Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achilladelis, B.</td>
<td>25</td>
</tr>
<tr>
<td>Adamsone-Fiskovica, Anda</td>
<td>277–314</td>
</tr>
<tr>
<td>Africa</td>
<td>see Mozambique; Tanzania</td>
</tr>
<tr>
<td>Agramonte, D.</td>
<td>101</td>
</tr>
<tr>
<td>agro-biotechnology</td>
<td>61–2</td>
</tr>
<tr>
<td>animal biotechnology</td>
<td>67–8, 72–3, 74–5, 91, 117, 118, 122, 773</td>
</tr>
<tr>
<td>Brazil</td>
<td>18, 22, 23, 33–4, 35, 36, 38–9</td>
</tr>
<tr>
<td>China</td>
<td>181, 182, 183, 186, 190</td>
</tr>
<tr>
<td>Cuba</td>
<td>85, 91–2, 98–101, 103</td>
</tr>
<tr>
<td>Denmark</td>
<td>218, 236</td>
</tr>
<tr>
<td>GMOs (genetically-modified organisms)</td>
<td>92, 144, 146–7, 148–9, 151, 297, 302, 307</td>
</tr>
<tr>
<td>Latvia</td>
<td>280, 283, 294, 295, 297, 298–9</td>
</tr>
<tr>
<td>Mozambique</td>
<td>142, 144, 146–7, 148–9, 151</td>
</tr>
<tr>
<td>plant biotechnology</td>
<td>91–2, 98–101, 103, 113–16, 323</td>
</tr>
<tr>
<td>Russia</td>
<td>339, 341, 345, 347–8, 350–51</td>
</tr>
<tr>
<td>Sweden</td>
<td>235, 253</td>
</tr>
<tr>
<td>Uruguay</td>
<td>65, 67–8, 72–3, 74–5, 77</td>
</tr>
<tr>
<td>Vietnam</td>
<td>159–60, 161, 163–5, 166, 168, 171, 172–6</td>
</tr>
<tr>
<td>see also environmental biotechnology</td>
<td></td>
</tr>
<tr>
<td>Angell, M.</td>
<td>26</td>
</tr>
<tr>
<td>animal biotechnology</td>
<td>67–8, 72–3, 74–5, 91, 117, 118, 122, 773</td>
</tr>
<tr>
<td>see also agro-biotechnology</td>
<td></td>
</tr>
<tr>
<td>Antonakis, N.</td>
<td>25</td>
</tr>
<tr>
<td>Antonovs, A.</td>
<td>220</td>
</tr>
<tr>
<td>Argentina, health sciences</td>
<td>specialization 368</td>
</tr>
<tr>
<td>Arucena, R.</td>
<td>2</td>
</tr>
<tr>
<td>Arundel, A.</td>
<td>208, 209</td>
</tr>
<tr>
<td>Asheim, B.</td>
<td>251</td>
</tr>
<tr>
<td>Assouline, G.</td>
<td>217</td>
</tr>
<tr>
<td>AstraZeneca</td>
<td>187, 247, 248–9, 252, 253</td>
</tr>
<tr>
<td>Austin, M.</td>
<td>298</td>
</tr>
<tr>
<td>Australia, health biotechnology</td>
<td>publications 19</td>
</tr>
<tr>
<td>Austria, health biotechnology</td>
<td>publications 19</td>
</tr>
<tr>
<td>Baêta, A.</td>
<td>36, 42, 44</td>
</tr>
<tr>
<td>Batista, R.</td>
<td>43</td>
</tr>
<tr>
<td>Bauer, M.</td>
<td>304</td>
</tr>
<tr>
<td>Bekers, M.</td>
<td>280, 281</td>
</tr>
<tr>
<td>Belgium, health biotechnology</td>
<td>publications 19</td>
</tr>
<tr>
<td>Bergqvist, H.</td>
<td>248</td>
</tr>
<tr>
<td>Berkis, U.</td>
<td>287, 288</td>
</tr>
<tr>
<td>biobrás see Brazil, biotech local</td>
<td>innovation system of Minas Gerais region, Biobrás</td>
</tr>
<tr>
<td>bioenergy</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>14, 22, 23</td>
</tr>
<tr>
<td>China</td>
<td>186, 188</td>
</tr>
<tr>
<td>Denmark</td>
<td>245, 250</td>
</tr>
<tr>
<td>Latvia</td>
<td>283, 297–8</td>
</tr>
<tr>
<td>Russia</td>
<td>339, 347–8</td>
</tr>
<tr>
<td>Tanzania</td>
<td>114, 118, 124</td>
</tr>
<tr>
<td>see also environmental biotechnology</td>
<td></td>
</tr>
<tr>
<td>biotechnology</td>
<td></td>
</tr>
<tr>
<td>definition</td>
<td>10, 207–209</td>
</tr>
<tr>
<td>and state versus market argument</td>
<td>1–2</td>
</tr>
<tr>
<td>strategies for appropriation of 1–10</td>
<td></td>
</tr>
<tr>
<td>UniDev network</td>
<td>2</td>
</tr>
<tr>
<td>Bitard, P.</td>
<td>258</td>
</tr>
<tr>
<td>Blank, W.</td>
<td>288</td>
</tr>
<tr>
<td>Bond, E.</td>
<td>26</td>
</tr>
<tr>
<td>Bortagaray, Isabel</td>
<td>58–79</td>
</tr>
<tr>
<td>brain drain in developing countries</td>
<td>127, 368</td>
</tr>
<tr>
<td>Brazil, biotech local innovation system</td>
<td>of Minas Gerais region 13–57</td>
</tr>
</tbody>
</table>

