Index

Abbott, A. 152, 153
Abell, P. 152, 153
Achten, W. 19
Adamides, E. 158
Africa, eco-industrial parks and sustainable development 30–45, 228, 229, 230
agriculture sector 32, 36, 37–8, 40
Benin Republic 34, 36
beverage industries, recycling of waste materials 35–6
Cleaner Production Technology (CPT) 35–6, 38
economic development and cooperation, connection barriers 31, 40–41
education for sustainable development 36–7, 42
energy flows 34, 36
financial outlays 40–41
flexible and facilitated planning systems, need for 40
future direction 42
hazardous materials exposure 36
income gains and time lags, agricultural sector 37–8, 40
industrial symbiosis projects 32–5
institutional capacity 40–41, 42
international bodies, support from 35, 36–7, 38
Liberia 34, 36, 37, 38
pulp and paper industries, recycling of waste materials 35
resource recovery practices 34, 35
South Africa 32–5, 38
sustainable development issues 38–42
Tanzania 34, 35–6, 38, 42
UNEP, Mainstreaming Environment and Sustainability in African Universities (MESA) initiative 36–7
Agarwal, A. 14
agricultural sector 12, 17, 32, 36, 37–8, 40
Aizawa, H. 184
Alfaro, J. 3, 31, 34, 36, 37, 38, 41, 89
Allenby, B. 3, 30
Andrews, C. 145
Arzoumanidis, I. 3
Ashton, W. 2, 3, 5, 12–29, 39, 42, 73, 82, 89, 147–8, 175, 206, 228, 229
Asia see China; India; Japan; South Korea
Australia, bilateral symbiosis and geographic proximity issue 126–41, 229
by-product and waste, distinction between 128–9
corporate proximity and cost factors 127, 136–7
environmental regulation effects 130
geographic dispersion 134
independence between projects 132
industrial symbiosis attributes 129–32
Kalundborg, significance to Australia 130–32, 135–6
knowledge transfer 131
Kwinana Industrial Area 108
legal boundary of site where waste is held 128
manufacturing sector 133–5
network symbiosis 130–31, 132, 134
political structure 134
‘remote configuration’ problems 134–5
social proximity 131, 135–6
‘third-party’ facilitation effects 133, 136
transport hubs 134
waste and environmental regulation, 
NSW government strategy 137–8
waste, problems in defining 128
Austria 2

Baas, L. 69–88, 128, 142, 150, 191, 193
Bain, A. 2, 3, 17, 18, 89
Balakrishnan, M. 17
Bao, S. 158
Bates, G. 137
Batra, V. 17
Baumann, H. 3, 69–88
Behera, S. 31, 38, 39, 41, 42
Belgium 75, 80, 81, 82, 84
Benin Republic 34, 36
beverage industries, Africa, recycling of waste materials 35–6
Bi, J. 157–74, 209–33
bilateral symbiosis
Australia see Australia, bilateral symbiosis
Europe 81, 83–4
biofuel production, India 19
biomass plants, US 51, 53, 60
Blackman, A. 191, 197, 199, 205
Block, C. 210
Booher, D. 145, 150, 152
Boons, F. 2, 3, 4, 5–6, 7, 16, 30, 31, 39, 40, 41, 69–88, 142, 143, 146, 148, 149, 150, 152, 153, 168, 175, 191, 192, 193–4, 205, 228, 231
brand-marketing 58, 168
Branson, R. 6, 126–41, 229
Brent, A. 3, 30, 31, 32, 35, 38, 40, 41, 42
Brullot, S. 69–88
by-products
agricultural, and energy generation, India 17
exchange programme, US 47, 48, 49, 50, 55, 57, 62, 63
synergies 48, 54, 55, 56, 63, 64, 144
and waste, distinction between, Australia 128–9
see also residue; waste
carbon emissions, China see China, greenhouse gases reduction strategies for eco-industrial parks Chauhan, M. 19
Chen, X. 108, 131
Chernykh, K. 69
Chertow, M. 3, 6, 31, 38, 39, 41, 46, 47, 49, 50, 73, 94, 109, 112, 122, 126, 128, 131, 132–3, 142, 148, 175, 176, 231
Cheung, K. 169
China
circular economy programme and eco-industrial parks 148
intra-firm network of symbiotic exchanges 149
regulation of environmental issues 151
UK–China collaboration for industrial symbiosis see UK–China collaboration for industrial symbiosis, and policy transfer analysis
China, eco-industrial park development 157–74, 230
brand-marketing 168
China Power Valley 169
Circular Economy (CE) pilot areas 164–5
cost factors 163, 170
eco-development moves 170–71
economic growth rate 157, 164, 167
energy intensity improvement 163–4
environmental programme implementation 162–7, 168, 170–71
foreign direct investment (FDI) 158, 159, 166, 169
future research 171
history 158–60
innovativeness 157–8, 167–8, 169
institutional flexibility, local 167
land area used and new zone development 161, 162, 167
National Economic and Technology Development Zones (NETDZ) 158, 159–61, 166, 169
