 100, 101, 134, 135, 299, 515, 518, 532
aggregation–disaggregation issue 98–9
Ahmed, N. 49
Allen, T.D. 628
Amedeo, D. 15, 16, 18, 21, 23–5, 74, 89–92, 94–101, 124–5, 127–8, 132–9, 141, 656–72
analysis of spatial interactions: inter-regional migration flows 403–33
accessing migration data 409–12
age–cohort plans 406–7
age–time plans 405
aggregate net migration probability (ANMP) 421
average migration distance 423
average net migration rate (ANMR) 423
censuses 406, 409, 410
coefficient of variation 427–8
crude migration intensity (CMI) 418–20
data collection procedure 410
data matrix 411
demographic data 404, 406
directional arrows 429
distance-decay 403–4, 423, 425
event data 405, 407, 411, 418
flow maps 429–32
flow matrices 407–8, 412–16, 423, 431, 432
forms of spatial interaction data 405–9
friction of distance 423
impact of migration 416, 421–3
in-migration 425
index of migration inequality 427–8
intensity of migration 408, 416, 418–21
key issues 410–11
level of spatial detail 410
Lexis diagram 405–7
linkage models 403
mapping spatial interaction 429–32
mean (distance) 423
measurement interval 410
median distance 423
migration connectivity 416, 427–9
migration distance 416, 423–6
migration effectiveness index (MEI) 422–3
migration effectiveness ratio (MER) 421–2
migration probabilities 407, 408
modifiable area unit problem (MAUP) 408
nested hierarchies 408
net migration probability (NMP) 421
observation intervals 403
occurrence–exposure rate 407
online databases 412
out-migration 425
period–age observation plan 406–7
period–cohort plan 406–7
place of usual residence 409
place-of-birth data 409
population at risk (PAR) 411, 413, 415
population flows 404
population registers 409, 411
previous place of residence 410
rates of migration 408
scale effects 408
spatial framework 408–9
stocks 407–8
temporal comparisons 408
time series data 416
trading space and characteristics 411
transition data 405, 407, 411, 418
volume of migration 429
zonal systems 403, 408
see also Australia: migration flows
Anderson, J. 78
Anderson, W. 321–2, 325
Andrews, K. 322
Anselin, L. 39, 346–8, 363–6, 372
areal equivalence (AE) 303, 305, 311, 312
areal invariance (AI) 293, 311
arrow plot 429, 446, 449, 451
Arrowsmith, C. 514, 530
aspatial segregation measures 287, 289–99
areal invariance (AI) 293
axiomatic approach 289
composition invariance (CI) 292–3
Deming and Stephan (DS) decomposition 297–8
entropy-based indexes 292, 296
evenness 293, 295, 296, 298, 299
exposure 298, 299
human capital attainment 294
income inequality 289
index of dissimilarity (ID) 292, 295, 297
index of segregation (IS) 295–6, 298
Karmel and McLachlan (KM) index 291, 293, 294, 295, 297, 298
labour force segregation 290
linear segregation indexes 292
local decomposability (LD) 294–5, 296
margin dependence 297–8
margin-free index 293
multi-group measures 289
mutual information index (MI) 291, 293, 294, 296–7, 298
occupational segregation by gender (and race) 294–5, 298
permutation matrix 291–2
Pigou Dalton transfer 292
representativeness 293, 296, 298
residential segregation 289–90, 295, 298–9
scale interpretability 291
scale (size) invariance 291
school segregation 294, 295
strong areal decomposability (SAD) 293–4, 296
strong group decomposability (SGD) 294, 296
symmetry in areas 291–2
symmetry in types (race) 292
Theil index H 312
transpose invariance (TI) 293, 294, 296
attributes 91, 98, 143
classification 266
measurement 277
meta-analysis 258–9
similarity 273, 275, 276–7, 283, 545, 552, 554
and variables, relationships between 94
see also classification for visualizing data: multiple attributes and space integration for choropleth display
Australia: age of leaving home:
primary and secondary data 197–206
21st Century Housing Careers and Australia’s Housing Future 198–204, 207
advantages 206–7
Australian Bureau of Statistics (ABS) 197–8, 200, 202, 204–5, 206
Australian Housing and Urban Research Institute (AHURI) 199
Census 198, 201, 202, 206, 207
cohort analysis 206
crcomputer-aided telephone interview (CATI) method 199–200
collection patterns 199
demographic shifts 199
desire to live independently 202
disadvantages 206–7
family conflicts 202
hazards analysis 206
home ownership 206
Household, Income and Labour Dynamics in Australia (HILDA) survey 204–5, 207, 208
introductory letter 200
labour force surveys 198
labour market changes 199
languages (of survey) 200
methods of data collection 198–200
Index 639

Negotiating the Life Course Survey 205, 207
primary data 202, 204–6, 207
random selection 200
reasons for leaving home by age 203
response rates 200
sample loss 200
secondary data 202, 204, 205–6, 207
target sample size 199–200
Australia: classification for visualizing data:
bi-criterion median clustering problem (BMCP) 275, 276
Census 2006 270
crime data from Queensland Police Service 279
demographic and socio-economic variables from Australian Bureau of Statistics (ABS) 279
equal interval classification 268
Location Quotients 270, 271
natural breaks classification 269
quantile classification 267
spatial crime patterns 273, 274
spatial pattern of local government areas (LGAs) performance on regional endogenous growth variable 271–2
statistical local areas 278–9, 281–4
Australia: forecasting techniques 218–20, 231–2
age cohorts 220
Australian Bureau of Statistics (ABS) 223
Australian Standard Industrial Classification (ASIC) class 223
birth rates 219
Census data 219
components of population growth 220
death rates 21, 219, 220
fertility rates 218, 220
infant mortality 218
Intergenerational Reports 216
life expectancy at birth 218
migration rates 218–19, 220
population changes 218–19
Australia: migration flows 404, 408–9, 422, 428, 430, 432
aggregate flows and population at risk 415
Australian Bureau of Statistics (ABS) 412
Australian Standard Geographic Classification: Statistical Local Areas (SLAs) 410
Australian Statistical Geography Standard 410
Census 411, 412, 413, 418
crude migration intensities 419, 420–21
flow matrix of interstate migration 413, 414
net migration and migration effectiveness 417, 424
Tablebuilder 412
visualizing migration flows 431
Australia: small-area level and micro-simulation:
2027 projections by state and territory 580
age by sex projections 578
Australian Bureau of Statistics (ABS) 564, 578
Australian Bureau of Statistics (ABS): GREGWT 566, 577
Australian Bureau of Statistics (ABS): population projections 577
Australian Standard Geographic Classification (ASGC) 564
average change in total disposable income due to stimulus package 576
BAS national sample surveys 567, 569
CAREMOD 577
Census 564–5, 567, 568, 577
Centrelink 577
child care services 578, 579, 581
community care services 578, 581
estimated population weighted quintiles of poverty 572
Family Tax Benefit 577
housing assistance 577
hypothetical example after reweighting and addition of micro-simulation model 571
income tax cuts 577
modelling impact on poverty of increasing single pension rate 574
National Centre for Social and Economic Modelling (NATSEM) 560, 564, 567, 575, 577, 583
National Centre for Social and Economic Modelling (NATSEM): SpatialMSM 566–7
National Centre for Social and Economic Modelling (NATSEM): STINMOD (static tax and transfer micro-simulation model) 560, 568–9, 576
population growth rates 578, 581
sample survey 565
standard error about identity 569
Australia:
Australian Bureau of Statistics (ABS): spatial indexes: segregation 287
Index of Community Socio-Educational Advantage (ICSEA) 154–5
see also census data
autocorrelation see spatial autocorrelation
autoregressive-spatial autoregressive (SAR) model, mixed 370, 374–5
Axhausen, K.W. 49
B coefficients 497, 498
Baker, R.G.V. 53
Ballas, D. 562, 582
bandwidth 307–8, 310
Barff, R.A. 324
Baxter, J. 205–6
Beer, A. 206
Bell, M. 408, 416
Bell, P. 566
benchmarking 270–71, 565–7, 578
Bergman, E.M. 394
Bernoulli dependence 482–3
