accessibility
in complex networks 22–9
components 38–9, 229
definitions 22, 264–6
impact on house prices 154–71
impact of ICT 41–50
and walking behaviour 73–93
accessibility measurement 39–41, 120–22, 251–3, 265–6, 281–5
and equality approaches 204–8
ingorporating ICT accessibility 48–50
infrastructure-based 39, 205–6, 265
location-based 39–40, 118–19, 265
person-based 40, 118–19, 265
utility-based 40, 207, 265
accessibility planning
and social inclusion 228–40
UK 245–59
accountability for accessibility 258
age, and distance perception 111–12
agent-based assessment of
infrastructure investment 54–68
Aguiléra, A. 37
Albert, R. 24
Allenby, B. 31
Almere 135–7, 141–52, 154–5, 160–71
accessibility and house prices 166–70
accessibility impact of land-use and transport policy 146–71
growth scenarios 142–4, 160–61, 166–70
train stations, RSQI 164–5
Arentze, T.A. 41
Argioli, R. 43
Axelrod, R. 57
Axhausen, K.W. 3
Bae, C. 213
Bagley, M.N. 75
Bakker, P. 135
Barabási, A.-L. 20, 24
Batty, M. 1
Ben-Akiva, M.E. 23, 40, 55, 56, 58, 265
Bennett, S. 101
Bertolini, L. 67
Bhat, C.R. 78
‘black box’ mapping techniques 232, 234–5
Boarnet, M.G. 78, 177
Boer, R. 78
Bok, M. de 5
Bømlo, Norway 174–5
impact of new bridge on accessibility 182–90
as submarket 179–80
bridge, Trekantsambandet project 173–90
Briggs, R. 97, 98, 104–5
Bruinsma, F.R. 27
Burnett, K.P. 97, 98, 104–5
California, neighborhood characteristics and walking behaviour 79–90
Canter, D. 98
Cao, X. 48, 74, 75, 77, 78
Casti, J. 17
centre–periphery connectivity divergence, EU 285–6
Chalermpong, S. 177
Chatman, D.G. 77
choice spaces 63–4
Chorus, C. 46, 48
Christidis, P. 8
Cohen, G.A. 197, 198, 199, 202–3
comfort of travelling, impact of ICT 46 complex networks 16–21
and accessibility 22–9
and resilience 29–30
Accessibility analysis and transport planning

complexity, definitions 17
congestion
EU 286
impact of ICT 46
connectivity measure of accessibility 283, 286
conscious state theories of welfare 197
cost–benefit analyses
land-use options and rail investment, Almere 149–51
public transport, Netherlands 135
use of house prices 155–7
Cox, A. 30
Crompton, A. 97, 99
Crozet, Y. 277
cumulative opportunities measure 206, 214
De Jong, G. 41, 56, 139
Debrezion Andom, G. 156, 157–60
decay functions 23–4
Denier, Y. 200
destination type and distance perception 109–11
distance
distance measures of accessibility 206
distance perception 96–115
see also spatial proximity
Domenich, T.A. 58
Dong, X. 41, 49, 207
double potential approach 284, 286
doubly constrained accessibility measure 206
Dworkin, R. 197, 200–201
dynamic complexity 17
ecological resilience 29
El-Geneidy, A.M. 73, 214
Eluru, N. 78
employment
effects of Almere land-use plans 144–6
see also labour market accessibility
engineering resilience 29
envy test 200–201
equality of midfare 202–4, 206–7
equality of resources 200–202, 205–6
equality of welfare 197–200, 207
Ettema, D. 41, 47, 58
EU transport policy, accessibility impacts 280–93
expected maximum utility 56, 64–7
expensive tastes argument and equality of welfare 198–9
feature accumulation and distance perception 108–9
Fink, J. 31
fixed effects model, walking behaviour 86–90
Fotheringham, A.S. 23
France, urban transport policies 263, 270–71
Lyon 272–7
Frank, L.D. 77
Franklin, J.P. 177
Freeman, A.M. 179
Fruin, J. 101
funding for public transport, UK 236–7
gender and distance perception 112