National Torch Programme 169
organisational structure 166–7
pollution concerns 157, 159, 163, 166
Reform and Opening-up strategies
Index

and coastal special economic zones 158–9, 166, 167
regulatory enforcement and consensual negotiation balance 170
sustainable industrial strategies 164
veto system based on environmental performance 168
waste and wastewater reuse 164
China, greenhouse gases reduction strategies for eco-industrial parks 209–27, 228, 229
carbon accounting method 212–15
carbon emission levels 215–20
carbon management initiatives 222–5
carbon reduction potentials 220, 221–2, 224
Circular Economy (CE) strategy 211
Economic Input-Output Life-Cycle Assessment (EIO-LCA) 212
energy-saving measures 224
industrial structural adjustment 222–3
local carbon mitigation and low-carbon development role 211
Suzhou Industrial Park (SIP) 168, 211–12, 216
technological innovation and ‘double-hundred’ project 223–4
Chitra, A. 15
Chiu, A. 31, 39
Choudhary, A. 20
Christensen, J. 130, 135, 136
Christerson, B. 160
Cimren, E. 49
Circular Economy (CE)
China 94, 100, 164–5, 211
Europe, industrial symbiosis comparative analysis 61, 74, 75, 76, 77, 79, 80, 81
Japan, plastic recycling symbolising 184
UK–China collaboration 94, 100
US policy, influence of 61
Cleaner Production (CP)
and foreign assistance, Africa 35–6, 38
initiatives, Colombia 191–208, 229, 230
climate change considerations, US 62–3
closed-loop systems 15, 176, 186
Cohen-Rosenthal, E. 2, 30, 46, 47
Cole, M. 157, 162
collaboration processes
Africa, eco-industrial parks and sustainable development 31, 40–41
Europe see industrial symbiosis (IS), collaboration processes, Europe
UK–China see UK–China collaboration for industrial symbiosis, and policy transfer analysis
US, environmental management features in industrial parks 50
Colombia, Cleaner Production (CP) initiatives, Caldas experience 192, 195–204
antecedents of CP development 196–9
development mechanisms 199–202
educational levels of local professionals 197
environmental issues 197, 199, 203
government policy initiatives 197
implementation outcomes 203–4
innovation and initiatives, support for 201
ISO 14000 certification 202
lack of interest from potential participants 200–201
local authorities’ role 198–9
location-specific features 197–8
regional-level dissemination 199–202
social indicators 199, 203–4
voluntary environmental agreements with leading industrial sectors 199
Colombia, institutional capacity for sustainable industrial systems 191–208, 229, 230
emerging markets and environmental regulation 191–2
knowledge resources 194, 199–200, 203–4
mobilisation capacity 194, 201, 204
pre-existing industrial geography 193–4

Pauline Deutz, Donald I. Lyons and Jun Bi - 9781781003572
Downloaded from Elgar Online at 12/24/2018 03:40:41AM
via free access
regional institutional capacity and interaction among stakeholders 192, 198–9, 200–201
relational resources 194, 200, 204
combined heat and power plant (CHP), US 48, 52, 53, 60
Combustion Residue (coal ash) management and environmental impact, US 111–12, 113, 122
cost factors
commercial proximity and cost factors, Australia 127, 136–7
deco-industrial park development, China 163, 170
deco-industrial parks, Africa 40–41
funding considerations, US 63–4, 65, 113
income gains and time lags, African agricultural sector 37–8, 40
post-consumption recycling fee, Japan 177, 178, 181, 182, 186–7
transport costs and residue types, US, Pennsylvania
industrial waste management improvement 118, 122
Costa, I. 61, 69–88, 89, 90, 92, 97, 122
Côté, R. 2, 30, 58, 149, 211
Cruz, F. 198
Cumbers, A. 4
Daly, H. 4
Darnall, N. 191
Das, T. 35
Dasgupta, S. 191
Davies, M. 3, 135
Davis, C. 69–88
De Loe, D. 90, 91
Del Rio, P. 41
Denmark
Greek green jobs transfer programme failure 91
Kalundborg multi-industry park 2, 80, 108, 126, 128–9, 142, 149
Kalundborg, significance to Australia 130–32, 135–6
Dernbach, J. 109, 110, 112, 113, 121
Deschenes, P. 31
design for environment (DfE) guidelines, Japan 176, 178, 184
Despeisse, M. 3
Desrochers, P. 12, 30
Deutz, P. 1–11, 20, 30, 46, 47, 57, 58, 59, 64, 69–107, 108, 142, 150, 151, 158, 175, 176, 191, 192, 205, 224, 228–33
Diamond, J. 170
Dicken, P. 5, 231
Dijkema, G. 38
Dippenaar, R. 109
Doberstein, B. 147, 148, 159
Dolowitz, D. 91, 102