Bernoulli random graph distribution 478
best linear unbiased estimator (BLUE) 356
betweenness centrality 472–3
bi-criterion median clustering problem (BMCP):
visualizing data: choropleth display 265, 273, 275, 276, 278, 279, 282–3
web-based geographic information systems (GIS) 543, 548, 550–53, 555
bi-variate model 355
bias 51, 101, 139, 140, 145, 146, 248
biased estimates 357
biased regression 346
Bishop, C.M. 590
Blakie, N. 193, 195–6
Blake, M. 409, 411, 418
Blakely, E.J. 227
Blanchflower, D.G. 250–51
Boggs, S.W. 49
Bonacich, P. 473
Brown, L.A. 302
Brunn, S.D. 47
Bryman, A. 74
bubble diagrams 391–3
buffers 33–4
Bunge, W. 49
Burt, R.S. 474
Campbell, A. 505
Cannell, C.F. 141
Cartesian x,y space 307
categorical variables 245
categorization 91–4, 185, 265
causal/causality see under graphical models and Bayesian networks; inferring causal relationships cause–effect impacts 234
census data (Australia) 103–22
accessibility (settlement patterns) 116
age–sex composition 105–6
aggregates of subgroups 110
Australian Bureau of Statistics (ABS) 111, 116, 119
Australian Standard Geographical Classification (ASGC) 111
Australian Statistical Geography Standard (ASGS) structure 111–12, 114–15
census geography 110–18
coding categories 118, 119
coding errors 121
collection district (CD) 110–11
commuting 107
collection district (CD) 110–11
concentration (settlement patterns) 116
confidentiality 110, 121
de facto population (place of residence at time of census) 104–5, 107
de jure population (usual place of residence) 104–5, 106, 107
‘edge city’ developments 113–14
elevation 106
estimated full time resident equivalent (EFTR) population 108
family type 118
functional metropolitan regions 114–15
Geographical National Address File (GNAF) 111
government of population 109–10
incomplete or incorrect information 121
level of population generated by holiday homes and tourist accommodation 109
local government areas (LGAs) 106, 108–9, 111
long form 119
‘meshblock’ 111
migration 105
multiple geographies 109
place, concept of 104
place of previous residence 105
place of work 105, 107
population of an area, determination of 104–9
post-enumeration survey 121
private and non-private dwellings, distinction between 119
problems and errors 118–19
questions 118–19
random adjustment 121
Remoteness Index 116–17
rural–urban dichotomy 113, 115, 122
settlement size 116
short form 119
spatial autocorrelation units 110
spatial units, changing 111
suburbanization 113
‘synthetic people’ 121
temporary migrants 107–8, 109
time series comparisons 121
underenumeration 120–21
urbanization 113
variables collected 120
visitors 105, 107
wording or classification, changes in 121
censuses 99
analysis of spatial interactions: migration flows 406, 409, 410
blocks 135–6, 311
disaggregated 136
geographic information systems (GIS) analysis and modelling 533
multi-stage sample design 135
spatial indexes: segregation 306, 312
tracts or blocks 300
see also Australia: age of leaving home: primary and secondary data; census data (Australia)
central limit theorem 165–6
central processing unit (CPU) 284–5
central tendency measures 160, 385
centrality indices 470, 471, 472–4
centroids 303, 307–8, 445
Charles and Grusky log index A 311
Charles, M. 288
checkerboard problem 290, 299
Chhetri, P. 514, 522, 530
Chicago School 179, 345
choropleth display/mapping 266, 282, 283, 445, 447–8, 544–5
see also classification for visualizing data: multiple attributes and space integration for choropleth display
Chung, S.Y. 302
circular spread index 439
circular statistics 436–56
arrow plot 446, 449, 451
choropleth mapping 445, 447–8
circular plots 452–3
circular spread index 439
cyclic data 436
deviance (circular) 439
directional data 436
dispersion index 439
fundamentals 437–42
geometric centroid 445
graphical devices 439–41
hoax calls (case study) 442–4
hypothesis testing 441–2
integration 451–2
journey-to-work (case study) 444–8
linked plots 448–51
mean (circular) 437–8, 445, 451, 453
mean direction 446, 448, 449
multiple visualizations, combining 448–55
point map 450–51
‘R’ statistical programming language 451, 452–5
raw dot (simple dot) plot 440
Rayleigh test of uniformity 441–2, 443, 451, 455
rose diagrams 436, 440–41, 442, 447, 449–51, 453–4
stacked dot plot 440–41
standard m by n matrix 444
statistical tests 455
summary statistics 453–5
time, unit of 436
Watson multi-sample U^2 test 442, 443, 447, 455
wrap-around effect 437
Clapham, D. 199
classification for visualizing data:
multiple attributes and space integration for choropleth display 265–85
application results 278–81
approach 276–8
attributes classification 266
attributes measurement 277
attributes similarity 273, 275, 276–7, 283
benchmarking 270–71
bi-criterion median clustering problem (BMCP) 265, 273, 275, 276, 278, 279, 282–3
categorization routines 265
choropleth display 266, 282, 283
classification approaches 266–75
dot distribution map 271–2
equal interval classification 265, 266, 268, 269, 273, 278, 279, 282
integration of space and multiple attributes characteristics 275–81
Jenks optimization approach 266
Location Quotient (LQ) 265, 266, 270–71
median clustering objective 265
median-based clustering model 277
multi-criterion median clustering problem (MMCP) 265–6, 274, 275, 277, 278, 279, 280, 281–4
natural breaks classification 265, 266, 269–70, 278
performance of classification approaches 273–4
proof-of-concept application 278
quantile classification 265, 266, 267, 269, 273, 278, 279, 282
spatial optimization approach 265, 273, 274–5, 278, 283
spatial proximity 273, 275, 276–7, 280, 281, 283
standard classifications 266–70
total within-group difference (TWGD) 265, 274, 278, 279, 280, 282
total within-group variance (TWGV) 265, 273, 278, 279, 281
weighted absolute difference 277
see also Australia: classification for visualizing data
cliquies 466, 468–9, 478
Cloke, P. 190
cluster maps 543, 548, 549–50, 554
clustering:
coefficient 468, 478
econometric modelling 362, 363, 366–9
graphic information systems (GIS) analysis and modelling 529–31, 533
human social networks analysis 484–5
spatial indexes: segregation 302
survey research methods 134, 136
see also bi-criterion median clustering problem (BMCP);
spatial clustering: industrial clusters
coefficient of variation (CV) 427–8, 538
cognitive view of spatial representation 514–15
cohort-component model 217–20
collective efficacy (CE) 536, 538–9, 546, 547, 550–51, 554–5
Columbus, Ohio data set 346, 347–53
crime rate 348, 350, 351, 352, 353–5, 364, 366, 367–8, 373, 375
cross-plots 351
household income 348, 350, 351, 352, 353–5, 364, 367, 369, 373
housing values 348, 350, 351, 353–4, 364, 373
percentile maps 350, 352, 353
ranking 350
residential burglaries and vehicle thefts 349
communication patterns, polarized 50–51
composition invariance (CI) 292–3, 295, 304, 311
computational probabilistic modelling approach 588–91
computational process models 72
computer-aided telephone interview (CATI) method 128, 129–31, 199–200
conceptual model (theoretical) 71
CONCOR clustering algorithms 475, 481
confidence intervals 147, 166–7, 169–70, 241–2, 248
confidentiality 110, 121, 300
see also privacy issues
confidentialized unit record files (CURFs) 569
confounding variables 594, 595–6
constrained models/experiments 69, 502
contiguity 359–61, 363, 374
Bishop 359–60
first-order 360
n- 360
Queen 359–60
Rook 359–60, 363, 374
contingency matrix 589
continuous variables 92, 156, 161
contour mapping 38
convergence see time–space convergence
Cook, L.M. 322
Coombes, M. 115–16
correlation coefficient, partial 245
counterfactual reasoning (‘what-if’ situations) 589, 598
covariance or correlation matrix 491, 492, 501
crime see web-based geographic information systems (GIS) and community variations in crime
critical spatial thinking 26–40
fundamental spatial concepts 28–9