generalized costs 57
geographical information system (GIS)-based mapping tools 232, 234–5
Germany, accessibility 24–6
Geurs, K.T. 2, 3, 6, 18, 23, 37–41, 45, 55, 137, 139–41, 157, 205–7, 229, 230, 257, 263, 265, 282
Ghent, accessibility to public service delivery 122–31
Gilbert, N. 57, 59
Gitlesen, J.P. 174
Giuliano, G. 213
Gjestland, A. 5
Golledge, R.G. 104
Golub, A. 6
Goodman, A.C. 179
government offices, Ghent 124
accessibility 125–31
Graaf, T. de 5
gravity-based measures 206, 265–6
Greene, W.H. 90
Gutierrez, J. 286
Halden, D. 245, 248, 249, 250, 251, 254–6
Index

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handy, S.L.</td>
<td>9, 78, 80, 83, 96, 113, 205, 212</td>
</tr>
<tr>
<td>Hansen, W.G. (Hansen-based potential accessibility measures)</td>
<td>1, 8, 9, 22, 40, 177, 178, 256, 263, 264, 265, 277</td>
</tr>
<tr>
<td>Hedel, R.</td>
<td>78</td>
</tr>
<tr>
<td>Hedonic pricing model of house prices</td>
<td>157–8, 177–8</td>
</tr>
<tr>
<td>Netherlands</td>
<td>161–4</td>
</tr>
<tr>
<td>Norway</td>
<td>185–9</td>
</tr>
<tr>
<td>Horgan, P.</td>
<td>17</td>
</tr>
<tr>
<td>Horner, M.W.</td>
<td>18</td>
</tr>
<tr>
<td>Horning, J.</td>
<td>4</td>
</tr>
<tr>
<td>House prices and cost–benefit analysis</td>
<td>155–7</td>
</tr>
<tr>
<td>Hedonic price analysis</td>
<td>157–8, 161–4, 177–8, 185–9</td>
</tr>
<tr>
<td>Impact of accessibility</td>
<td>160–70, 185–9</td>
</tr>
<tr>
<td>Housing, Stord and Bomlo</td>
<td>180–82</td>
</tr>
<tr>
<td>Huang, W.S.</td>
<td>177</td>
</tr>
<tr>
<td>Iacono, M.</td>
<td>125</td>
</tr>
<tr>
<td>Ibanez Rivas, N.</td>
<td>8</td>
</tr>
<tr>
<td>ICT, impact on accessibility</td>
<td>41–50</td>
</tr>
<tr>
<td>Income and public transport use</td>
<td>212–13</td>
</tr>
<tr>
<td>Individual component of accessibility</td>
<td>39</td>
</tr>
<tr>
<td>Impact of ICT</td>
<td>44–5, 47–8</td>
</tr>
<tr>
<td>Infrastructure-based perspective</td>
<td>39, 205–6, 265</td>
</tr>
<tr>
<td>Integrated transport and accessibility planning</td>
<td>245–59</td>
</tr>
<tr>
<td>Isochronal-based measures</td>
<td>265</td>
</tr>
<tr>
<td>Jobs</td>
<td>See employment; labour market accessibility</td>
</tr>
<tr>
<td>Jones, C.</td>
<td>179</td>
</tr>
<tr>
<td>Jones, P.</td>
<td>6</td>
</tr>
<tr>
<td>Justice-theoretic approach</td>
<td>195–209</td>
</tr>
<tr>
<td>Kang, Y.-S.</td>
<td>44, 99, 112</td>
</tr>
<tr>
<td>Khattak, A.J.</td>
<td>78</td>
</tr>
<tr>
<td>Kockelman, K.M.</td>
<td>78, 177</td>
</tr>
<tr>
<td>Koenig, J.G.</td>
<td>67</td>
</tr>
<tr>
<td>Krishna, A.</td>
<td>113</td>
</tr>
<tr>
<td>Krizek, K.</td>
<td>2, 27, 73, 74, 78, 125</td>
</tr>
<tr>
<td>Kwan, M.P.</td>
<td>37, 41, 119, 121, 125, 264</td>
</tr>
<tr>
<td>Laakso, S.</td>
<td>180</td>
</tr>
<tr>
<td>Labour market accessibility impact of new bridge, Norway</td>
<td>182–9</td>
</tr>
<tr>
<td>Low-skill jobs, Montreuil</td>
<td>217–23</td>
</tr>
<tr>
<td>Lyon</td>
<td>273–5</td>
</tr>
<tr>
<td>Modelling</td>
<td>178–9</td>
</tr>
<tr>
<td>Laird, J.</td>
<td>198, 230</td>
</tr>
<tr>
<td>Land-use component of accessibility</td>
<td>38–9</td>
</tr>
<tr>
<td>Impact of ICT</td>
<td>43–4</td>
</tr>
<tr>
<td>Land-use scenarios, Almere</td>
<td>142–4, 160–61</td>
</tr>
<tr>
<td>Accessibility and house prices</td>
<td>166–70</td>
</tr>
<tr>
<td>Public transport accessibility benefits</td>
<td>146–51</td>
</tr>
<tr>