Bo Göransson and Carl Magnus Pålsson - 9781781001424
Downloaded from Elgar Online at 12/23/2018 06:41:24PM
via free access
agro-biotechnology 18, 22, 23, 33–4, 35, 36, 38–9
bioenergy 14, 22, 23
Biominas Foundation 14, 34
Biotech Enterprise Incubator 14
biotechnology firms, concentration and distribution of 22–4
biotechnology policy 24–5
Biotech Foundation 14
domestic collaboration 19
eyears 33–44
EMBRAPA (Enterprise for Agricultural Research) 18, 34, 35
evolution of biotechnology 15–25
export trading 39, 46
FIOCRUZ (Oswaldo Cruz Foundation) 19, 21, 35, 43
Genome Program 21, 24
and government policies and involvement 29, 51, 52
health biotechnology 34, 35, 38, 39–52, 368
health biotechnology publications 18–20
health sciences specialization 368
human resources investment 24, 48, 49–50, 51, 53, 371–2
innovation and knowledge transfer 25, 47–51
institutional environment 14, 20, 25, 34, 51
inter-firm interactions 45–6, 48, 49–51
laboratories and scientific biotechnological capabilities 36
patents 18, 23, 40, 44
pharmaceutical industry 18, 25–33
Prime Program 25
Programa Inova Brasil (Brazil Innovates) 25
Programa PBRG-G 24, 25
Programa RHAE-MCT 24
R&D 15–18, 21, 24–5, 46–7, 370
R&D funding 35, 37, 38, 39, 44
scientific efforts in biotechnology 15–21
tariff barrier, and protectionist national-similar law 38, 39
transnational corporations (TNCs), strategies of 24
university and research institute involvement 14, 19, 34, 45, 47, 48, 49, 50, 368, 372
Brazil, biotech local innovation system of Minas Gerais region, Biobrás 14, 34, 36–7, 377
coagulum enzyme for dairy industry 38–9
Eli Lilly joint venture 37, 39–40
enzyme production 38
export trading 39
insulin production 39–44
inter-firm interactions 45–6, 48, 49
market analysis 37–9, 40, 42–3
and Novo Nordisk dumping practices 42–3
Novo Nordisk takeover 14, 41–4
Novo Nordisk takeover, local innovation system after 45–52
technological evolution 40, 42
university interaction 45
Brichard, M.-C. 277
Bundule, M. 220, 311
Canada, health biotechnology publications 19
cancer treatments 92–5
Caracostas, P. 277
Cassiolato, José Eduardo 13–57
Castro, F. 81, 82, 83, 87–8
Chávez, M. 95
China, biotechnology transfer and application 180–204
agro-biotechnology 181, 182, 183, 186, 190
bioenergy, investment and production growth 186, 188
biological industry, development environment improvement 188–9
biotechnology firms 30
commercialization and industrialization, need for greater capabilities and cooperation in 200
Index

corporate biotechnology funding 184, 189–90, 195–7, 198, 201, 202
crop breeding techniques 183
development progress 183
domestic biotechnology research institutions 180–81
future policy suggestions 201–203, 373
gene therapy 183
government funding 181–3, 184, 188–9, 193–5, 199–200, 201, 202
health biotechnology 187, 190–91
health biotechnology publications 19, 20
human research capacity-building and investment 181–3
industry development (2007) 185–9
industry parks, development of 187–8
intellectual property rights protection 191, 193, 200
international cooperation and collaboration, need for 202
Key Science Engineering Program (KSEP) 181
medical ethics 190–91
National ‘863’ High-Tech Plan 180–81, 373
National Biotechnology Development Policy Outline 180–81
National Key Laboratories (NKL) 181
patents 191–2, 378
pharmaceutical industry 30, 31, 183, 185–6
pilot production projects, need for 202
problem areas 199–200, 373
public safety and ethics issues 190–91
R&D funding 184, 189–90, 193–7, 198, 200, 201, 202
R&D performance characteristics 370
R&D projects, decision-making process 189–91
SMEs, need for development of 202
Torch Plan 373
universities, role in biotechnology R&D 183–5, 193–9, 201, 368, 378
universities, role in biotechnology R&D, comparisons with other institutions 184–5, 368
China, biotechnology transfer and application, Tianjin University of Science and Technology (TUST) case study 193–9
cooperative research 198, 199
export-oriented market transfer 198
public information platform, cooperation by 199
R&D funding 193–7
transfer conditions 197–9
transfer, main channels of 198–9
Christensen, J. 259
clusters and industry parks
China 187–8
Denmark 246, 251–5, 256, 257, 264, 275
Germany 327
Latvia 220, 288, 289, 303, 380
Sweden 246, 251–5, 256, 257, 264, 275
Cockburn, I. 28, 30–31, 32
Cohen, W. 64
Cooke, P. 251
Costa, E. 43
Costa, J. 261, 269
Cruvinel, T. 42, 43
Cuba
health biotechnology publications 20
international partners for distribution and commercialization 76
non-market economy and decision-making 75–6
patent control 76
public health procurement, compulsory strategy 76, 367
solidarity-through-innovation strategy 76–7
Uruguayan decision-making, similarities and differences between 75–7
Cuba, university and scientific and technological policy 80–107
agro-biotechnology 85, 91–2, 98–101, 103
animal biotechnology studies 91
biofactories and mass multiplication of plants 99–101, 103
Biological front, founding of 86
Biomolecular Chemistry Center (CQB) 95–8
bottom-up decision-making process 96–7
cancer treatments 92–5
Center for Biological Research (CIB) 86
and chemical industry crisis, effects of 102
community values 90
decision-making process and economic and social development 82, 84, 85, 96–7
economic constraints 102, 103
economic opportunities and trade 89–90
future challenges 102–103
genetic engineering 86–7, 88, 90, 91, 96
GM crop studies 92
government and state involvement and policy 90, 96–7, 98, 99, 100, 376
health biotechnology 85–6, 87, 91, 92–8, 367, 368–9
higher education and biotechnology 90–92, 93, 96, 97, 98–101, 102–103
higher education and university reform 82–3
and inclusion and social equity 82–4
Institute of Plant Biotechnology (IBP) 98–101, 103
institutionalization of biotechnology 86–8, 97, 98–101
interferon production 85–6, 87
international technology transfer 88–9
marketing of biotech production 88, 93–4, 100–101, 102
meningitis research and vaccination 87, 95, 98, 367
Ministry of Science, Technology and the Environment (CITMA) 84
Molecular Immunology Center (CIM) 92–5
National Center for Scientific Research (CNIC) 83–4, 86, 88
national scientific and technological policy 81–5
networking and interaction, encouragement of 89, 93
origin and development of biotech industry 85–90
patent applications 93, 94, 96
plant biotechnology studies 91–2
project licensing 94
Quimi-Hib, world’s first synthetic vaccine 95–6
R&D funding and objectives 76, 84, 370
research institutions 83
researchers, commitment of 75, 97
revolution, effects of 81–2
Science and Technological Innovation (STI) system 84–5
Scientific Pole 76, 80, 83, 84, 85, 87–9, 90–91, 92–8, 103
social ownership of results 89
success stories 92–101
technology transfer 100–101
university cooperation with CIM 93, 94–5, 377
University of Information Sciences (UCI) 84
vaccine development 95–8
WIPO Gold Medal for Heberprot-P10 vaccine production 87