see also spatial concepts and critical thinking
Cromley, R.G. 273, 274
cross-level fallacy 100, 101
cross-sectional fallacy 100
data 89–102
aggregation–disaggregation issue 98–9
attributes 91
attributes and variables, relationships between 94
categorization 91–4
classification 91–4
ecological fallacy 100–101
forms of 94–5
meanings of data and information 90
measurement and 90–94
mining, spatial 273, 283
modifiable area unit problem (MAUP) 99–100
quality issues 101–2
smoothing 312
sources of 95–6
spatial 20–21, 156–7
use of 19–20
variables 91–4
see also primary data; secondary data
Daugherty, R. 192–3, 196
Davis, P. 192
Dawkins, C.J. 304
de Finetti, B. 591, 597
de Groot, H.L.F. 256
De Langen, P. 395
decomposition see Deming and Stephan; local decomposability; shift-share analysis: decomposition
deductive approach 66–8
Delgado, M. 379
DELL PowerEdge 2950 Server 278, 542
Delphi technique 225–7, 233, 234
Deming and Stephan (DS) decomposition 297–8, 305–6, 311
Dent, B.D. 544
Denton, N.A. 302
Denzin, N.K. 74
dependence, spatial 37–8, 55–7, 357, 362, 364, 368, 372, 374
dependent variables 353–5, 369, 371, 375
distance 358–9, 360
exploratory/independent variables 353–5, 369
exploratory spatial data analysis (ESDA) 362–8
filtering 371–2
first-order spatial autoregressive (FAR) model 370
general spatial model (SAC) 370
global autocorrelation measures 363–4
Hendry general-to-specific approach 372
hypothesis development 347
Lagrange multiplier (LM) test 373
likelihood ratio (LR) 373
local indicators of spatial association (LISAs) 363, 364–8, 369
location 358–9
maximum likelihood estimation (ML) 373, 374–5
mixed autoregressive-spatial autoregressive (SAR) model 370, 374–5
model selection methods 371–2
Moran I statistic 363–4, 372–3, 374
Moran scatter plots 365–7
ordinary least squares (OLS) 353–7, 368, 370, 372, 373, 374, 375
proximity 359–60, 363
regression results 349
results and analysis 373–5
spatial autocorrelation 346, 358–63, 374
taxonomy 368–71
total absolute 566
traditional econometrics and spatial econometrics 357–8
Wald test 373
see also Columbus, Ohio data set
effect sizes 240, 244–6, 253
eigocentric network 462
eigenvector centrality 473–4
Ellis, M. 105
embeddedness 315, 339
endogenous variables see dependent variables; intervening and mediating variables
entropy maximizing methods 423
entropy-based indexes 292, 296
equal interval classification:
visualizing data: multiple attributes and space integration for choropleth display 265, 266, 268, 269, 273, 278, 279, 282
web-based geographic information systems (GIS) 545–7, 551–3
error 101, 139, 140, 243, 369
forecasting 213–14, 216–17, 224, 231, 233
measurement 358
residuals, spatial and Lagrange multiplier test 373
specification 243
terms 213–14, 354, 355, 357
total absolute 566
see also standard error
ethics 187, 195
Euclidean distance 276–7, 426, 474–5
Euclidian space 481
evenness 288–9, 293, 295–6, 298–9, 302, 304, 308
Ewing, G. 49
exogenous variables see independent variables
explanatory variables see independent variables
exploratory spatial data analysis (ESDA) 362–8, 451–2
exponential ordered weighted average operator (EX-OWA) 521
exponential random graph models 482–4
extensibility diagrams 44
factor analytic techniques 504
Faulkner, D. 206
feedback loops 499, 501
Fernandez, M.M. 339, 342
field-based model 514
filtering 371–2, 522–4
Fink, A. 78
Firebaugh, G. 303–5, 312
first-order spatial autoregressive
(FAR) model 370
fiscal policy 257–9
Fisher, W.D. 273
fixed effects (FE) model (one ‘true’
value) 240–42, 243, 247, 250
Flatau, P. 204–5, 206
Florax, R.J.G.M. 372
Flowmap 431
forecasting 210–34, 260
accuracy 216, 218
adaptability of societies 216–17
adequate data 222
anonymous participants (Delphi)
227
behavioural tasks 225
beliefs, biases and opinions 233
cause–effect impacts 234
cohort-component model 217–20
complex feedback mechanisms
215–16
consensus 233
correlates of quality 215–16
deficiencies 223
Delphi technique 225–7, 233, 234
demographic techniques 216
disadvantages (scenario
construction) 231
econometric modelling 354
elements of plots (scenario
construction) 230
error terms 213–14
errors 216–17, 224, 231, 233
expert panel (Delphi) 227
fragility 217
GFC as a metaphor 214
innovation and adaptation over time
(reciprocal intertwining) 211
input–output analysis 221–5, 234
key questions (scenario
construction) 229–30
long-range 233
matrix algebra 223
multipliers 224
mutual interconnectedness 224
primary data 223
principal ingredients 214–16
probabilities 213
problem-solving capacity 216
public debate on important policy
issues 216
scenario construction 216, 225,
228–32, 233
semi-Delphi technique 227
short- to medium-term 233
simulation models 210
trained facilitator (Delphi) 226–7
transactions matrices 221, 223, 234
value of 216–17
‘what if’ type questions 221, 223
worlds of being and becoming,
distinction between 212
Forer, P. 49
Foss, S.K. 621–2
Frank, O. 482
Frankel, D.M. 288, 294
funnel asymmetry test (FAT) 252
funnel plot 250–51, 252
Gardner, H.E. 27
Gatrell, A.C. 49
Gaussian process model (Kriging
model) 589, 598
generalized linear modelling (GLM)
425, 496
geocoding 516–18, 532, 536, 538,
539–40
goedesics 468, 470, 472–3
goographic information systems (GIS)
26, 28, 32–3, 37–8, 40, 511–33
aesthetic factor 525
aggregating unit record survey data
into spatial unit (case study 2)
518–22, 532
aggregation techniques 518, 532
amenities/accessibility factor 525
analysing spatial interactions 409
ArcGIS 429, 430, 431, 451–2
census boundary 533
circular statistics 456
classification of geographic entities
514
cluster analysis 529–31
complexity 515–16
components representation 525–7
composite index 519
data visualization: choropleth display 266, 273
digital construction of space 513–16
exponential ordered weighted average operator (EX-OWA) 521
field-based model 514
generalizing spatial patterns of QOL indicators (case study 3) 522–7, 532
geocoding unit record survey-based data (case study 1) 516–18, 532
geographic context 512–16
geraphic entities 513
geraphic relations 513
geraphic terrain 513
graphical models and Bayesian networks 590
grid data model 514
heterogeneity 39
indicator values 520
integrating spatial data collected through GPS receivers with survey data (case study 4) 527–31, 532
kernel or adaptive moving window 532
limitations 527
MapInfo 429, 430, 431, 539–40
maximum entropy ordered weighted average operator (ME-OWA) 521
meshblocks 111
modelling methods 514
modifiable area unit problem (MAUP) 515, 533
neighbourhood operation routine 518, 522–7
network-based model 514
object-based model 514–15
ordered weighted average (OWA) 519–21
parameter specification 524–5
place-orientation 512–13
principal components analysis 525
privacy issues 518, 532
qualitative methods 183
raster analysis 522
regional-level parameters 533
revealed behaviour 528
scale 36–7
social interaction factor 512, 525
social processes 513
social spatiality 513
space, concepts of 512–13
spatial clusters 533
spatial context 533
spatial filtering 522–4
spatial granularity 532
spatial patterns 533
spatial representation: cognitive view 514–15
spatial–temporal locale 513
subjective assessments quantification 518
time geography concepts 528
time–space diary 528
vector data model 514
visualization issues 518, 532
weighted average operator 519–22
see also web-based geographic information systems (GIS) and community variations in crime
geographic sampling 133
globally weighted regression 38
Getis–Ord statistic 363
Glass, G.V. 237
global autocorrelation measures 363–4
Global Positioning System (GPS) 26, 31, 129, 528, 529
Golledge, R.G. 72
Goodchild, M.F. 13–14, 15, 16, 17–18
goodness of fit 373, 484–5, 508–9
Google Earth 26–7, 31
granularity, spatial 532
graph theory 462–9
adjacency matrix 464, 465
blocks 464
bridges 467
cliques 468–9
clustering coefficient 468
cohesive subsets 468–9
configurations 466
connectedness 467, 469