Doménech, T. 3, 135
domestic appliance industry, Japan see Japan, product-based industrial ecologies
domestic waste strategy, UK 97
Dong, H. 157
Dong, L. 89
Dunn, B. 57
Eckelman, M. 109
deco-industrial development (EID) India, initiatives and shortcomings 17–19, 23
US see US,eco-industrial development progress analysis see also industrial symbiosis
deco-industrial parks
Africa see Africa, eco-industrial parks and sustainable development
China see China, eco-industrial park development; China, greenhouse gases reduction strategies for eco-industrial parks
definition, US 46–7
resource recovery parks 34, 35, 48, 52, 77, 81
US see under US, eco-industrial development progress analysis see also industrial symbiosis
eco-towns, Japan 176–81, 182, 186–7
economic coordination, industrial symbiosis 148–9
economic development considerations 31, 40–41, 47, 57–8, 62, 80–81, 130
economic growth rate, China 157, 164, 167
Index

239

economies of scale 120, 182, 183, 186
education
‘action-oriented intentional learning’ 92
industrial ecology education, India 22, 23
‘learning-by-doing’ programme, Colombia 203
local professionals, levels of, Colombia 197
for sustainable development, Africa 36–7, 42
see also knowledge transfer
effluent see waste
Ehrenfeld, J. 2, 31, 36, 38, 94, 108, 112, 126, 131, 132, 142, 175, 176, 195
Eilering, J. 142, 151
Ekland, M. 69–88
electronic consumer goods sector, India 20–21
see also manufacturing sector
Emtairah, T. 78, 94
energy
energy-saving measures, China 224
flows 34, 36, 73–4, 82
generation and agricultural by-products, India 17
intensity improvement, China 163–4
renewable energy and energy from waste, US 59–60
Engberg, H. 126, 130
environmental concerns
climate change considerations, US 62–3
environmental programme
implementation, China 162–7, 168, 170–71
greenhouse gas emissions see China, greenhouse gases reduction strategies for eco-industrial parks
India see India, environmental protection
International Council for Local Environmental Initiatives (ICLEI) 61, 212
pollution see pollution
regulation effects, Australia 130, 138
waste see waste
see also recycling
Erkman, S. 2, 17, 21, 22, 79
Eskeland, G. 157
Etriki, J. 40
Europe
Austria 2
Belgium 75, 80, 81, 82, 84
Denmark see Denmark
EU SWITCH-Asia programme funding 94, 95
France 75–6, 80, 81, 82
Germany 76, 80–81, 82
industrial symbiosis (IS)
comparative analysis see industrial symbiosis (IS)
comparative analysis, Europe
Netherlands 76–7, 80, 81, 82, 142, 148, 150–52
Portugal 77, 80–81, 82, 84
Spain 77–8, 81, 82, 84
Sweden 78, 80, 82
Switzerland 79, 80, 81, 82, 83, 84
UK see UK headings
Evans, L. 142
Evans, M. 90, 91, 92
Event Sequence Analysis (ESA), industrial symbiosis 152–3
extended producer responsibility (EPR) 19–21, 177
fees, post-consumption recycling fee, Japan 177, 178, 181, 182, 186–7
see also cost factors
Feichtinger, J. 65
Ferrão, P. 77, 84
financial factors see cost factors;
‘economic’ headings
Fischer, M. 59
foreign direct investment (FDI) 35, 38, 158, 159, 166, 169
France 75–6, 80, 81, 82
Fredriksson, P. 157, 162
Frosch, R. 3, 80, 108, 129
Fujita, T. 176, 179, 180
funding see cost factors
future developments 23–4, 42, 64–5
future research 103, 122, 152–3, 171, 192, 206

Pauline Deutz, Donald I. Lyons and Jun Bi - 9781781003572
Downloaded from Elgar Online at 12/24/2018 03:40:41AM
via free access
Gallopoulos, N. 3, 80, 108, 129
Geng, Y. 6, 147, 148, 159, 165, 166, 209, 211
geographic context appreciation, need for 3
geographic proximity, Australia see Australia, bilateral symbiosis and geographic proximity issue
Germany 76, 80–81, 82
Gibbs, D. 4, 46, 47, 57, 58, 59, 64, 69–107, 108, 142, 150, 151, 158, 175, 176, 191, 192, 205, 224, 231
Gidwani, V. 14
Glazer, B. 111, 112
Global North and Global South development level classification 5
Global Reporting Initiative implementation, India 15
Gmünder, S. 19
Gokhale, J. 20
Goldblum, C. 168
government sponsorship, Japan 183, 186
Graedel, T. 30
Greece, green jobs transfer programme failure 91
green jobs and green marketing focus, US 57–8, 62
greenhouse gas emissions, China see China, greenhouse gases reduction strategies for eco-industrial parks
Gregson, N. 3, 5
Guevarra, L. 62, 63
Hall, P. 148, 151
Hansen, J. 38, 41
Harpet, C. 76
Harrison, A. 157
Hasler, A. 76