Denmark, biotechnology in agro-biotechnology 218, 236
bioenergy 245, 250
biotechnology industry 240–42, 263, 266–7
biotechnology overview 249–51
biotechnology policy 217–18
biotechnology sector 249–50, 251, 253–5
biotechnology specialization profile 236, 238
Center Contracts 265
clinical trials, attractive environment for 246–7
clusters and industry parks 246, 251–5, 256, 257, 264, 275
Danish Council for Independent Research 261
Danish Council for Technology and Innovation 264
Danish National Advanced Technology Foundation 261
Danish National Research Foundation 261–4
economic situation 210, 269
education, research and access to qualified employees 246
FØTEK programmes 217
Foundation for Entrepreneurship 266
health biotechnology 250, 251, 375
health biotechnology publications 19
home market 246
international collaboration with universities 256
international research and actors, linkages to 264
knowledge base and human resources, development of 246, 260–64
knowledge creation, analytical and synthetic, differences between 251–2
knowledge transmission and application 265–6
Life Science Ambassador Program 256, 257
life science employment 249, 251, 274
Medicon Valley cluster 246, 252, 253–5, 256, 257, 264, 275
Medicon Valley cluster, integration and cooperation problems 255
network and triple helix collaboration 246
patents 254–5, 256
pharmaceuticals sector 246, 249, 250, 251, 252, 253–5, 256, 257, 264, 275
policies and agenda setting at national level 260–67
policy environment 257–9
policy goals 2002–05, coverage of 227–8
private sector investment 211, 258–9
public attitudes to biotechnology 217, 218, 375
public biotechnology budgets 2002–05 226–7
public funding, lack of 256
R&D funding 210, 226–9, 246, 258, 266–7, 276
R&D performance characteristics 370
regional cooperation, strengthening 267
sectors, specialization profile of 236, 237
SMEs and innovation 256–7, 259, 266
start-up companies 266–7
stem cell research and Act on Artificial Fertilisation 217–18
Sweden, comparison with 245–76
thematic priorities of biotech funding 228–9
traceability, labelling and marketing of biotech products, regulation of 218
universities as regional facilitators of cooperation 267
universities, role in biotech research 254, 255–7, 259, 265, 266
university–industry linkages and entrepreneurship 265–6
venture capital and financing R&D 266–7
welfare system 210, 245, 246, 261, 369
D’Este, P. 261, 269
Díaz, O. 87
Diyamett, Bitrina D. 111–38
DNA1 compounds, legislation on use of, Russia 350–52
see also health biotechnology
Dominguez Lacasa, I. 260, 261, 265, 294, 315, 318, 324
Egypt, health biotechnology publications 20
Ejermo, O. 258
Eli Lilly 37, 39–40
environmental biotechnology 62
Germany 323, 324
GMOs (genetically-modified organisms) 92, 144, 146–7, 148–9, 151, 297, 302, 307
Tanzania 114, 115, 118, 119, 123–5
Uruguay 65–6, 68, 72, 73, 74, 75, 77, 376
see also agro-biotechnology; bioenergy
Europe, background information on biotechnology industry, country comparison 207–44
BIO4EU project 209, 215–16, 229–42
BIOPOLIS project 209, 216–29, 286, 287, 315–16
biotechnology strategy for Europe 277
country specialisation and biotechnology industry characteristics 229–42
EU Framework Programmes 287–8, 295, 296, 299, 303, 307, 378
Europa Bio-Critical I surveys 209
industry characteristics, comparison of 238–42
INNOVA initiative 209
life sciences in biotechnology, strategy for 216
OECD biotechnology definition 207–209
pharmaceutical industry R&D expenditure 31
policy environment 215–29
profiles, research approach 229–33
public attitudes towards biotechnology 217–18, 219, 220–22, 223–4, 225–6
public attitudes towards genetic modification 217–18, 219–20, 221, 222–3, 226
public biotechnology budgets 2002–05 226–7
public funding activities 226–9
sector applications, share of 230, 232
thematic priorities of biotech funding 228–9
traceability, labelling and marketing of biotech products, regulation of 218
transnational patent applications on sectors (2003–05) 230, 231
see also Denmark; Germany; Latvia; Russia; Sweden
Fajnzylber, P. 45, 46
Ferrer, M. 18–19, 21
Finland, health biotechnology publications 19
Fonseca, M. 23
France health biotechnology publications 19
pharmaceutical industry R&D expenditure 31
Fregene, M. 117
Gadelha, C. 21, 33
Gaisser, S. 315
Gambardella, A. 28
García Capote, E. 82
Gaskell, G. 220, 304, 305, 306
Genetic engineering
China 183
Cuba 86–7, 88, 90, 91, 96
Latvia 280, 284, 294, 297, 298, 305, 307
public attitudes see public attitudes towards genetic modification
Russia 337, 339, 342, 345, 346, 349, 350, 351, 352–5, 357–8
Tanzania 118, 123, 124
Germany, biotechnology in 315–32
applied research 323–4, 327, 329
appropriation level 316–19
and BIOPOLIS project 316, 317
BioRegio initiative 218–19
biotechnology Framework Programme 218
biotechnology policy 218–20
biotechnology publications 318, 322–3
cluster initiatives 327
economic situation 210–11
education of qualified human capital, low support for 327
environmental biotechnology research 323, 324
Index 389