cutpoints 467
Index

degree distribution/sequence 464, 466
density 464
directed graphs 464
drawings 463
dyad census 466–7
edges 462–3, 464, 466, 467, 468, 478, 479, 484, 588
godeics 468
independent paths 469
indirect paths 467
loops 462, 464
\((m−1)\)-star 466
nodes 462–4, 466–8, 470, 472, 474, 478, 588
order and size of graph 463
paths 467
reachability 467
subgraph 466–7, 468
ties 460, 461, 464
triad census 466–7
graphical devices 439–41
graphical models and Bayesian networks 587–99
application 594–7
Bayesian inference 591
Bayesian interpretation of probability 597
Bayesian networks (directed acyclic graphs) 587, 588, 589, 590, 593, 594
Bayesian statistics 588
causal effects 594
causal graphs 593–4, 598
causal inference 596
causal probability 596–7
causality 588
computational probabilistic modelling approach 588–91
conditional independence 589
conditional probabilities 588, 589–90, 591–3, 598
confounding variables 594, 595–6
contingency matrix 589
counterfactual reasoning (‘what-if’ situations) 589, 598
directed graphical models 589–90
do() operation 595, 597
factorization of functions 588
fire-related deaths in Australia (case study) 588, 591
‘front door criterion’ 595
functions 589–90
Gaussian process model (Kriging model) 589, 598
identification problem 594
inference algorithms 590, 597–8
inferring causal relationships 587–8, 591, 592–7, 598
joint probability distribution 590
latent factors 594–5, 598
machine learning 597–8
non-experimental data sets 593–4
observed variables 594
probability theory 590
randomization 593
Simpson’s paradox 595
undirected graphical models 587, 588–9
graphics processing unit (GPU) 284–5
Great Circle distance formula 312
grid data model 514
Grusky, D.G. 288
Habibis, D. 195
Haining, P.R. 21, 94
Haitovsky, J. 146
Hall, J.R. 178–9
Handcock, M.S. 483
Harvey, D. 53–4, 513
Haynes, K.E. 321, 322–9, 330–39, 342
Haynes–Dinc model 322–4, 325
Haynes–Dinc–Paelinck model 325–9
Hedges, L.V. 252
Hendry general-to-specific approach 372
heterogeneity 37, 39–40, 55–7, 363
econometric modelling 357
meta-analysis 242–3, 251–2, 254, 260
heteroscedasticity 242–3, 249
Hewings, G.J.D. 339
Hiroti, K. 239
Hitchcock, M.A. 627
Hoff, P. 41
Holland, P. 479
homogeneity 247, 253, 277
hot-spots 38, 363
Houston, S. 105
Huberman, A.M. 619
human rights of participants 195
human social networks analysis 459–85
adjacency matrix 474, 475–7, 484
background 459–61
Bernoulli dependence 482–3
Bernoulli random graph distribution 478
betweenness centrality 472–3
block models 473
boundary specification 460
centrality indices 470
choice of social connection 460
cliques 466, 478
closeness centrality 470–72
clustering 478, 484–5
degree centrality 470
dyad-independent models with latent variables 479–81
egocentric network 462
eigenvector centrality 473–4
exponential random graph models 482–5
giodesics 470, 472–3
goodness of fit 484–5
Markovian dependence 482–3
mathematical representations 461–9
network boundary 462
relationships to one another 461–2
roles and positions 474–7
snowball studies 462
social actors 459, 461
social circuit dependence 482–3, 485
social interaction, types of 460
social network data 461–2
social relations 461
statistical analysis 477–85
structural equivalence 474–7
structural and locational properties of actors 470–74
ties 460, 461–2
two-block model 479–81
uniform graph distributions 477–9

see also graph theory
Hunter, D.R. 483–4
hypothetico-deductive testing 67–8

Illich, I. 54
imputation techniques 139–40, 145–6, 147

independent (explanatory) variables 94, 158–9
econometric modelling 353–5, 369
intervening/mediating variables using path analysis 489–90, 494
non-probability sampling 138
statistical modelling 171, 172
index of segregation (IS) 295–6, 298
individual fallacy 100
inductive approach 65
inference algorithms 590, 597–8
inferential statistics 161, 162
see also statistical inference
inferring causal relationships 587–8, 591, 592–3, 594–5, 598
information matrix 258, 506
input–output analysis 221–5, 234, 390–91
INSPIRE (EU) 39
Integrated Public Use Micro-data Series (IPUMS)-International database 412
interchange algorithms 278
interval variables 155, 156
interval/ratio measurement/scale 92–3, 154–5, 157
intervening/mediating variables using path analysis 489–509
amount of variance 491–2
applications of path analysis 491–3
constrained model 502
covariance or correlation matrix 491, 492, 501
dependent or endogenous variables 489–90, 491–2, 496, 499, 507
different models 493–4
direct effects 489–90, 492
direct paths 490, 508
example 501, 505–7
factor analytic techniques 504
free model 502
generalized linear modelling (GLM) 496
goodness-of-fit statistics 508–9
group differences 493
hypothesis for specified model 505–6
importance and value of path analysis 490–94
independent/exogenous variables 489–90, 494
indirect effects 489–90, 492
latent variables 500–501, 503–9
maximum likelihood (ML) 506–7
measured variables 499–504, 507
measurement model 508
mediating variables 494–6, 499–500, 509
mode specification 505–6
model evaluation 507
model identification 506
model of satisfaction with urban living 502
moderating effects 499–502, 509
modification indices 507, 508
mood bias 496–8
multi-group path analysis 503
multiple regressions 490–91, 494, 496
non-recursive models 499–501, 509
objective dimensions of urban environment 494–6
parameter estimates 492, 493, 506–7
path coefficients 492
recursive models 499
regression analysis 494–9, 509
regression coefficients 503
regression techniques 490
research questions 493
respecification of model 507
results 496–9, 501–3, 508–9
satisfaction with residential environment 490
simple path models 494
specialist software 499
standard deviation 492
standardized differences 507
standardized error variance 491–2
standardized residuals 507, 508
structural equation modelling (SEM) 503–7, 509
structural model 508–9
subjective evaluations of urban environment 494–9
testing theory and model fit 491
theory 505
weighted least squares (WLS) 506
Isard, W. 379

isomorphic configurations/mapping 466–7, 483
James, D.R. 303
Janelle, D.G. 13–14, 15, 16, 17–18
Java applet 543–4
Jefferson, M. 49
Jenks, G.F. 273
Jenks optimization approach 266
Johnson, B. 379
Johnson, S. 590
Johnston, R.R. 68, 71, 98
Johnston, S. 633
Jordan, M.I. 590

k–2-paths 482–4
k-stars 482–4
k-triangles 482–5
Kang, E.-T. 53
Karmel and McLachlan (KM) index 291, 293–5, 297–8, 304–5, 308–11
Kendrick, J.W. 323
kernel density estimation 305, 307–8, 311
kernel proximity function 311–12
Kiley, M. 633, 634
Kish, L. 139
Klink, Van A. 395
Knight III, P.L. 324
Knudsen, D.C. 321
Koetse, M.J. 249
Kwan, M.-P. 44

Lagrange multiplier (LM) test 372, 373
Lambert Conformal Conic 307
language analysis techniques 181
latent factors 594–5, 598
latent variables 256, 500–501, 503–9
Latour, B. 183
least-squares regression 426
see also weighted least-squares
Lee, B.A. 300–301, 304, 307, 311, 312
Leinhardt, S. 479
LeSage, J. 346, 363, 372
Lexis diagram 405–7
L’Hostis, A. 49
likelihood ratio (LR) 373
Likert item 154, 175
Likert scale 518
Lindblom, C. 228
Index

Lindley, D.V. 593
linked plots 448–51
listwise or casewise deletion 145, 146
literature review 76–85, 236
 analysis and results 76–7
 ‘branching’ technique 80
 broad context 82, 84
 complete overview 79
 conclusions and implications 76–7
 context or setting 76–7
 core idea 82
 details of concepts 84
 framework 76, 77
 narrowing down 79, 82
 outcomes in different places and time periods 78
references: thinking stage 80–84
research questions 84
restructuring 77
seeking-out stage 79
short report 81
target 78
tension between two views 78
writing 84–5
LM χ^2 (1) statistic 374
local decomposability (LD) 294–5, 296
Local G 363
local indicators of spatial association (LISAs) 39, 363, 364–8, 369
location quotient (LQ) 265, 266, 270–71, 382, 390, 392
longitudinal survey designs 137
Lorrain, F. 474