Hauff, M. von 80
Hayter, R. 229, 231
Healey, P. 7, 145–6, 150, 192, 194
Heeres, R. 31, 39, 63, 132, 151
Heiskanen, E. 224
Hekkert, M. 192
Hewes, A. 175
Hillman, T. 212
Hirschhorn, J. 191
Hoffman, A. 193
home appliance industry, Japan see Japan, product-based industrial ecologies
Hotta, Y. 179, 186
Howard-Grenville, J. 2, 16, 38, 39, 82, 94, 109, 131, 133, 142, 231
Hu, L. 108–25
Huang, X. 223
Hussler, C. 169
Husted, B. 192
income gains and time lags, African agricultural sector 37–8, 40
India, environmental protection 12–29, 228, 229
agricultural sector 12, 17
biofuel production 19
Common Effluent Treatment Plants (CETPs) 16–17
E-waste (management and handling) Rules 20–21
e-co-industrial development (EID) initiatives and shortcomings 17–19, 23
electronic consumer goods sector 20–21
extended producer responsibility (EPR) 19–21
future focus recommendations 23–4
Global Reporting Initiative implementation 15
industrial ecology, current implementation 13–22
industrial ecology education 22, 23
international programmes, limited effect of 16
ISO 14001 implementation 15
life cycle assessment (LCA) 19, 23
manufacturing sector 12
pollution awareness 12–13, 24
regional networks and industrial symbiosis 16–19, 23
Samsung Takeback and Recycling (STAR) programme 20–21
small-scale enterprises, environmental initiative challenges 15–16
social metabolism of energy and materials 22, 23
Index

steel industry life cycle assessment (LCA) 19
sugar industry and by-product management 17
Tata group of companies, sustainability focus 15
Tetra Pak, and extended producer responsibility (EPR) 20
textile industry resource recycling 21–2
traditionally recyclable materials and industrial waste, contrasting resource management 13–14
UN, National Cleaner Production Centre (NCPC), Delhi 16
waste management and sustainability measures 14–16
World Bank, ‘Environmental Management Capacity Building’ project 16
industrial ecology
academic interest expansion 2–3
geographic context appreciation, need for 3
Global North and Global South development level classification 5
industrialisation effects 7
institutional importance 6–7
international perspective 16, 59, 151–2, 228–33
transferability of practices from developed to developing countries 3–4
see also individual countries; waste industrial symbiosis
Africa, eco-industrial parks 32–5
business motivations 148
by-products, synergies 48, 54, 55, 56, 63, 64, 144
collaboration see UK–China collaboration for industrial symbiosis, and policy transfer analysis
economic coordination 148–9
Event Sequence Analysis (ESA) 152–3
and firm size, US 120, 121
future research 152–3
institutional capacity, building 145, 147–52
mechanism-based approach 146–52
mobilisation capacity 145
motivations and opportunities of actors, effects of 145, 147–52
network interactions and decisions made by particular people at particular moments 144–5, 147–52
process 143–6
product-based industrial ecologies, Japan 175–6
regional industrial system, global differences 151–2
regulatory pressure 147
self-regulation effects 151
societal pressures 147–8
utility synergies 144
varieties 142–56, 230
see also eco-industrial development; eco-industrial parks; waste industrial symbiosis (IS) comparative analysis, Europe 69–88, 228, 229
bilateral inter-firm residue flows 81, 83–4
Circular Economy 61, 74, 75, 76, 77, 79, 80, 81
collaboration processes 70–74
defining IS 72–4
ergy flows 73–4, 82
networks, incidence of 73, 80
place-oriented IS 74, 84
private and public sector involvement 80, 81
process-oriented IS 83
regional economic development initiatives 80–81
residue-oriented IS 73–4, 81, 83–4
resource recovery parks 77, 79, 81
terms, usage comparison 71
waste policies 81, 82, 84–5
see also Europe
informal waste disposal sector, China 101
information exchange see knowledge transfer
infrastructure synergies and energy generation, US 59–60
Innes, J. 145, 150, 152
innovation 100, 157–8, 167–8, 169, 201, 223–4
institutional capacity
Africa, eco-industrial parks 40–41, 42
China, eco-industrial park development 167
Colombia see Colombia, institutional capacity for sustainable industrial systems
industrial symbiosis varieties 145, 147–52
integrated farming research (IFR), Africa 36, 37–8
international bodies, support for Africa 35, 36–7, 38