Fraunhofer Society 320, 328
health biotechnology 318, 323, 324
health biotechnology publications 19
Helmholtz Association 320, 328
human resources, scarcity of 316–18, 321–2, 327, 329
industrial biotechnology research 323, 324
industrial development and low venture capital 318, 379
industry characteristics 239–42
innovation, and future research topics, identifying 328
innovation, lack of fiscal incentives for 327
and knowledge transfer 318, 324–7, 329
Leibniz Association (WGL) 321
Max Planck Society 320, 322, 328
patent applications 318, 322–3
pharmaceutical industry 31, 322, 323
plant biotechnology research 323
policy effectiveness 328–9, 379
policy environment 324–7
policy goals 2002–05, coverage of 227–8
private sector investment 211
public attitudes towards biotechnology 219
public attitudes towards genetic modification 219–20
public biotechnology budgets 2002–05 226–7
R&D funding 211, 228–9, 318, 319, 328
R&D performance characteristics 370
research actors 319–24
research agendas 327–8
research agendas, top-down and bottom-up, determination of 327–8
specialization profile 233–4, 323–4
thematic orientation 318
thematic priorities of biotech funding 228–9
university graduates in life sciences 316–18
university research 319, 321–4, 329
Gertler, M. 251
Gestrelius, S. 245, 249, 250, 251
Gibbons, M. 89
Giessler, S. 218–19
Glynn, S. 26
GMOs (genetically-modified organisms) 92, 144, 146–7, 148–9, 151, 297, 302, 307
public attitudes see public attitudes towards genetic modification
see also agro-biotechnology
Göransson, Bo 1–10, 2, 367–82
Gottweis, H. 298
Granberg, A. 258
Graversen, A. 252, 255, 274
Grēns, E. 220, 280, 284, 288, 291, 292, 293, 298
Greenshields, R. 281–4, 285, 290, 291, 304
Gregersen, Birgitte 245–76
Grindex 280, 282–3, 290, 295, 297
Harvey, M. 1
health biotechnology 62
Brazil 34, 35, 38, 39–52, 368
China 187, 190–91
Cuba 85–6, 87, 91, 92–8, 367, 368–9
Denmark 250, 251, 375
Germany 318, 323, 324
human genome programmes 21, 24, 220, 298, 305
Latvia 220, 285, 287, 291, 294, 296, 298
Mozambique 142
publications 18–20
Russia 336–42, 345, 346, 348, 349, 352–5
stem cell research 217–18, 339, 340, 341, 342, 345, 349
Sweden 225, 226, 246, 248–9, 252–3
Tanzania 114, 115, 117–18, 119–21, 123
Uruguay 71–2, 73–4, 75, 77, 368, 376
see also pharmaceutical industry
Henderson, R. 28
Herrera, L. 85, 86
Hetmeier, H.-W. 321
Hinze, S. 322, 323
Hopkins, M. 53
Huang, J. 181, 182, 183
human genome programmes 21, 24, 220, 298, 305
human resources investment
 Brazil 24, 48, 49–50, 51, 53, 371–2
 Denmark 246, 260–64
 Germany 316–18, 321–2, 327, 329
 Latvia 288–9
 Mozambique 141, 147, 372
 Sweden 260–64
 Tanzania 126–7, 37
 Vietnam 163, 372, 374

Ilori, M. 68

India
 biotechnology firms 30
 health biotechnology publications 19, 20
 pharmaceutical industry 26

indigenous knowledge, use of 122, 125, 141, 367

industry development see public policy and industry development, implications for intellectual property rights (IPRs) 374–5

China 191, 193, 200
 public policy and industry development, implications for 374–5

Russia 355–60, 374–5, 379

Israel, health biotechnology publications 19

Italy
 health biotechnology publications 19
 pharmaceutical industry R&D expenditure 31

Jākobsons, J. 280, 281

Judice, V. 14, 23, 36, 42, 44

Kaiser, J. 80

Kalviņš, I. 280, 287, 293

Klander, A. 258

Klevorick, A. 28

Knowles, L. 226

Korea (South), health biotechnology publications 19, 20

Kristapsons, Janis 277–314

Kullaya, A. 117, 125

Lage, A. 80, 87, 89, 94, 102

Latvia, biotechnology appropriation 277–314
 agenda-setting, external influences 303–304
 agenda-setting, research and policy 300–308
 agenda-setting, top-down vs. bottom-up 300–302
 agro-biotechnology 280, 283, 294, 295, 297, 298–9

 Association of Biotechnology, creation of 304
 biofuels 283, 297–8

 Biogen complex 281–4
 and clusters 220, 288, 289, 303, 380
 competence centres, creation of 296, 303

 Council of Science 220, 287, 298, 302
 current biotechnology sector 284–300
 economic situation 211–12

 EU Framework Programmes, participation in 287–8, 295, 296, 299, 303, 307, 378
 export and growth 291