Lundvall, B.-A. 379
Lynde, C. 322
m-clan 469
m-club 469
m-core 469
m-plex 469
Ma, K.-R. 53
McCrea, R. 174, 494, 501, 505
McDonald, P. 205–6
McFadden’s R-square 426
Machunda, Z.B. 321
McKay, H. 151
mail surveys (self-complete questionnaires) 128, 129, 130
Malthus, T. 213
Mandelbrot, B.B. 36
MapObjects 278, 542–3
MapViewer 430, 431
Marchand, B. 49
margin dependence 297–8
margin-free index 293
Mark, D.M. 514–15
Markovian dependence 482–3
Marshall, A. 379
Martin, D. 307
Massey, D.S. 302
matrix equation 242
maximal connected subgraph (component of G) 467
maximum entropy ordered weighted average operator (ME-OWA) 521
maximum likelihood (ML) 252, 257, 506–7
mean 162, 163, 538
center or centroid of distribution 385
circular 437–8, 445, 451, 453
direction 446, 448, 449
distance 423
population 162, 166, 168
and proportions 170
social networks 484
squared prediction errors 260
statistical inference 170, 172–3
value 167
measured variables 499–504, 507
median-based clustering model 277
see also bi-criterion; multi-criterion
mediating variables see intervening/mediating variables using path analysis
memory distortion 144
Mendelson, R. 118
Menendez, A.J.L. 339, 342
Menger’s theorem 469
meta-analysis 236–60
 categorical findings 254–9
 coded information: exploratory and
descriptive analysis 246
 common effect 240
 confidence intervals 241–2, 248
 cost variables 238
 dependent variables 242
 effect sizes 240, 244–6, 253
 efficiency gain 238
 fixed effects (FE) model (one ‘true’
 value) 240–42, 243, 247, 250
 funnel plot 250–51, 252
 heterogeneity 242–3, 251, 254, 260
 heteroscedasticity 242–3, 249
 homogeneity 247, 253
 list of variables 237
 matrix equation 242
 meta-estimate 241–2, 243, 248, 250
 meta-regression analysis (MRA)
 238, 243, 245, 246, 248–9,
 251–4, 260
 meta-regression analysis (MRA) of
 Fisher’s Z values 255–6
 misspecification bias 243
 mixed effects (ME) model 249
 moderator variables 243, 248–9,
 253–4, 255, 260
 ordered probit model 256–7, 259
 ordinary least squares (OLS) 240,
 242, 252
 publication bias (‘file drawer bias’)
 243, 250–53, 260
 quality differences 260
 questionnaire 237
 random effects (RE) model 247–8
 regression analysis 259
 regression coefficients 242
 regression model 239–40, 248, 249,
 251–2
 regression techniques 247
 representative sample 243–4
 rough set theory 257–9
 sample size 237
 sampling strategy 237
 sensitivity analysis 253–4, 258
 specification errors 243
 standard error 240–41
 summary statistics 238
 value transfer 238
 weighted average 238, 240–41, 243,
 247–8
 weighted least squares (WLS) 249,
 255
 meta-data 237, 410
 web-based geographic information
 systems (GIS) 539, 543, 546,
 548, 551, 556
 meta-estimate 241–2, 243, 248, 250
 meta-paradigm (SISS) 16–17
 meta-regression analysis (MRA) 238,
 243, 245, 246, 248–9, 251–4, 260
 meta-regression analysis (MRA) of
 Fisher’s Z values 255–6
 micro-simulation for creation of
 synthetic spatial data 560–83
 benchmarks 565–7, 578
 combinatorial optimization
 reweighting method 566
 confidentialized unit record files
 (CURFs) 569
 convergence 566
 creation of synthetic spatial micro-
data 564–70
 discrete classes 565
 distributional effects of government
 programmes 572–7
 equivalizing method 570–72
 generalized regression procedure
 566
 individuals, characteristics of 570–72
 international examples 563
 linkage variables and their selection
 564–5
 modelling impact of household
 stimulus package 575–7
 modelling impact on poverty of
 increasing single pension rate
 573–5
 modelling results 578–81
 natural breaks 572
 OECD scale 570
 population-weighted quintiles 570
 poverty rates 570–72
 projecting future need for services
 577–81
 reweighting 560, 564, 567, 578
 small-area data 561–4
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>small-area estimation (SAE)</td>
<td>560, 562</td>
</tr>
<tr>
<td>small-area weights</td>
<td>567–70</td>
</tr>
<tr>
<td>standard error around identity (SEI)</td>
<td>567–9</td>
</tr>
<tr>
<td>synthetic small-area estimates</td>
<td>562</td>
</tr>
<tr>
<td>synthetic small-area micro-data</td>
<td>560, 568</td>
</tr>
<tr>
<td>synthetic spatial micro-data</td>
<td>562, 570–81</td>
</tr>
<tr>
<td>total absolute error (TAE)</td>
<td>566</td>
</tr>
<tr>
<td>unconstrained variables</td>
<td>567</td>
</tr>
<tr>
<td>validation process</td>
<td>567–8</td>
</tr>
<tr>
<td>see also Australia: small-area level</td>
<td></td>
</tr>
<tr>
<td>and micro-simulation</td>
<td></td>
</tr>
<tr>
<td>Microsoft Internet Information Server</td>
<td>IIS 542</td>
</tr>
<tr>
<td>migration</td>
<td></td>
</tr>
<tr>
<td>Miles, M.B.</td>
<td>619</td>
</tr>
<tr>
<td>Miller, H.J.</td>
<td>49</td>
</tr>
<tr>
<td>Minnery, J.</td>
<td>202</td>
</tr>
<tr>
<td>missing data</td>
<td>139, 145–7</td>
</tr>
<tr>
<td>misspecification bias</td>
<td>243</td>
</tr>
<tr>
<td>mixed effects (ME) model</td>
<td>249</td>
</tr>
<tr>
<td>mixed methodologies</td>
<td>68–9, 74–5, 188–9, 619–20</td>
</tr>
<tr>
<td>model use to test theories</td>
<td>18–19</td>
</tr>
<tr>
<td>moderator variables</td>
<td>243, 248–9, 253–4, 255, 260</td>
</tr>
<tr>
<td>modifiable area unit problem (MAUP)</td>
<td>36, 99–100, 408</td>
</tr>
<tr>
<td>geographic information systems (GIS)</td>
<td>515, 533</td>
</tr>
<tr>
<td>linear regression</td>
<td>174–5</td>
</tr>
<tr>
<td>spatial indexes: segregation</td>
<td>299–300, 304, 311</td>
</tr>
<tr>
<td>modification indices</td>
<td>507, 508</td>
</tr>
<tr>
<td>monotonicity</td>
<td>93</td>
</tr>
<tr>
<td>Monte Carlo Markov Chain</td>
<td></td>
</tr>
<tr>
<td>maximum likelihood estimation (MCMCMLE)</td>
<td>483, 485</td>
</tr>
<tr>
<td>Monte Carlo simulation</td>
<td>372</td>
</tr>
<tr>
<td>mood bias</td>
<td>496–8</td>
</tr>
<tr>
<td>Moody, J.</td>
<td>469</td>
</tr>
<tr>
<td>Moore’s law</td>
<td>587</td>
</tr>
<tr>
<td>Mora, R.</td>
<td>294, 297</td>
</tr>
<tr>
<td>Moran coefficient (MC)</td>
<td>280, 543, 545, 548</td>
</tr>
<tr>
<td>Moran I statistic</td>
<td>363–4, 372–3, 374</td>
</tr>
<tr>
<td>Moran scatter plots</td>
<td>365–7</td>
</tr>
<tr>
<td>Moran z statistic</td>
<td>374</td>
</tr>
<tr>
<td>Morgan, B.S.</td>
<td>295</td>
</tr>
<tr>
<td>Muller, J.-C.</td>
<td>49</td>
</tr>
<tr>
<td>Mullins, G.</td>
<td>633, 634</td>
</tr>
<tr>
<td>multi-criterion median clustering problem (MMCP)</td>
<td>265–6, 274, 275, 277, 278, 279, 280, 281–4</td>
</tr>
<tr>
<td>multicollinearity</td>
<td>248</td>
</tr>
<tr>
<td>multidimensional scaling (MDS)</td>
<td>49</td>
</tr>
<tr>
<td>multipliers</td>
<td>224, 330, 371</td>
</tr>
<tr>
<td>Munnell, A.H.</td>
<td>322</td>
</tr>
<tr>
<td>Murray, A.T.</td>
<td>265, 266, 273</td>
</tr>
<tr>
<td>mutual information index (MI)</td>
<td>291, 293–4, 296–8, 305, 308–310</td>
</tr>
<tr>
<td>Nasrabadi, N.M.</td>
<td>590</td>
</tr>
<tr>
<td>National Science Digital Library (NSDL)</td>
<td>29</td>
</tr>
<tr>
<td>natural breaks classification</td>
<td>572</td>
</tr>
<tr>
<td>visualizing data: choropleth display</td>
<td>265, 266, 269–70, 278</td>
</tr>
<tr>
<td>web-based geographic information systems (GIS)</td>
<td>545–7, 551–3</td>
</tr>
<tr>
<td>NAVSTAR satellites</td>
<td>528–9</td>
</tr>
<tr>
<td>Nazara, S.</td>
<td>339</td>
</tr>
<tr>
<td>network-based model</td>
<td>514</td>
</tr>
<tr>
<td>networks see human social networks</td>
<td></td>
</tr>
<tr>
<td>analysis</td>
<td></td>
</tr>
<tr>
<td>Newton, R.R.</td>
<td>618, 629</td>
</tr>
<tr>
<td>Nightingale, F.</td>
<td>436</td>
</tr>
<tr>
<td>Nijkamp, P.</td>
<td>252, 257, 259</td>
</tr>
<tr>
<td>nominal measurement</td>
<td>92–3</td>
</tr>
<tr>
<td>nominal variables</td>
<td>156</td>
</tr>
<tr>
<td>non-parametric statistical tests</td>
<td>133–4</td>
</tr>
<tr>
<td>non-probability sampling</td>
<td>127, 132, 137–9</td>
</tr>
<tr>
<td>non-recursive models</td>
<td>499–501, 509</td>
</tr>
<tr>
<td>non-sampling error and bias</td>
<td>139, 140</td>