International Council for Local Environmental Initiatives (ICLEI) 61, 212
international perspectives 16, 59, 151–2, 228–33
International Society of Industrial Ecology 59
Ioppolo, G. 2, 3
Isenmann, R. 69–88
ISO 14000 certification 15, 202
Jacobsen, N. 132, 209
Jain, S. 22
Janssen, M. 142, 175
Japan, product-based industrial ecologies 175–90, 228
Association for Electric Home Appliances (AEHA), performance guidelines 177, 181
closed-loop system 176, 186
consultation and localisation versus national integration 185–7
design for environment (DfE) guidelines 176, 178, 184
distribution system 177–8
design for environment (DfE) guidelines 176, 178, 184
distribution system 177–8
eco-towns with HARL recycling plants 179–81
eco-towns and Home Appliance Recycling Law (HARL) 176–81, 182, 186–7
Ecology Net Ltd, establishment of 183
economies of scale 182, 183, 186
government sponsorship 183, 186
individual producer responsibility through recycler integration 181–5
industrial symbiosis interactions 175–6
knowledge transfer 184, 185
national recycling capacity contribution 179
original equipment manufacturers’ (OEMs) responsibilities 178, 182–4, 185, 187
plant location decisions 185, 186
post-consumption recycling fee 177, 178, 181, 182, 186–7
recycling materials into appliance manufacturing process 184–5
see also manufacturing sector
Jensen, P 6, 81, 109, 118, 126, 133, 135, 229
Jiao, W. 4, 89
Jones, D. 158
Jung, S. 209, 210, 211, 224
Kakkar, M. 19
Kalundborg multi-industry park see under Denmark
Kapur, A. 17
Kaseva 34, 35, 36, 38, 42
Kennedy, C. 212, 216
Kennett, P. 6
Knight, L. 128
knowledge transfer 17, 73, 92, 184, 185
geographic proximity issue, Australia 131
knowledge resources, Colombia 194, 199–200, 203–4
see also education
Koenig, A. 61
Korevaar, G. 69–88
Korhonen, J. 131, 132, 175
Kronenberg, J. 30
Ladi, S. 91
Lalchandani, N. 20
land use
brownfield development, US 51, 52, 53, 54, 57, 60, 63
and new zone development, China 161, 162, 167
see also location
Index

landfill regulation 97–9, 101, 138, 213
Laybourn, P. 89, 94, 131, 135
Layton, A. 4
Leal, J. 195
learning see education; knowledge transfer
Lehtoranta, S. 169
Lei, Y. 209–27
Lever-Tracy, C. 160
Li, L. 224
Liang, S. 157, 209
Liberia 34, 36, 37, 38
life cycle assessment (LCA), India 19, 23
Lифset, R. 176
Lin, P. 169
Lindhqvist, T. 176
Liu, L. 6–7, 95, 157–74, 209, 210, 224, 230
local authorities’ role, Colombia 198–9
local community policies, shortage of, US 61–2
local governments and environmental protection policies, China 166–7, 168, 170–71
location
geographic proximity, Australia see Australia, bilateral symbiosis and geographic proximity issue localisation of waste generation and treatment/disposal, US 116–18, 122
location-specific features, Colombia 197–8
place-oriented industrial symbiosis, Europe 74, 84
plant location decisions, Japan 185, 186
relocation of backward industries, China 224–5
see also land use
Lombardi, D. 2, 30, 31, 69, 89, 112, 131, 133, 135
Lopes, M. 77
Lowe, E. 142, 209
Lowitt, P. 5, 38, 46–68, 108, 121, 228
Luo, Q. 91
Lyon, T. 206
Lyons, D. 1–11, 65, 74, 83, 108–25, 175, 228–33
McKinnon, D. 4
McKitterick, T. 59
MacLachlan, I. 108
McManus, P. 6, 73, 126–41, 229
Magrini, A. 76
Mahadev, R. 19
Malik, A. 109, 112
Mangan, A. 50–51, 57, 62–3
Mandi, M. 15
Manomaivibool, P. 3
manufacturing sector 12, 20–22, 116, 133–5
Japan see Japan, product-based industrial ecologies
Marsden, G. 91, 102
Marsh, D. 91, 102
Martens, P. 5
Martin, M. 60, 78
Massard, G. 69–88
Massey, D. 5
Mathews, J. 24, 89, 100, 102, 164, 165
Mathiyazhagan, K. 15
Matus, K. 162
Maudgal, S. 19
Maxwell, J. 206
Mayilvaganan, V. 21
Mbukigwe, S. 34, 35, 36, 38, 42
Miller, S. 3, 31, 34, 36, 37, 38, 41, 89
Mirata, M. 78, 79, 94, 133
mobilisation capacity 145, 194, 201, 204
Montiel, I. 192
Moraes, C. 15
Morrissey, M. 94
motivations and opportunities of actors, effects of 145, 147–52
Mouzakitis, Y. 158
Muduli, K. 13, 16
Müller, M. 176
Murakami, S. 184
Netherlands
Canal Zone and Biopark Terneuzen 151–2
industrial symbiosis characteristics 76–7, 80, 81, 82, 142
sustainable development of industrial parks 148, 150–52
networks
Europe 73, 80
incidence of, Europe 80
and industrial symbiosis, India
16–19, 23
interactions and decisions made by
particular people at particular