 gene technology 280, 284, 294, 297, 298, 305, 307

 Genome Programme 220, 298, 305

 GMOs (genetically-modified organisms) 297, 302, 307

 Grindex pharmaceutical company 280, 282–3, 290, 295, 297

 health biotechnology 220, 285, 287, 291, 294, 296, 298

 historical legacies 280–84, 285, 287, 290

 Human Genome Research Act 298

 industrial component and business community 289–94

 Institute of Organic Synthesis 280, 284, 285, 294, 297
institutional actors, main 282–3, 295
international collaboration and funding 287–8, 291, 292–3, 296–7, 298, 299, 304, 310
joint biopharmacy centre, proposed 285
Latvian Population Genome Project 298, 305
Law on circulation of genetically modified organisms 298–9, 302
Law on Research Activity 295
lysine production 280–81
and market economy 290, 291, 380
microbiology, early history of 280
national human resources, value of 288–9
patents, low number of 286–7, 293
policy environment 220–21
policy goals 2002–05, coverage of, and share of policy-directed funding 227–8
policy landscape 294–300, 373, 378, 380
pollution and breach of safety rules, history of 304
priority setting 294–6, 299–300
private sector investments 212
public attitudes towards biotechnology 220–21
public attitudes towards genetic modification 221
public biotechnology budgets 2002–05 226–7
public engagement and agenda-setting 304–308
and publications, low number of 286, 287
R&D funding 212, 220, 227–9, 284, 285, 287–8, 291–9, 303–304, 310, 371, 373, 378
R&D performance characteristics 370, 371
Red biotechnology publications 286
regulatory mechanisms, lack of compulsory 305
research capacity, current 284–9
research lobbyists 301–302
ScanBalt BioRegion involvement 220, 288, 289
SME involvement 287–8, 289, 290, 291
Soviet legacy 280–81, 284–5, 291, 300–301, 304, 308
specialization profile of sectors 237–8, 241, 285–6
state funding 295, 297–8, 371
study methodology 278–300
TAIHO Latvian Foundation funding 296–7
thematic priorities of biotech funding 228–9
university collaboration 220, 285, 295–6, 302, 310, 380
and university education 288
Lazonick, W. 60
Lemos, M. 34, 42, 45, 51, 53
Levinthal, D. 64
Le Van, Chuong 159–79
Li, X. 183
Līdaka, M. 280
Limonta, M. 86, 104
Lindner, Ralf 207–44, 315–32
López, E. 80, 87, 104
López Cerezo, J. 85
Love, J. 26
Lui, J. 191
Lulle, Aija 277–314
Lundvall, B.-A. 60
McKelvey, M. 26–7, 28, 256–7
McMeekin, A. 1
Macucule, Paula 139–55
Majoli, M. 80, 86, 95
Malo, S. 289–90, 291, 293
Marklund, G. 214, 215, 242, 259
Marquetti, H. 102
Masumba, E. 117
Masumbuko, L. 117
Matraves, C. 28
Mello, D. 129
meningitis research and vaccination 87, 95, 98, 367
Milan, R. 18
MNCs (multinationals) 24, 177, 248–9, 259, 377
Mneney, Emmarold 111–38
Mondjana, Ana Maria da Graça 139–55
Monsanto 144, 149
Montalvo Arriete, Luis Félix 80–107
Moodysson, J. 251, 252
Mozambique, present situation and future trends in biotechnology 139–55
agro-biotechnology 142, 144, 146–7, 148–9, 151
Biotechnology Center (CB-UEM) 142, 144
business community, role of 151, 154–5
Cartagena Protocol, ratification of 146
current situation 140–43
diagnostic services, dependence on South Africa for 151
donors, role of 149–51
Eduardo Mondlane University/Italian universities partnership 143, 144, 150
feedback mechanisms between research bodies, need for 146
and fermented beverage production 141
GIIBS (Inter-Institutional Biotechnology Group for Biosafety) 146–7, 154
GMOs and biosafety, regulations on 144, 146–7, 148–9, 151
health biotechnology 142
human resources, scarcity of competent 141, 147, 372
IIAM (in vitro culture laboratory) 142, 144, 148
indigenous knowledge, use of 141, 367
industrial application of classical biotechnology 140–41
infrastructure and equipment, need for improvement of 142
institutional positions and perceptions 145–8
Laboratory of Immunology 142, 143
leadership requirements 145–6
malaria vaccine trials 142
Manhiça Foundation Laboratory 142
Ministry of Health/University of Barcelona partnership 143
modern research 141–2
Mozambique Science, Technology and Innovation Strategy (MCT) 145–6, 147, 153
National Council for Biotechnology, proposal for 147, 154
National Program of Biotechnology objectives 146, 150, 153–4
NGOs, role of 148–9, 154
partnerships status and private sector 144
partnerships status and universities 143–4, 150
R&D funding 150
R&D performance characteristics 370, 371
research, evolution of 147–8
social history of Mozambique and aid provision 150
socio-political goals 147–8, 371
and university research and partnerships 142–3, 150
Msoffe, P. 117
multinationals (MNCs) 24, 177, 248–9, 259, 377
Mwamila, Burton L.M. 111–38
Mytelka, L. 36–7
Nelson, R. 63–4
Netherlands, health biotechnology publications 19
Neves, Luis 139–55
Nguyen Phuong, Mai 159–79
Nguyen Van, Ngu 178
Nelsen, R. 64
Nimmo, B. 289
Norgren, L. 248, 253, 259, 267
Norus, J. 289–90, 291, 293
Novo Nordisk 14, 41–52
Núñez Jover, Jorge 80–107
Nusser, M. 321, 322
OECD, biotechnology definition 207–209
Orsenigo, L. 26–7, 28
O’Sullivan, M. 60
Index

Pålsson, Carl Magnus 1–10, 245–76, 367–82
Patel, P. 208, 209, 256
patents
Brazil 18, 23, 40, 44
China 191–2, 378
Cuba 76, 93, 94, 96
Denmark, biotechnology in 254–5, 256
Europe, country comparison 230, 231
Germany 318, 322–3
Latvia 286–7, 293
protection, pharmaceutical industry
28, 29
Russia 343, 355–8
Sweden, biotechnology in 254–5
Pérez Ones, Isarelis 58–107, 80, 92, 96, Pérez, R. 92
Petersen, A. 298
pharmaceutical industry 25–33
Brazil 18, 25–33
China 30, 31, 183, 185–6
commercial partnerships with small firms 30
cost reduction pressures 29–30
Denmark 246, 249, 250, 251, 252, 253–5, 256, 257, 264, 275
drug discovery by design 28
Germany 31, 322, 323
government involvement 26, 29–30
new chemical entities (NCEs), introduction of 27–8
new specialized biotechnology firms (NBFs) 28–9
patent protection 28, 29
public-funded research 28
R&D facilities in developing countries 30–33
regional global share of worldwide clinical trial sites 32
research and development budget
26–33
Russia 344, 352–5, 379
specialization 30
Sweden 31, 41, 225, 247–8, 252, 253–5, 256
see also health biotechnology
Pharmacia 41, 247, 254, 256
Pīrāgs, V. 220, 298
plant biotechnology 91–2, 98–101, 103, 113–16, 323
see also agro-technology
private sector investment
Denmark 211, 258–9
Germany 211
Latvia 212
Mozambique 144
Russia 213
Sweden 214–15, 258–9
Tanzania 127–8, 129–30, 374, 380–81
Vietnam 162
see also R&D funding
public attitudes towards biotechnology
Denmark 217, 218, 375
Germany 219
Latvia 220–21
Russia 221–2, 223–4
Sweden 225–6
public attitudes towards genetic modification
Europe, country comparison 217–18, 219–20, 221, 222–3, 226
Germany, biotechnology in 219–20
Latvia, biotechnology appropriation 221
Russia, national policy and development priorities 222–3
Sweden, biotechnology in 226
public awareness and information
China 199
Latvia 304–308
Tanzania 127, 130
public policy and industry
development, implications for
367–82
brain drain in developing countries 368
human resources investment 371–2
industry policy implications 379–82
intellectual property rights (IPRs) 374–5
and market competition 368
and MNCs 377
national interests, importance of 368
public policy implications 376–8
public procurement and innovation 375–6
R&D investment levels 370–71
S&T policy implications 369–76
social and economic history, influence of 369
specialization patterns, and path dependency in knowledge base 368–9
stability and long-term perspective 372–4
university research system, development of 368, 378
public safety and ethics issues, China 190–91
Putniņa, A. 305