</tr>
<tr>
<td>normal distribution (bell-curve)</td>
<td>162–5</td>
</tr>
<tr>
<td>Nowicki, K.</td>
<td>479</td>
</tr>
<tr>
<td>null hypothesis</td>
<td>168–70, 173</td>
</tr>
<tr>
<td>numeric statistical techniques</td>
<td>159</td>
</tr>
<tr>
<td>object-based model</td>
<td>514–15</td>
</tr>
<tr>
<td>observed distribution</td>
<td>427</td>
</tr>
<tr>
<td>observed variables</td>
<td>594</td>
</tr>
<tr>
<td>OECD well-being measure</td>
<td>157–8</td>
</tr>
<tr>
<td>omitted-variables bias</td>
<td>248</td>
</tr>
</tbody>
</table>
online social networks 50–51
Openshaw, S. 35–6, 101
operational model (empirical) 71
operationalization 92
optimization algorithms 278
ordered probit model 256–7, 259
ordered weighted average (OWA) 519–21
ordinal measurement 92–3
ordinal or position bias 146
ordinal scales 154, 155, 157
ordinal variables 156
ordinary least squares (OLS):
 econometric modelling 353–7, 368, 370, 372, 373, 374–5
 meta-analysis 240, 242, 252
O'Sullivan, D. 300–305, 307, 311
Oswald, A.J. 250–51
outcome variables see dependent variables
overreporting 144

p nodes 469
p values see probability values
pₐ model for directed graph theory 479
Paelinck, J.H.P. 325–9
pairwise deletion 145
Pajek 475
parallel algorithm 284–5
parallel k-means clustering algorithm 285
parameters 161–2, 164, 167, 175, 524
 estimation 169–70, 244
partial η² statistics 497, 498
path analysis see intervening/mediating variables using path analysis
Pattison, P.E. 482
Pawlak, Z. 257
Pawlowicz, R. 307
Pearl, J. 592–5, 598
Pearson, K. 237
Pearson product-moment correlation coefficient 475
permutation matrix 291–2
Perroux, F. 379
Pigou Dalton transfer 292
Piore, M.J. 379
Plato 212
PNet software 484
point map 450–51
Poisson regression 423, 425, 426
polygon 34–5, 514
 layer 544, 547, 549
Poole, M. 78
Poot, J. 239, 252, 257, 259
Porter, M.E. 379
positivist empiricism 177–8, 181
post-structuralism 181
Poulsen, M. 306
precision effect test (PET) 250, 252
primary data 96, 97, 202, 205–6, 207, 237
 advantages 193–5
 analysis of first leaving home:
 evidence from other studies 204–5
 collection 124, 126
 disadvantages 194
 expense 194
 forecasting 223
 meta-analysis 238–40, 242–3, 245–6, 249, 251, 253, 256, 258
 time-consuming 194
see also Australia: age of leaving home: primary and secondary data
primary sampling units (PSUs) 127, 129, 131–2, 133, 134, 137, 138
principal components analysis 525
privacy issues 518, 532
probability:
 conditional 588, 589–90, 591–3, 598
 distribution 162, 163
 forecasting 213
 graphical models and Bayesian networks 590
 sampling 127, 131–2, 139
 statistical 131
 survey design 124
 value (p-value) 169–70, 251–3, 256, 374, 455, 497
proximity 300, 303, 311, 359–60, 363
visualizing data: choropleth display 273, 275–7, 280–81, 283
web-based geographic information systems (GIS) 547, 552, 554
publication bias (‘file drawer bias’) 243, 250–53, 260
pynchophylactic (smoothing) method 300
Q statistic 253
qualitative methods 69–70, 74–5, 154, 156, 177–89
categorization 185
challenges 186–7
combined with quantitative methods
see mixed methodologies
communicating findings to non-expert audience 188–9
complexities and difficulties 184–9
designing inquiry 186
diversity and difference, importance of 183–4
dualisms 182–4
ethics 187
feminism 180
gender studies 180
generalization 185
humanism 179–80
intersubjectivity 186–7
meta-analysis 246
origins 178–9
post-structuralism 181, 183
postmodernism 180–81
primary data 194
processing and using large amounts of text and material 187–8
rationale 177–8
researcher, position of in research process 182–3
subject selection and negotiating access 186
typecasting or stereotyping, danger of 185, 187
types of 185
validity 187
qualitative variables 92, 154
quality issues 101–2, 249, 260
quantile classification:
visualizing data: choropleth display 265–7, 269, 273, 278–9, 282
web-based geographic information systems (GIS) 545–7, 551–3
quantitative data 70–72, 150–75, 182
administrative activity 151
arithmetic operations 155
building and operationalizing models 70–72, 74–5
collapsing scales 155
combined with qualitative methods
see mixed methodologies
continuous variables 156
discrete variables 156
interval variables 155, 156
interval/ratio measurement/scale 154–5, 157
linear regression 174–5
means, statistical inference for 172–3
measurement 151–3
measurement quality 157–8
measurement scales 153–7
nominal measurement 157
nominal scales 154, 155
nominal variables 156
non-numeric data 150
numeric data 150
ordinal measurement 157
ordinal scales 154, 155
ordinal variables 156
planned experiments 151
proportions, statistical inference for 173
qualitative variables 154
ratio scale 155
ratio-level variables 155, 156
reliability 157–8
samples 159
spatial data 156–7
spatial object and level of measurement 157
statistical modelling 171–3
statistics 159–61
systematic social surveys 151
validity 157–8
values 153
variables 151–3
variables, relationships between 158–9
see also meta-analysis; statistical inference
quantitative variables 92
questionnaire, structured 124
quota sampling 139
‘R’ statistical programming language 373, 437, 451, 452–5
R2 statistic 491, 501–2, 568
Rahman, A. 562
random effects model 247–8
random errors vector 369
random graph models, exponential 482–4
random sampling 69, 132, 162, 200
raster analysis 522
ratio measurement 92–3
ratio scale 155
ratio-level variables 155, 156
raw dot (dimple dot) plot 440
Raybould, S. 115–16
Rayleigh test of uniformity 441–2, 443, 451, 455
Raymer, J. 428
Reardon, S.F. 300–305, 307, 311, 312
recall problems and response bias 144–5
recursive models 499
Rees, P. 408
regression 100
 biased 346
 bidirectional 49
 coefficients 242, 503
econometric modelling 376
generalized 566
imputation 146
intervening/mediating variables using path analysis 494–9, 509
least-squares 426
linear 171, 174–5
meta-analysis 259
models 239–40, 246, 248, 249, 251–2
multiple 490–91, 494, 496
techniques 247, 346, 490
see also ordinary least squares (OLS)
reliability 143, 157–8
replicated sampling 137
replication of testing 72
representativeness 130, 293, 296, 298
research, approaches to 63–75
 enquiry, modes of 64–8
 deductive approach 66–8
 exploratory approach 68
 important aspects of scientific enquiry 64–5
 inductive approach 65
mixed methodologies (qualitative and quantitative) 68–9, 74–5
qualitative research 69–70
quantitative research 70–72
sequences for model construction 72–3
skills needed for model building 72–3
research and its policy relevance 69, 603–614
academic research 604
applied research 604, 606–7
basic research 604, 606–7
broad research themes or problem areas 606
cooproduction model (mutual interaction) 611–12
communication of results 609–10
conceptual understanding 606–7
confidentiality 612
consultancy firms 610–11
democratic debate 604
dissemination 609–10
established research traditions 606
evidence hierarchy 607–8
evidence-based policy 603
external impacts 608
funding 604–5, 606
governmental and industrial investors 606
ideas and arguments, role of 604
inputs and methodologies 607
intellectual property 612
knowledge, types of 604
learning 609–10
longitudinal panel studies 613
methodologies 605
mixed methods 613
outputs and outcomes 607
peer-review 608
publication 609–10
qualitative methods 608, 612–13
quality, maintenance of 607–9
quantitative methods 613
randomized controlled trials (RCT) 607–8
relevance 605, 606–7
reliability 607, 608
reputation 608
researcher, position of 182–3
role in policy process 603–5
scientific rigour 607–8
service implementation processes 608
significant issues, choice of 605–7
systematic reviews 607
think tanks 610
trust 608
value 607
voter preferences 604
residual sum of squares (RSS) 355–6
resolution grid (RG) 300, 304, 307–8, 312
response bias 145, 146
response rates 130, 143
response variables see dependent variables
reweighting 560, 564, 566, 567, 578