moments 144–5, 147–52
policy transfer, UK–China
collaboration 94
recovery and recycling networks,
Japan 178
symbiosis, Australia 130–31, 132, 134
Newsham, G. 224
Ng, L. 158
Nikolic, I. 38
non-conventional reuses, increase in,
US 115, 119–20, 121
non-hazardous industrial waste, US
see US, Pennsylvania industrial
waste management improvement,
non-hazardous industrial waste
(NHIW)
North, D. 6, 145
Ohnishi, S. 7
Olayide, O. 3–4, 5, 30–45, 228, 229, 230
Oliver, C. 145, 147
original equipment manufacturers’
(OEMs) responsibilities, Japan
178, 182–4, 185, 187
Ossebaard, M. 192
Ott, T. 175
Pandey, K. 19
Paquin, R. 38, 39, 82, 94, 109, 131,
133, 142
Pargal, S. 15
Park, H. 3, 108
Park, J. 109, 111, 113, 120, 122
Patchell, J. 7, 175–90, 228
Peck, J. 6, 92, 102, 148
Pellenbarg, P. 39, 77
Penn, A. 79
Pennsylvania see US, Pennsylvania
industrial waste management
improvement
Perez, C. 231
Peters, G. 164
Petersson, K. 78
Phillips, P. 31
place orientation see location
policies
carbon management initiatives,
China 223
collaboration processes, Europe 74
drivers, US, eco-industrial
development 60–63, 65
government sponsorship, Japan 183,
186
industrial waste management
improvement, US, Pennsylvania
112–13
initiatives, Colombia 197, 198–9
local community policies, shortage
of, US 61–2
local governments and
environmental protection
policies, China 166–7, 168,
170–71
policy transfer, UK–China see
UK–China collaboration for
industrial symbiosis, and policy
transfer analysis
regulatory enforcement and
consensual negotiation balance,
China 170
regulatory pressure 147
self-regulation effects 151
taxation 62, 97–9
waste and environmental regulation,
need for, Australia 138
waste regulation, Europe 81, 82,
84–5
political structure, Australia, bilateral
symbiosis and geographic
proximity issue 134
pollution
changing awareness of, India 12–13,
24
conscerns, China, eco-industrial park
development 157, 159, 163,
166
see also waste
Poole, M. 147, 152, 153
Portugal 77, 80–81, 82, 84
Posch, A. 30, 39, 132, 145
Pregernig, M. 65
Prince, R. 102
private sector involvement 51, 52, 53,
54, 55, 56, 63, 80, 81
process-oriented industrial symbiosis, Europe 83
product-based industrial ecologies see manufacturing
public sector involvement 63–4, 80, 81
Puig, R. 78
pulp and paper industries, Africa, recycling of waste materials 35
Puppim de Oliveira, J. 17, 191, 192, 195, 205
Qi, Y. 225
Qiu, J. 209
quality protocols and guidance standards, UK 99
Ramaswami, A. 212
Ramaswamy, R. 17, 21, 22
Rathi, A. 16
Raza, M. 5
recycling
eco-industrial parks, Africa 35
fees, Japan 177, 178, 181, 182, 186–7
individual producer responsibility, Japan 181–5
non-conventional reuses, increase in, US 119–20
traditionally recyclable materials, India 13–14, 20–22
Waste Resource and Action Programme (WRAP), UK 99
see also environmental concerns; waste
Reddy, R. 14
regulation see policies
renewable energy and energy from waste, US 59–60
residue
Europe industrial symbiosis 73–4, 81, 83–4
residual waste reuse, US, Pennsylvania 111–12, 113, 115, 122
see also by-products; waste
resource recovery parks 34, 35, 48, 52, 77, 81
see also eco-industrial parks
Rice, M. 108–25
Richards, D. 3
Rigg, J. 2
risk assessments, need for, US 122
Roberts, B. 30, 31, 40, 134, 136
Romero Arozamena, E. 69–88
Rose, A. 113
Rose, R. 91
Ruiz Puente, M. 69–88
Sakr, D. 170
Salmi, O. 89
Samsung Takeback and Recycling (STAR) programme, India 20–21
Sato, M. 179
Scheinberg, A. 40
Schiller, F. 2
Schôn, M. 76
Schwarz, E. 2, 132
Scott, W. 145, 193
Seely, A. 97, 99
self-regulation effects 151
Selznick, P. 193
Seuring, S. 176
Sharma, A. 19
Sharma, S. 14
Shenoy, M. 5, 12–29, 42, 228, 229
Shi, H. 108, 147, 148, 151, 158, 159, 168, 170, 175, 209
Simboli, A. 89
Singhal, S. 17
Skinner, M. 166
small-scale enterprises, India 15–16
Smith, M. 231
social indicators, Cleaner Production, Colombia 199, 203–4
social metabolism of energy and materials, India 22, 23
social proximity, Australia 131, 135–6
societal pressures 147–8
Soskice, D. 148, 151
South Africa 32–5, 38
South Korea 3, 38, 40, 108, 210
Spain 77–8, 81, 82, 84
Spekkink, W. 2, 6, 7, 40, 69–88, 142–56, 230
Srivastava, S. 176
Stead, D. 91, 102
steel industry life cycle assessment (LCA), India 19
Steinemann, A. 57
Steininger, K. 2, 132
Ster, T. 175