Quimi-Hib, world’s first synthetic vaccine 95–6

R&D funding
Brazil 35, 37, 38, 39, 44
China 184, 189–90, 193–7, 198, 200, 201, 202
Cuba 76, 84, 370
Denmark 210, 226–9, 246, 258, 266–7, 276
Germany 211, 228–9, 318, 319, 328
Latvia 212, 220, 227–9, 284, 285, 287–8, 291–9, 303–304, 310, 371, 373, 378
Mozambique 150
Russia 213–14, 335–7, 340, 347, 358–60, 379
Sweden 214–15, 227–8, 227–9, 256, 258, 266
Tanzania 126, 127–8, 129, 371
Uruguay 58
Vietnam 169–70, 174–5, 376
see also private sector investment
Rapini, Márcia Siqueira 13–57
Ribeiro, Carlos Miguel 139–55
Rimmington, A. 281–4, 285, 290, 291, 304
Rohde, W. 117, 118
Rosted, J. 252, 255, 274
Russell, A. 277
Russia, national policy and development priorities 333–64
agro-biotechnology 339, 341, 345, 347–8, 350–51
bioenergy 339, 347–8
bioengineering research 336, 337, 338–9, 340–41, 342, 345, 346, 348, 349
biotechnology policy 221–4
biotechnology specialization profile 237, 240
breakthrough technologies 341–2
commercialisation of technology 358–60
current state and development trends 335–43
development hindrances 342–3
development strategy 335–50
DNA1 compounds, legislation on use of 350–52
economic and political change 212
economic situation 212–13
educational institutions’ share of funding 213
gene technology 337, 339, 342, 345, 346, 349, 350, 351, 352–5, 357–8
generic products, emphasis on 344, 379
government support and funding 340, 347, 358–60, 379
health biotechnology 336–42, 345, 346, 348, 349, 352–5
health biotechnology publications 19
health and safety legislation 351, 352–5
innovative potential 343–7, 358–60
intellectual property and licence trade, legal protection of 355–60, 374–5, 379
international cooperation in genetic engineering 350, 351
international standards, comparison with 337, 338–40, 341, 342, 343, 373
legal framework for biotech sphere 350–60, 363–4, 373
Live Systems areas 221, 333, 336, 337, 346, 361
patent applications 343, 355–8
<table>
<thead>
<tr>
<th>Pharmaceutical industry and drug testing legislation</th>
<th>344, 352–5, 379</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private sector funding</td>
<td>213</td>
</tr>
<tr>
<td>Product marketing</td>
<td>343–6, 379–80</td>
</tr>
<tr>
<td>Product marketing, factors hindering implementation</td>
<td>346–7, 373</td>
</tr>
<tr>
<td>Public attitudes towards biotechnology</td>
<td>221–2, 223–4</td>
</tr>
<tr>
<td>Public attitudes towards genetic modification</td>
<td>222–3</td>
</tr>
<tr>
<td>Public funding of R&D</td>
<td>213–14</td>
</tr>
<tr>
<td>Quality assurance in molecular genetic testing</td>
<td>352–5</td>
</tr>
<tr>
<td>R&D funding</td>
<td>213–14, 335–7, 340, 347, 358–60, 379</td>
</tr>
<tr>
<td>R&D performance characteristics</td>
<td>370</td>
</tr>
<tr>
<td>Regulatory framework and legislation, need for improved</td>
<td>348–50, 373</td>
</tr>
<tr>
<td>Research methodology</td>
<td>334–5</td>
</tr>
<tr>
<td>Socio-economic effects</td>
<td>347–50, 351, 358–60</td>
</tr>
<tr>
<td>Specialization profile of sectors</td>
<td>236–7, 239</td>
</tr>
<tr>
<td>Stem cell research</td>
<td>339, 340, 341, 342, 345, 349</td>
</tr>
<tr>
<td>Thematic priorities</td>
<td>335, 336, 341, 344–6, 347–8</td>
</tr>
</tbody>
</table>

Sagieva, Galina 333–64

Sandgren, P. 242

Sandström, A. 247, 248, 253, 259, 267

Schmoch, Ulrich 207–44, 315–32

Senker, J. 287, 315

Silva, E. 34, 35, 44

Simpson, A. 21, 54

Soares, E. 14

South Africa

Health biotechnology publications	20
Health biotechnology sector	248, 252, 253–5
Clinical trials, attractive environment for	246–7
Clusters	246, 251–5, 256, 257, 264, 275
Denmark, comparison with	245–76
Economic situation	214, 269
Education, research and access to qualified employees	246
Financial resources, access to	246
Fund for Industrial Development	266
Gothenburg cluster	252–3
Green materials from renewable resources	225
Health biotechnology	225, 226, 246, 248–9, 252–3
Health biotechnology publications	19
Home market and path dependency in the knowledge base	246
Human embryonic stem (HES) cell research	226
Ideon Science Park	254
Innovation in foods	225
International collaboration with universities	256