Richardson, L.F. 36
Richmond, J. 322
Rigby, D.L. 321–2, 325
Rigby–Anderson model 321–2, 325, 327
Robins, G.L. 482
robustness 253, 278
Rocha, H.O. 379
Rogers, A. 428
rose diagrams 436, 440–41, 442, 447, 449–51, 453–4
rough set theory 257–9
Rowe, G. 226
Rudestam, K.E. 618, 629
Ruiz-Castillo, J. 294, 297
Sabel, C.F. 379
sample/sampling:
data 171
dependent 170
design 124
distribution 161–3, 165, 167, 170
error and bias 136, 139–40, 164
independent 170
mean 162, 166, 168, 170, 175
multi-stage 134–6
purposive, judgmental or expert choice 138–9
quantitative data 159
survey research methods 124, 127, 128, 131–7, 139
value 164, 169
Sampson, R. 151–2, 539
scale 36–7
effects 101, 408
interpretability 291
(size) invariance 291
Schwarz, P. 228–9
Scweinberger, M. 481
search engines 236, 244
second-hand accounts 95
secondary data 97–8, 99, 202, 204, 205–6, 207, 237
accessibility 195–6
advantages 194, 195–6
cost 195
disadvantages 194
fundamental problems 196
see also Australia: age of leaving home: primary and secondary data
segregation see spatial indexes:
segregation
selective fallacy 100
sensitivity analysis 237, 253–4, 258, 366, 533
Shaw, C. 151
Sheskin, I.M. 125
shift-share analysis: decomposition 315–42
application (employment change in EU) 335–8
capital multiplier 330, 332–3
classic shift-share model 316–17
cyclical effects of time 318
empirical application
(manufacturing in United States) 329–30, 331–3, 340, 341
employment change 316–17, 323–8, 330, 334–6, 338, 340
Haynes–Dinc model 322–4, 325, 330–39
Haynes–Dinc–Paelinck model 325–9
industry mix (IM) 316–17, 321–3, 326–9, 331, 336, 341
inter-regional interaction 339
modifications (manufacturing sector of United States) 324–6
multipliers 330
national share (NS) 316–17, 321–3, 326–9, 331, 338, 341
nominal output data 317–18
output growth 321–6, 328–30, 332, 334–6
output multiplier 330, 332–3
productivity 321–5, 328–30, 332, 334–6
productivity multiplier 330, 332–3
real output data 317–18
reference area–region interaction 338–9
regional analysis in Virginia 318–20
regional change components 316–17
regional effect on reference area 338
regional share (RS)(differential component) 316–17, 321–3, 326–9, 331, 341
Rigby–Anderson model 321–2, 325, 327
sectoral effect on reference area 339
spatial competitive net effect (SCNE) 340
spatial extensions 339–42
spatial location effect (SLE) 340
spatially influenced employment component 339–40
spatially modified competitive effect 342
time as a factor 317–18
total factor productivity (TFP) 323–4
total shift (TS) 316–17, 321, 323, 326–9, 331, 341
Shyy, T.-K. 265, 266, 273
Siegel, S. 93
Simonsen, K. 512–13
Simpson’s paradox 595
size invariance 295
Slocum, T.A. 273
Snijders, T.A.B. 479, 481, 482–3
snowballing procedure 244, 462
social disorganization theory 151
social networks see human social networks analysis
software:
Amos 491, 499
circular statistics 448–9
EQS 491, 499
Excel spreadsheet 241, 246
GeoDa 346
LISREL 491, 499
meta-analysis 249, 258–9
NetDraw 463
Pajek 463
PNet 484
qualitative methods 188
R: spdep package 346
SAS 147
SPSS 246
Stata 147, 241, 246, 249, 253
Soja, E.W. 513
Sorenson, H. 195–6
space:
-attribute data matrix 101
integration and multiple attributes characteristics 275–81
manifestation of space 15–16
see also classification for visualizing data: multiple attributes and space integration for choropleth display; time-space convergence
spatial autocorrelation 100, 110
index (SAI) 543
linear regression 175
negative 346, 358
positive 346, 358
web-based geographic information systems (GIS) 545
zero 346, 358
see also under econometric modelling
spatial autoregressive (SAR) model 369, 370, 372, 373, 374–5
spatial clustering: industrial clusters 378–402, 533
absolute concentration 382
acceleration stage 379
areal cluster data 396
asymptotic stage 395
Austin, Texas: technology companies 384, 385
background 378–80
bubble diagrams 391–3
central tendency measures 385
change over time 382–3
cohesiveness of cluster 385
correlation 397–8, 400
cooperation 398, 400–401
core cluster industry 390, 391–3
deceleration stage 379
decay stage 379, 395
decomposition of clusters 401
dimensions of clusters 395–6
dynamics of clusters 395, 401
entrepreneurship 397, 399–400
exhaustion stage 396, 399–401
exploitative growth 395
exploratory growth 395–6, 397–8
first- and second-level clustering 387
input–output analysis 390–91
interindustry dependence 390
knowledge and information 397, 399
life-cycle model 401
location quotient (LQ) 382, 390, 392
mean center or centroid of distribution 385
measuring and assessing cluster dynamics: life-cycle analysis 393–6
measuring and illustrating structural properties 388–93
measuring relative importance of cluster 389–93
measuring and visualizing spatial pattern data 380–88
minimum distance, center of 385
networking 398, 400
origin stage 379
performance of clusters 388–9
point cluster/pattern data 383–8, 396
propulsiveness or growth tendencies 382–3, 390, 393, 401
rejuvenation stage 379, 395
relative concentration 382
scale of cluster 401
sectoral composition 401
shape measure of a cluster 384–5
Shenandoah, Virginia 391–2, 393, 402
spatial concentration 397, 399
spider diagrams 388–9
strength of clusters 397, 399
subclusters 386–8
United States: change in technology employment 381, 383
Washington: high-tech companies 380, 385–8, 389
spatial concepts and critical thinking 29–40
distance and direction 32–3
location 31–2
neighbourhood and region 34–6
scale 36–7
spatial dependence 37–8
spatial heterogeneity 39–40
spatial Durbin (SDM) model 370
spatial indexes: segregation 287–312
additive spatial decomposability 303–4
areal equivalence (AE) 303, 305, 311, 312
areal invariance 311
centralization 302
Charles and Grusky log index A 311
clustering 302
concentration 302
cognitive issues of measures 299–302
cross-section studies 288, 310
Deming and Stephan (DS) decomposition 305–6
evenness 288–9, 302, 304, 308
exchanges 303
exposure 302, 308–9
gender segregation 289
index of dissimilarity (ID) 288, 306
index magnitudes 308–10
Karmel and McLachlan (KM) index 304–5, 308–10, 311
kernel density estimation 307–8
labour force segregation 304
linear indexes 292
margin dependence 305, 308–9, 311
measurement 288–9, 299–306
mutual information index (MI) 305, 308–10
occupational segregation 288–9, 306, 311
properties of spatial indexes 302–4
representativeness 304
residential segregation 300, 301, 302, 304, 306–10
segregation profiles 309–10
spatial segregation 287
summary measures 288
Theil index spatial version 312
time series studies 288, 310
transfers 303
see also aspatial segregation
measures
spatial intelligence 27
spatial interaction models (SIMs) 364, 426–7
spatial interdependence 345–6, 357, 376
spatial interpolation 38
spatial lag 357, 371
spatial optimization approach 265, 273, 274–5, 278, 283, 543
spatial order 362, 363
spatial settings 484
spatial turn 26
spatial units of different scales 134
spatially estimated model (SEM) 370, 372, 373, 374–5
spatially inscribed social differences 151–2
special purpose numeric and written information 95–6
specification errors 243
spider diagrams 388–9
Spiekermann, K. 49
spillover effects 381
standard deviation 162–3, 164, 165, 166–7, 168, 538
 analysing spatial interactions 428
 circular statistics 439
 intervening/mediating variables
 using path analysis 492
 missing data 146
 social networks 478, 484
standard error 166–7, 168–9, 170, 240–41, 356, 491–2
standard error around identity (SEI) 567–9
standard m by n matrix 444
standard spatial diagnostic tests 372
standardized residuals 507, 508
statistical inference 161–70, 245
 central limit theorem 165–6
 logic of statistical testing 167–70
 means and proportions 170
 normal distribution 164–5
 sampling distribution 161–3
statistical modelling 171–3
statistical probability theory 131
statistical significance 255–6, 354