International perspectives on industrial ecology

Stone, D. 6, 90, 91
Streicher-Porte, M. 20
Stulgigross, D. 12
sugar industry and by-product management, India 17
sustainable development converging traditional practice and modern environmental protection, India 14–16
eco-industrial park development, China 164
eco-industrial parks, Africa see Africa, eco-industrial parks and sustainable development
institutional capacity see Colombia, institutional capacity for sustainable industrial systems
Suzhou Industrial Park (SIP), China 168, 211–12, 216
see also China
Swainson, R. 90, 91
Sweden 78, 80, 82
Switzerland 79, 80, 81, 82, 83, 84
Tan, H. 24, 100, 165
Tang, M. 169
Tanzania 34, 35–6, 38, 42
Tasaki, T. 177, 178
Tata group, India 15
taxation 62, 97–9
see also policies
technological innovation 100, 157–8, 167–8, 169, 201, 223–4
Terazono, A. 178, 186
Terneuzen Biopark, Netherlands 151–2
see also Netherlands
Tetra Pak, and extended producer responsibility (EPR), India 20
textile industry resource recycling, India 21–2
Thapliyal, A. 109, 112
Theodore, N. 148
third-party facilitator approach 94, 103, 133, 136
Thompson, R. 13
Tian, J. 2, 6, 108
Tianjin Economic-Technological Development Area (TEDA), China 92–7, 100–101, 163, 168
see also China
Togo, M. 36
Tojo, N. 180
traditional practice, India see India, converging traditional practice and modern environmental protection
training see education
transport costs and residue types, US 118, 122
transport hubs, Australia 134
Tsay, A. 153
Tuan, C. 158
Tudor, T. 30, 31, 39
UK
Circular Economy policy 61, 79, 80, 81, 94, 100
industrial symbiosis characteristics 61, 79, 80, 81, 84
National Industrial Symbiosis Programme (NISP) 50, 57, 81, 82, 92–5, 133, 135, 142
UK–China collaboration for industrial symbiosis, and policy transfer analysis 89–107, 230
‘action-oriented intentional learning’ 92
Circular Economy development 94, 100
company liability and duty of care, UK 99
EU SWITCH-Asia programme funding 94, 95
future research 103
implementation and enforcement standards, consideration of differing 103
industrial symbiosis promotion, China 100–101
industrial symbiosis support, UK 99
industrialisation effects, China 95
informal waste disposal sector, China 101
landfill bans, UK 99
landfill disincentives, China 101
landfill disincentives and landfill tax, UK 97–9
national policy context, China 100–101
national policy context, UK 97–9
operational delivery 94–5
policy transfer network 94
quality protocols and guidance standards for recovered materials being used as inputs, UK 99
resource efficiency focus, China 100
suitability assessment 91–2
third-party facilitator approach 94, 103
Tianjin Economic-Technological Development Area (TEDA), China 92–7, 100–101, 163, 168
Waste Resource and Action Programme (WRAP) and recycling, UK 99
Zero Waste Economy (ZWE) proposal, UK 97
UN Habitat report 61
UN National Cleaner Production Centre (NCPC), Delhi 16
UNEP (United Nations Environment Programme) Cleaner Production Technology (CPT) 16, 35
Mainstreaming Environment and Sustainability in African Universities (MESA) initiative 36–7
UNIDO (United Nations Industrial Development Organisation), Cleaner Production Technology (CPT) 35, 38
Unruh, G. 169
US, eco-industrial development progress analysis 46–68, 228 academic support 59, 65
American Planning Association (APA) involvement 60, 61, 62–3, 65
biomass plants 51, 53, 60
brand-marketing 58
brownfield development 51, 52, 53, 54, 57, 60, 63
by-product synergies (BPS) 48, 54, 55, 56, 63, 64
Circular Economy policy, influence of 61
climate change considerations 62–3
collaborative environmental management features in industrial parks 50
combined heat and power plant (CHP) 48, 52, 53, 60
contaminated land restoration 60
eco-industrial park definition 46–7
eco-industrial parks (EIP) 46–54 passim, 57–65 passim
economic benefits 57–8, 62
economic development considerations 47
energy generation 59–60
environmental concerns 50, 57–9, 62
first wave developments 46–8, 49, 50, 57, 58, 60
funding considerations 63–4, 65
future developments 64–5
green jobs and green marketing focus 57–8, 62
holistic development 51, 52, 53, 54, 58–9, 61
International Council for Local Environmental Initiatives (ICLEI) involvement 61
local community policies, shortage of 61–2