Denmark 236, 237

Germany 233–4, 323–4

Health sciences, Brazil 368

Latvia 237–8, 241, 285–6

Pharmaceutical industry 28–9, 30

Russia 236–7, 237, 239, 240

Sweden 234–6

Srinivas, S. 65

Stem cell research 217–18, 339, 340, 341, 342, 345, 349

See also Health biotechnology

Stephen, J. 117

Suárez, J. 100

Sutton, J. 28

Sutuz, Judith 41, 45, 58–79

Sweden, biotechnology in

| Agro-biotechnology | 235, 253 |
| Biocombi 247 |
Biotechnology industry characteristics	240–42, 263, 266–7
Biotechnology overview	247–9
Biotechnology sector	248, 252, 253–5
Clinical trials, attractive environment for	246–7
Clusters	246, 251–5, 256, 257, 264, 275
Denmark, comparison with	245–76
Economic situation	214, 269
Education, research and access to qualified employees	246
Financial resources, access to	246
Fund for Industrial Development	266
Gothenburg cluster	252–3
Green materials from renewable resources	225
Health biotechnology	225, 226, 246, 248–9, 252–3
Health biotechnology publications	19
Home market and path dependency in the knowledge base	246
Human embryonic stem (HES) cell research	226
Ideon Science Park	254
Innovation in foods	225
International collaboration with universities	256
Biotechnology and innovation systems

international research and actors, linkages to 264
knowledge base and human resources, development of 260–64
knowledge creation, analytical and synthetic, differences between 251–2
knowledge transmission and application 265–6
Life Science Ambassador Program 256, 257
life science employment 247, 248
Malmö/Lund cluster 253, 256
Medicon Valley cluster 246, 252, 253–5, 256, 257, 264, 275
Medicon Valley cluster, integration and cooperation problems 255
MNCs, dominance of 248–9, 259
network and triple helix collaboration 246
patents 254–5
pharmaceutical industry 31, 41, 225, 247–8, 252, 253–5, 256
Pharmacia 41, 247, 254, 256
policies and agenda setting at national level 260–67
policy environment 224–6, 257–9
policy goals 2002–05, coverage of 227–8
private sector and academic research 258–9
private sector funding 214–15
public attitudes towards biotechnology 225–6
public attitudes towards cloning 225
public attitudes towards genetic modification 226
public biotechnology budgets 2002–05 226–7
public funding, lack of 256
public R&D investments 258
R&D funding 214–15, 227–9, 256, 258, 266
R&D performance characteristics 370
regional cooperation, strengthening 267
SMEs, university collaboration with 256–7, 259, 266
specialization profile of sectors 234–6
start-up companies 266–7
Swedish Foundation for Strategic Research (SSF) 261
tax incentives for R&D, lack of 258
thematic priorities of biotech funding 228–9
Umeå cluster 253
universities as regional facilitators of cooperation 267
universities, role in biotech research 255–7, 265
university collaborations 253, 256–7, 259, 266
university researchers, senior, with positions in industry 266
university–industry linkages and entrepreneurship 265–6
Uppsala/Stockholm cluster 252, 256
venture capital and financing R&D 266–7
VINNOVA (Governmental Agency for Innovation Systems) 224–5, 260–61, 266
welfare system 245, 246, 369
Switzerland, health biotechnology publications 19