<td>Land-use-transport interaction model</td>
<td>Tigris XL 137–8</td>
</tr>
<tr>
<td>Lee, T.</td>
<td>103</td>
</tr>
<tr>
<td>Lerman, S.R.</td>
<td>55, 56, 58</td>
</tr>
<tr>
<td>Levinson, D.M.</td>
<td>2, 19, 27, 73, 214</td>
</tr>
<tr>
<td>Litman, T.</td>
<td>22</td>
</tr>
<tr>
<td>Location-based perspective</td>
<td>39–40, 118–19, 265</td>
</tr>
<tr>
<td>Logsum accessibility measure</td>
<td>137, 139–41</td>
</tr>
<tr>
<td>Lopez, E.</td>
<td>282</td>
</tr>
<tr>
<td>Lucas, K.</td>
<td>6, 195, 196, 212, 228, 232, 233, 237</td>
</tr>
<tr>
<td>Lyons, G.</td>
<td>37</td>
</tr>
<tr>
<td>Lyon, urban transport policy</td>
<td>272–7</td>
</tr>
<tr>
<td>McArthur, D.P.</td>
<td>5, 174, 178, 179, 180</td>
</tr>
<tr>
<td>MacEachren, A.M.</td>
<td>100</td>
</tr>
<tr>
<td>McFadden, D.</td>
<td>58</td>
</tr>
<tr>
<td>Manaugh, K.</td>
<td>6</td>
</tr>
<tr>
<td>Market segmentation and hedonic price functions</td>
<td>179</td>
</tr>
<tr>
<td>Martens, K.M.</td>
<td>196, 197, 199, 201, 209</td>
</tr>
<tr>
<td>Mathur, S.</td>
<td>177</td>
</tr>
<tr>
<td>Mayeres, I.</td>
<td>213</td>
</tr>
<tr>
<td>Measuring accessibility</td>
<td>See accessibility measurement</td>
</tr>
<tr>
<td>Mercier, A.</td>
<td>8</td>
</tr>
<tr>
<td>Merseytravel WorkWise initiative</td>
<td>237–8</td>
</tr>
<tr>
<td>Midfare equality</td>
<td>202–4, 206–7</td>
</tr>
<tr>
<td>Mikelbank, B.A.</td>
<td>177</td>
</tr>
<tr>
<td>Mokhtarian, P.L.</td>
<td>37, 44, 74–8</td>
</tr>
</tbody>
</table>
Montreal 215–23
social equity impact of public
transport 217–23
MOSART modelling platform 266–70
motorway development, impact on city
centre 276–7
Muhammad, S. 37, 49
Næss, P. 75
Nasar, J.L. 108, 113
National Transport Model (LMS) 138
Netherlands
accessibility and house prices 154–71
integrated land use and public
transport policy 135–52
network connectivity 19–21
and accessibility 22–8
and vulnerability 21
networks
complex see complex networks
and distance perception 107–8
Neutens, T. 2, 41, 118, 120
Niemeier, D.A. 9, 38, 205
Nijkamp, P. 16, 19, 20, 21
non-adults, impact of ICT on
accessibility 48
Norway, accessibility impacts of bridge
173–90
O’Kelly, M.E. 23
offensive tastes argument and equality
of welfare 198
Oltvai, Z.N. 20
option values 230
Ortuzar, J.D. 58
Osland, L. 5, 174, 177–9
Ovtracht, N. 8
perception of accessibility to
neighbourhood services 96–115
Perrings, C. 29
person-based perspective 40, 119–20,
265
personal safety and public transport
230–31
Pickup, L. 213
Pimm, S.L. 29
Pinjari, A. 77
place-based perspective 39–40,
118–19, 265
Popp, M.M. 104
population
effects of Almere land-use plans
144–6
effects of new bridge, Norway 175
potential accessibility measures 9,
265
potential approach 283–4, 286
potential path area (PPA) 120
Preston, J. 235
public transport
impact on house prices 160–70
and land-use plans, Almere 135–52
railway accessibility 158–60, 164–5
and social equity 211–25, 228–40
RAAM project (Rijksbesluiten
Amsterdam – Almere –
Markermeer) 135–52, 154–71
Raghubir, P. 113
rail service quality index (RSQI)
158–60
Almere train stations 164–5
Rajé, F. 235
random networks 19–20
Randstad Urgent 135
Rawls, J. 197, 198–9, 200, 202
realized utility 64–6
Reggiani, A. 2–3, 16, 17, 19, 20, 21,
22, 23, 24, 38
residential self-selection and travel
decisions 82–6
resilience 29–31
resource equality 200–202, 205–6
Richardson, H.W. 23
Rietveld, P. 5, 27, 46, 282, 292