new wave projects 50–57
new wave projects, drivers for 57–64
policy drivers 60–63, 65
private sector involvement 51, 52, 53, 54, 55, 56, 63
public sector funding 63–4
regional non-park projects 50, 57
resource recovery parks 48, 52
tax considerations 62
waste tracking suggestion 64–5
US, Pennsylvania industrial waste management improvement 108–25, 229
economies of scale and re-use capacity 120
financial constraints 113
future research 122
industrial symbiosis by firm size 120, 121
policy context 112–13
residual waste reuse 111–12, 113, 115, 122
risk assessments, need for 122
source-reduction strategy requirement for each type of waste 112
US non-hazardous industrial waste estimates 109, 110
US, Pennsylvania industrial waste management improvement, non-hazardous industrial waste (NHIW) 110–20
combustion residue in Portland cements 111, 113
Combustion Residue (coal ash) management and environmental impact 111–12, 113, 122
geographic variations 115–20
industrial symbiosis increase 118–19
localisation of waste generation and treatment/disposal 116–18, 122
manufacturing economy evolution 116
non-conventional reuses, increase in 115, 119–20, 121
Pennsylvania Department of Environmental Protection (PA DEP) programme 109–10
transport costs and residue types 118, 122
US Resource Conservation and Recovery Act (RCRA) 110
utility synergies, industrial symbiosis 144
Van Beers, D. 6, 83, 108
Van Berkel, R. 15, 16, 132, 144, 176, 179, 206
Van Beukering, P. 14
Van de Ven, A. 152
Van der Veeken, T. 39
van Hoof, B. 7, 40, 191–208, 229, 230
Van Leeuwen, M. 175
Van Rossem, C. 176
Varun, I. 19
Vassanadumrongdee, S. 3
Veiga, L. 76
Velázquez, L. 191
Veleva, V. 47
Venkatesan, R. 21
Verguts, V. 69–88
Vermeulen, W. 3, 39, 142, 151
veto system based on environmental performance, China 168
voluntary environmental agreements, Colombia 199
Wang, D. 169
Wang, H. 4–5, 157, 165, 209–27, 228, 229
Wang, Q. 6, 38, 50, 70, 79, 81, 89–107, 122, 133, 230
Wang, S. 101
Ward, J. 113
waste by-product and waste, distinction between, Australia 128–9
Common Effluent Treatment Plants (CETPs), India 16–17
definition problems, Australia 128
energy from waste, US 59–60
environmental concerns see environmental concerns hazardous materials, exposure to, Africa 36
informal waste disposal sector, China 101
landfill regulation 99, 101, 138, 213
management improvement see US, Pennsylvania industrial waste management improvement policies, Europe 81, 82, 84–5, 97
regulation, need for, Australia 138
and sustainability measures, India 14–16
tracking suggestion, US 64–5
Waste Resource and Action Programme (WRAP), UK 99
and wastewater reuse, China 164
see also by-products; industrial ecology; industrial symbiosis; pollution; recycling; residue
Wath, S. 20
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wernet, G.</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>White, R.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Whiteley, N.</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Wilson, D.</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Wolf, A.</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Wong, T.</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>World Bank</td>
<td></td>
<td>‘Environmental Management Capacity Building’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>project, India 16</td>
</tr>
<tr>
<td>Yang, W.</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>Yellishetty, M.</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Yong, G.</td>
<td>31, 39</td>
<td></td>
</tr>
<tr>
<td>Yu, C.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Yuan, Z.</td>
<td>3, 148, 157, 164, 165</td>
<td></td>
</tr>
<tr>
<td>Zero Waste Economy (ZWE) proposal, UK 97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang, B.</td>
<td>157–74</td>
<td></td>
</tr>
<tr>
<td>Zhang, L.</td>
<td>147, 151, 164, 209, 212</td>
<td></td>
</tr>
<tr>
<td>Zhang, M.</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>Zhang, S.</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Zhang, X.</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Zhao, H.</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>Zhu, Q.</td>
<td>131, 149</td>
<td></td>
</tr>
<tr>
<td>Zhuang, Z.</td>
<td>108</td>
<td></td>
</tr>
</tbody>
</table>