Acronyms and symbols

\(\alpha \)
constant term in a Fama UIP equation

\(a \)
coefficient of the home output gap in a Taylor Rule equation

\(a' \)
coefficient of the foreign output gap in a Taylor Rule equation

\(b \)
coefficient of the inflation terms in a Taylor Rule equation

\(b' \)
coefficient of the foreign inflation terms in a Taylor Rule equation

\(\beta \)
Fama’s beta coefficient, i.e., the coefficient of the lagged interest rate differential in a Fama equation

\(\beta_1 \)
(1 – \(\beta \)) the coefficient of ID(t) in the expression for the excess return from going long on dollars, \(ER_s \)

\(\beta' \)
(\(\beta - 1 \)) the coefficient of ID(t) in the expression for the excess return from going long on fx, \(ER_{fx} \)

\(\beta_1 \)
coefficient of the forward premium (FP) in a smooth transition nonlinear UIP econometric model

\(\beta_2 \)
coefficient of the \([FP \times G]\) term in a smooth transition nonlinear UIP econometric model

\(\beta_t \)
the beta coefficient in the inactive zone of the fx market

\(\beta_A \)
the beta coefficient in the active zone of the fx market

\(B \)
Fama’s \(\beta \) in Synthesis Model I if the effects of a variable “risk premium” and a variable \(ds^* \) term are zero

\(B&vW \)
Bacchetta and van Wincoop

CAPM
capital asset pricing model

CIP
covered interest parity

DM
Deutsch Mark

1 In general: (a) any symbol, \(Z \), relates to the actual value of \(Z \) in the home country, the USA; (b) \(Z^* \) refers to the subjectively anticipated value for \(Z \); (c) \(E[Z] \) is the true expected value for \(Z \); and (d) \(Z' \) is the actual value of \(Z \) in the foreign country.
Exchange rate economics

e random term in the equation for the fundamentals determining ID

ϵ exchange rate prediction error

$E[\]$ expected value operator

$E^*[\]$ subjectively anticipated value operator

ER_s \textit{ex post} excess return from going long on dollars

ER_{fx} \textit{ex post} excess return from going long on fx, which equals $(-ER_s)$

ER^*_s \textit{ex ante} excess return from going long on dollars

ER^*_{fx} \textit{ex ante} excess return from going long on fx

$\phi(t+k)$ actual rate of decay in a nonzero ID from period $t+k-1$ to period $t+k$

$\phi^*(t)$ subjectively anticipated (as of period t) rate of decay for a nonzero ID

Φ true expected value for the rate of decay in ID

f log of the forward exchange rate

FP forward premium, $f - s$

fx foreign exchange

G transition function that determines the degree of reversion of deviations from UIP toward zero

γ coefficient that relates ds to the interest rate differential

$G&T$ Gourinchas and Tornell

Γ speculators' demand or supply for fx curve

η_s home short-run price elasticity of demand for imports (defined to be positive)

η_L home long-run price elasticity of demand for imports (defined to be positive)

η'_s foreign short-run price elasticity of demand for home exports (defined to be positive)

η'_L foreign long-run price elasticity of demand for home exports (defined to be positive)

i home nominal interest rate

i' foreign nominal interest rate

ID home minus foreign nominal interest rate differential

ID* subjectively anticipated future interest rate differential

\bar{ID} average interest rate differential

ID_{ST} short-term interest rate differential
Acronyms and symbols

ID_{LT} long-term interest rate differential
J home balance of trade in fx units
J1 coefficient of s(t) in the J function; this equals η_s + η'_s < 0
J2 coefficient of s(t–k) in the J function; this equals η_L + η'_L > 0
M-L Marshall-Lerner Condition
M&P Molodtsova and Papell
μ exchange rate multiplier
n(t+k) optimum speculative time horizon for carry-trade in period t+k
Π profit from going long on dollar assets, except in section 2.8
Π* subjectively anticipated profit from going long on dollar assets
Π desired home inflation rate in a Taylor Rule equation in section 2.8
Π' desired foreign inflation rate in a Taylor Rule equation
π actual home (USA) inflation rate
π' actual foreign inflation rate
p log of the home price index
p' log of the foreign price index
Pr probability of being in Regime 2 of the fx market
θ weight given to the long-run value for the spot rate in a regressive expectations equation
r desired long-run value for the home real rate of interest in a Taylor Rule equation
r' desired long-run value for the foreign real rate of interest in a Taylor Rule equation
RE rational expectations
ρ threshold magnitude or “risk premium”
ρ* subjectively anticipated value for the “risk premium”, E*[ρ]
ρo exogenous component of the “risk premium”
ρ^s implicit return from the safe-haven aspect of the dollar
ρ^b default risk premium
ρ' coefficient that relates the “risk premium” to the interest rate differential
S bilateral nominal exchange rate in $ per unit of fx
s log of S
s^o log of the subjectively anticipated exogenous long-run equilibrium value for the exchange rate
s*(t) log of the subjectively anticipated (as of period t) value for the spot rate n(t) periods forward

\(\tau \) random component of the actual rate of decay, i.e., \(\phi = \Phi + \tau \)

UIP uncovered interest parity

u(t+k) forecast error when using regressive expectations

V the percentage change in: the spot rate, or the excess return from going long on fx, or the nominal money supply

\(v(t) \) random component of ID in Gourinchas and Tornell (2004)

\(W_I \) weight given to \(\beta_I \) when calculating Fama’s \(\beta \)

\(W_A \) weight given to \(\beta_A \) when calculating Fama’s \(\beta \)

\(\Omega \) true expected value for cumulative net interest from carry-trade over the optimum speculative time horizon

\(\Omega^* \) subjectively anticipated value for cumulative net interest from carry-trade over the optimum speculative time horizon

X vector of missing variables in a Fama equation

Y(t) \(s(t-1) \) for extrapolative expectations; \(E^*[s(t)] \) as of period \(t-1 \) for adaptive expectations; \(s^*o \) in regressive expectations

y(t) home output gap in a Taylor Rule equation

y'(t) foreign output gap in a Taylor Rule equation

\(\Psi \) number of speculators who believe that the euro will either appreciate or depreciate

z fundamentals that determine ID in Gourinchas and Tornell (2004)

Z anticipated cumulative “risk premium” over the optimum speculative time horizon