Rijksbesluiten Amsterdam – Almere –
Markermeer (RAAM) project
135–52, 154–71
Ritsma van Eck, J.R. 18, 39, 157,
205, 206, 207
road development, impact on city
centre 276–7
road pricing and ICT 46–7
Roadmap to a Single European
Transport Area – Towards a
Competitive and Resource efficient
Transport System 280
Index

Rodriguez, D. 78, 91
Rose, A. 29, 31
Rosen, F. 197
Rosen, H.S. 55, 56
Rosen, S. 177
Rothenburg, J. 179
RSQI see rail service quality index 158–60
rule-of-half measure of accessibility benefits 139
Ryan, S. 177

Sarmiento, S. 78
scale-free networks 20, 28–9
scheduling flexibility
government office accessibility, Ghent 129
measurement 122
Schürmann, C. 282
Schwanen, T. 2, 41, 76–8, 123, 125
Scotland, transport appraisal measures 256
self-selection
and ICT use 47–8
residential, and travel decisions 82–6
Sen, A.K. 199, 201–2, 203, 208
Shaw, S.L. 37, 49
Simon, H.A. 17
Small, K.A. 55, 56, 61
social equity in public transport
provision 211–25
social exclusion
definition 229
and public transport policies, Montreal 217–25
UK policy and accessibility planning 228–40
space-time measures 207
space-time prism (STP) 119–20
spatial choice
and government office accessibility, Ghent 126–9
measurement 121–2
spatial economics 17–19
spatial interaction models (SIMs) 17–19
spatial mismatch theory 213
spatial proximity
measurement 121
of public service facilities, Ghent 126
see also distance
spatial-temporal stability, house prices 179–80
static complexity 17
stimulus-centred factors and distance perception 97–8
Stord, Norway 174–5
impact of new bridge on accessibility 182–9
Straatemeier, T. 67
subject-centred factors and distance perception 97–8
subject/stimulus factors and distance perception 98
submarkets and hedonic price functions 179–80
success theories of welfare 197
Tagg, S.K. 98
Talaat, A. 282
temporal component of accessibility 39
impact of ICT 44
and social inclusion 230
Terna, P. 59
Thibodeau, T.G. 179
Thorsen, I. 5, 174, 175, 177, 178, 179
Thulin, E. 48
Tigris XL model 137–8
Timmermans, H.J.P. 47
Train, K.E. 58
Transos, E. 48
transport component of accessibility 39
impact of ICT 42–3, 46–7
transport planning
accessibility planning, UK 245–59
and equity 195–209, 211–25
and social inclusion 228–40
transport policy
EU 280–93
France 263, 270–77
UK 245–59
transportation model, MOSART 268–9
transportation system, Ghent 124–5
Accessibility analysis and transport planning

TRANSTOOLs model 280, 285
travel time
as accessibility indicator 253,
269–70
impact of public transport projects
221–3
as investment benefit indicator 54
Trekantsambandet (the Triangular
Connection) 173–90
Troitzsch, K.G. 57
Uboe, J. 175
UK, accessibility planning 245–59
and social exclusion policy
228–40
utility-based perspective 40, 207,
265
Vadali, S. 177
van Wee, B. 3, 23, 37, 38–40, 45, 47,
48, 55, 205, 263, 265, 282
Vance, C. 78
Veldhuisen, J. 41
Vilhelmsen, B. 48
volume-based approach 284–5, 286,
291, 292
vulnerability and network connectivity
21
Waddell, P. 177
Walker, J. 213
walking behaviour 73–93
walking speed 101
Wallace, D. 31
Wallace, R. 31
Weber, J. 119, 121, 264
Weibull, J.W. 22
welfare equality 197–200, 207
Wilhelmsson, M. 179
Willumsen, L.G. 58
Wilson, A.G. 18, 23, 217
WorkWise initiative, Merseyside
237–8
Yu, H. 37, 49
Zhang, J. 47
Zhou, B. 78
Zöllig, C. 3
Zondag, B. 5, 138, 156
Zwaneveld, P. 135, 136, 147, 149, 150,
152, 155, 160, 170