statistical testing 168, 455
Stetzer, F. 359, 362
Stillwell, J. 409
Stimson, R. 271
stochastic latent distance model 481
stochastic models 72
Stogdill, R.M. 72
Stone, W. 199
Stough, R.R. 395–6
stratification 127, 133–4, 136
Strauss, D. 482
strong areal decomposability (SAD) 293–4, 296
strong group decomposability (SGD) 294, 296
structural equation modelling (SEM) 503–7, 509
structural equivalence 474–7
STRUCTURE clustering algorithms 475
summary statistics 160, 239, 453–5
survey research methods 124–47
 acquiescent response bias 145, 146
 advantages of different modes 130
 attitudes 143
 attributes 143
 balanced items 145
 behaviours 143
 beliefs 143
 best-practice methods and design 147
 clustering 134, 136
 cognitive process, survey as 141
 combined methods 129
 computer-assisted telephone interviewing (CATI) 128, 129–31
 consistency of meaning 143
 data collection modes 128–31
 design effects 139
 disadvantages of different modes 130
 discrimination 143
 e-surveys 128, 129, 131
 effects on questionnaire design 130
 enumeration 127, 128
 expert assistance 126–7
 face-to-face interviewing 137
 guidelines for question design 143–4
 haphazard, convenience or accidental sampling 138
 hot-deck imputation 147
 implementation of survey 130
 imputation techniques 139–40, 145–6, 147
 item non-response 145
 listwise or casewise deletion 145, 146
longitudinal survey designs 137
mail surveys (self-complete questionnaires) 128, 129, 130
memory distortion 144
missing data 139, 145–7
multi-stage sampling 134–6
non-parametric statistical tests 133–4
non-probability sampling 127, 132, 137–9
non-sampling error and bias 139, 140
on-site interviewing and sampling 137
ordinal or position bias 146
overreporting 144
pairwise deletion 145
panel designs 137
personal (face-to-face) interview 128–9, 130
pitfalls 125–7
positive and negative items 145
primary data collection 124, 126
primary sampling units (PSUs) 127, 129, 131–2, 133, 134, 137, 138
probability sampling 127, 131–2, 139
probability survey design 124
purposive, judgmental or expert choice sampling 138–9
quality of answers 130
questionnaire 124, 127, 140–45
quota sampling 139
random missing data 145
random selection 137
real-time responses 131
recall problems and response bias 144–5
regression imputation 146
reliability 143
replicated sampling 137
representative samples 130
response rates 130, 143
sampling 124, 127, 128, 131–7, 139
sampling error and bias 136, 139–40
satisficing and maximizing (motivation) 141
simple random sampling 132
social desirability effects 144–5
stratification 127, 133–4, 136
structured interviewing 141
survey instrument 127
survey as social process 141
systematic missing data 145
systematic sampling 132–3
target population 127
tasks 125, 126
telephone interviewing 128, 130
‘telescoping’ 144
time distribution of interviews 137
total survey error 139
two-stage sampling 134, 137
types of error and bias 139
unit non-response 145
validity 143
web-based interactive questionnaires 128, 129, 130
Swanson, J. 322
systematic sampling 132–3
t statistic 245, 251–3, 256, 357, 373
t-distribution with n–1 degrees of freedom 175
t-ratio 484
t-rule 506
Taeuber, K.E. 303
Tanton, R. 573–4, 576
Taylor, P.J. 35–6, 101
test hypotheses 161–2, 167
Theil index spatial version 312
time–space convergence 43–58
asymptotic model 47
average rate model 47
definitions 43–5
dependence and heterogeneity, spatial 55–7
human extensibility 44–5
panel studies and longitudinal perspectives 57
properties 45–51
convergence curve 45
directional distortions of convergence with divergence 47–8
distance and convergence 46–7
hierarchical structuring 47
shrinkage, non-uniform 49–50
simultaneity 50–51
temporal discontinuities 45–6
research challenges 57–8
spatial reorganization 51–5
metropolitan context 51–3
national and international context: radical technologies 53–5
step-pattern of convergence and divergence 47
time–space divergence 47–8
Tobler, W. 38, 49, 346, 431–2
Tobler’s First Law (TFL) 38, 290, 363, 522
total absolute error (TAE) 566
total within-group difference (TWGD) 265, 274, 278, 279, 280, 282, 545–6, 551–3
total within-group variance (TWGV) 265, 273, 278, 279, 281, 546, 551–3
Tourangeau, R. 141
transactions matrices 221, 223, 234
transpose invariance (TI) 293, 294, 296
trend-surface analysis 49
triangulation of measurement 74
two-dimensional bi-weight kernel proximity function 300–301
Ucinet 475
unbiasedness 164, 356
unconstrained variables 567
undirected graphical models 587, 588–9
unit record sample files 122
United Nations measurement manuals 105
United Nations World Urbanization Prospects 113
United States: political networks 461
adjacency matrix 465, 476
average posterior edge probabilities and observed edge proportions for stochastic two-block model 481
centrality indices 471
conditional uniform random graph distribution 478
degree distribution 466
density matrix of block model 474
goodness of fit 485
MCMC MLEs for social circuit model 485
stochastic block model 480
United States 114, 119
Bureau of Census 122
multi-stage sample design 135
spatial indexes: segregation 288, 300
unit-free measurement 244
univariate summary statistics 160
universal fallacy 100
unmeasured degree of conclusiveness 256
validity 143, 157–8, 187
variables 91–4, 151–3
and attributes, relationships between 94
census data (Australia) 120
values 158
variance 160
finite 354
see also total within-group variance
vector data model 514
visualization of data see classification for visualizing data
Volić, O. 288, 294
Vu, Q.N. 576, 577
wage curve 250, 252–3
Wald test 373
Warf, B. 54
Waters, W. 621–2
Watson multi-sample U2 test 442, 443, 447, 455
Watts, M.J. 297
web-based geographic information systems (GIS) and community variations in crime 535–57
applications 549–52, 554–5
attribute similarity 545, 552, 554
bi-criterion median clustering problem (BMCP) 548, 550–53, 555
building spatial database 537–9
choropleth mapping 544–5
classification option 547–8
client interface components 543–6
cluster map 548, 549–50, 554
coefficient of variation (CV) 538
collected spatial objects in database 537
collective efficacy (CE) 536, 538–9, 546–7, 550–51, 554–5
community-based crime prevention (CCP) programmes 536, 539, 540–42
crime data 538
criminal justice programmes 540, 542
demographic and socio-economic variables 538
development and use of web-based GIS 542–9
developmental programmes 542
display option 548–9
displays, types of 549–51
dot layer 538, 544, 547–8, 549
econometric measures 539
equal interval 545–7, 551–3
functionality options 547–9
geocoding 536, 538, 539–40
information display 549
legend option 549
means 538
metadata 539, 546, 548, 551, 556
Moran coefficient (MC) 545, 548
natural breaks approach 545–7, 551–3
polygon layer 544, 547, 549
quantile approach 545–7, 551–3
relative performance measurement 545–6
sample sizes 538
situational approach 540
social-community approach 542
spatial autocorrelation measurement 545
spatial measures (SLA polygons) 537–8
spatial objects (dot and line layers) 537
spatial option 548
spatial proximity 547, 552, 554
standard deviations 538
statistical measures for classification performances 551–2
teaching tool 555–6
thematic display 549
total within group differences (TWGD) 545–6, 551–3
total within group variance (TWGV) 546, 551–3
Weeden, K. 294–5
Wegener, M. 49
weighted absolute difference 277
weighted average 238, 240–41, 243, 247–8
operator 519–22
weighted least squares (WLS) 249, 255, 506
weighting contiguous observations 360
Weiss, C.H. 609
Welty, E. 178
White, D.R. 469
White, H.C. 474, 475
White, M.J. 300
WICID system (Web-based Interface to Census Interaction Data) 412
Williamson, P. 566
Wilson spatial interaction model 423, 425
Winter, I. 199
Wong, D.W.S. 307, 311
Wright, G. 226
Yager, R.R. 519–21
z-value 245, 373, 374
Zacharov, R. 202
zero mean 354
zoning 299, 403, 408
Zook, M.A. 47