Tairo, F. 118
Taiwan, health biotechnology publications 19
Tanzania, product development partnership for appropriation of knowledge 111–38
agricultural bioinputs and bioenergy, treatment and use of waste production 118
agricultural DNA marker technology, application of 117
Amani Medical Research Centre (AMRC) 120–21
animal biotechnology research 117, 118, 122
bioenergy 114, 118, 124
brain drain 127, 368
<table>
<thead>
<tr>
<th>Index</th>
<th>397</th>
</tr>
</thead>
<tbody>
<tr>
<td>future recommendations</td>
<td>131–2, 380–81</td>
</tr>
<tr>
<td>genetic engineering</td>
<td>118, 123, 124</td>
</tr>
<tr>
<td>government funding and investment</td>
<td>126, 127–8, 129, 371</td>
</tr>
<tr>
<td>health biotechnology</td>
<td>114, 115, 117–18, 119–21, 123</td>
</tr>
<tr>
<td>human resources, lack of skilled</td>
<td>126–7, 372</td>
</tr>
<tr>
<td>Ifakara Health Institute (IHI)</td>
<td>119–20</td>
</tr>
<tr>
<td>indigenous knowledge, use of</td>
<td>122, 125, 367</td>
</tr>
<tr>
<td>industrial and environmental biotechnology R&D</td>
<td>114, 115, 118, 119</td>
</tr>
<tr>
<td>Kilimanjaro Christian Medical Centre (KCMC)</td>
<td>123</td>
</tr>
<tr>
<td>Mikocheni Agricultural Research Institute (MARI)</td>
<td>116, 117, 118, 126</td>
</tr>
<tr>
<td>molecular disease diagnostics</td>
<td>117–18</td>
</tr>
<tr>
<td>National Institute for Medical Research – Tanga</td>
<td>120</td>
</tr>
<tr>
<td>National Research Institutes</td>
<td>113, 115, 126, 138</td>
</tr>
<tr>
<td>plant tissue culture and micropropagation</td>
<td>113–16</td>
</tr>
<tr>
<td>policy and regulation, need for</td>
<td>375, 380–81</td>
</tr>
<tr>
<td>private sector involvement, limited</td>
<td>129–30, 380</td>
</tr>
<tr>
<td>Product Development Partnerships (PDP)</td>
<td>129–31</td>
</tr>
<tr>
<td>public awareness and information, lack of</td>
<td>127, 130</td>
</tr>
<tr>
<td>and public–private partnership</td>
<td>111–12, 129–31</td>
</tr>
<tr>
<td>R&D agenda for biotechnology</td>
<td>128–9</td>
</tr>
<tr>
<td>R&D, baseline status of</td>
<td>113–21</td>
</tr>
<tr>
<td>R&D funding</td>
<td>126, 127–8, 129, 371</td>
</tr>
<tr>
<td>R&D performance characteristics</td>
<td>370, 371</td>
</tr>
<tr>
<td>Sokoine University of Agriculture, Morogoro (SUA)</td>
<td>121–2</td>
</tr>
<tr>
<td>study findings</td>
<td>113–31</td>
</tr>
<tr>
<td>study methodology</td>
<td>112–13</td>
</tr>
<tr>
<td>study objectives</td>
<td>112</td>
</tr>
<tr>
<td>study questionnaire</td>
<td>135–7</td>
</tr>
<tr>
<td>Tanzania, product development partnership for appropriation of knowledge, universities and agricultural biotechnology</td>
<td>121–3</td>
</tr>
<tr>
<td>donor dependency</td>
<td>126, 128–9</td>
</tr>
<tr>
<td>financial and related support mechanisms, insufficient</td>
<td>125</td>
</tr>
<tr>
<td>and industrial and environmental biotechnology</td>
<td>123–5</td>
</tr>
<tr>
<td>infrastructure and related support services, inadequate</td>
<td>125–6, 367–8</td>
</tr>
<tr>
<td>and medical biotechnology</td>
<td>123</td>
</tr>
<tr>
<td>Muhimbili University College of Health Services (MUCHS)</td>
<td>123</td>
</tr>
<tr>
<td>and private/business sector, weak linkage between</td>
<td>127–8, 374, 380–81</td>
</tr>
<tr>
<td>role and status of biotechnology at</td>
<td>121–8, 380, 381</td>
</tr>
<tr>
<td>UDSM, Department of Chemical and Process Engineering</td>
<td>124–5</td>
</tr>
<tr>
<td>UDSM, Department of Molecular Biology and Biotechnology</td>
<td>124</td>
</tr>
<tr>
<td>University of Dar es Salaam</td>
<td>122–3</td>
</tr>
<tr>
<td>Thorsteinsdóttir, H.</td>
<td>19</td>
</tr>
<tr>
<td>Tjunina, Erika</td>
<td>277–314</td>
</tr>
<tr>
<td>Torres, W.</td>
<td>83</td>
</tr>
<tr>
<td>Tran Ngoc, Ca</td>
<td>159–79</td>
</tr>
<tr>
<td>Tran Thi, Phuong</td>
<td>159–79</td>
</tr>
<tr>
<td>UK</td>
<td></td>
</tr>
<tr>
<td>health biotechnology publications</td>
<td>19</td>
</tr>
<tr>
<td>pharmaceutical industry, R&D expenditure</td>
<td>27, 31</td>
</tr>
<tr>
<td>university involvement see under individual countries</td>
<td></td>
</tr>
<tr>
<td>Uruguay, bio-innovation, knowledge production and policy</td>
<td>58–79</td>
</tr>
<tr>
<td>actor-based approach to study</td>
<td>60–61</td>
</tr>
<tr>
<td>agro-biotechnology</td>
<td>65, 67–8, 72–3, 74–5, 77</td>
</tr>
<tr>
<td>analytical framework</td>
<td>62–8</td>
</tr>
<tr>
<td>animal health vaccines</td>
<td>67–8</td>
</tr>
<tr>
<td>biotechnology animal health case study</td>
<td>72–3, 74–5, 77</td>
</tr>
<tr>
<td>biotechnology human health case study</td>
<td>71–2, 73–4, 75, 77</td>
</tr>
</tbody>
</table>
and BIOTECSUR Platform 58
case studies 71–5, 77
and core strengths 69
Cuban decision-making, similarities
and differences between 75–7
environmental biotechnology case
study 72, 73, 74, 75, 77, 376
environmental issues and slaughter
industry waste 65–6, 68
and external triggers 69
firm’s innovation base 71–3
health biotechnology 71–2, 73–4, 75,
77, 368, 376
human papilloma virus (HVP),
concerns over efficacy of
imported 73–4
innovation decision processes 63, 66,
70–71
innovation drivers 62–3
innovation feasibility 71–2
innovation, from ideas to projects
68–70, 374
innovative opportunities 64–7, 73–4
intellectual property rights 375
knowledge accumulation at firm
level 63–4, 72–3
and market opportunities 59, 67–8,
70–71, 74–5
National Institute for Agricultural
Research 59
personal innovation drivers 71–2
public health policy 76
public institutions, limited scope of
59
public policy support 75, 77, 376–7
R&D evolution 58–9, 72
R&D funding 58
R&D performance characteristics
370
and risk assessment 70
screening scope 73–4
solidarity-through-innovation
strategy 77
specificities, need to cope with 64–5
substitution of imported solutions,
and cost considerations 65–7, 71
technology dynamic 61–2
and university research 59, 72–3, 377
X fragile disease, diagnostic
information for 66–7
US
biotechnology net losses 1
health biotechnology publications 19
pharmaceutical industry 26, 27, 31,
32, 33
R&D performance characteristics
370
R&D spending 1, 27, 31, 32, 33
Van Beuzekom, B. 208, 209
Vasconcelos, M. 14
Vedovello, C. 23
Vérez, V. 95
Vietnam, biotechnology transfer
159–79
agro-biotechnology 159–60, 161,
163–5, 166, 168, 171, 172–6
Can Tho University 172–5
case studies 165–75
Centers of Excellence, creation of
177
emerging issues 175–6
government investment and
regulation 159–60, 162–5, 374,
376
Hanoi, University of Technology
160–61
Hue University 165–72
Hue University, autonomy issues
169, 170
human resource training 163, 372,
374
international cooperation,
importance of 161–2, 163, 164,
173, 177
international standards and
regulations, implementation of
160
learning and education investment
177
marketing strategies 169–70, 171,
176, 177
MNCs, policies to attract 177
National Committee on
Biotechnology 163
national programme for agricultural
biotechnology development
159–60, 163–4, 172–5
national science and technology
strategy 163
organizational linkages 170–71, 174–5, 176
overseas training and internship programmes 161–2, 163
policy environment 162–5, 169–72, 174–6, 376, 377–8
private sector and state-owned organizations 162
public R&D organizations, reform of 160
R&D funding problems 169–70, 174–5, 376
R&D performance characteristics 370
research agenda-setting, importance of 170, 173, 174, 175
Resolution 18/CP and biotechnology development 159, 162–3, 164
sector weaknesses 159–60
university system and biotechnology development 159–62, 167–9, 172–5, 177–8, 367–8, 374, 378
university training courses in biotechnology 160–62 and WTO incentive regimes 164
Vincent, L. 69
Wang, C. 182
Wang Haiyan 180–204
Wang, Q. 181
Winter, S. 63–4
Zhang, Y. 183
Zhou Yuan 180–204
Zika, E. 216
Zucoloto, Graziela Ferrero 13–57