Index

Aage, Hans	66
Aaheim, Asbjorn	144
Adelman, Morris Albert	56, 62
Adriaanse, Albert	176, 177
AES (Allen partial elasticity of substitution)	70, 72
Agarwal, Anil	47, 143, 149
Agenda 21	1
Agras, Jean	88
Albers, Heide J.	108
Allen, Roy G.	70
Allen partial elasticity of substitution (AES)	70, 72
ambiguity	see uncertainty
Anand, Sudhir	11, 47
Anderson, Dennis	86
Anderson, F.J.	100
Ando, Amy W.	111
Annan, Kofi	117
anthropocentrism	9, 191
Aronsson, Thomas	146, 167
Arrow, Kenneth J.	23, 97, 130, 133, 144, 145, 147
Asheim, Geir B.	132, 133, 141, 142, 147, 153, 167
Atkinson, Anthony B.	147, 155, 158
Atkinson, Giles	12, 87, 142, 145, 147, 151, 155, 168
‘Atkinson’ income	155
Atkinson index	158–9
augmenting-resource technical progress	74, 75, 76
Ausubel, Jesse H.	83
autocracies	91
axiomatic analysis	115
Ayres, Robert U.	34, 55, 57, 75, 84, 99, 172, 175, 188, 190
Azar, Christian	10, 30, 35, 36, 38, 48
backstop technology	54, 56, 59, 66
Baldwin, Richard	82, 83, 88, 93
Bandyopadhyay, Sushenjit	85, 88
Barbier, Edward B.	26, 99, 103, 111, 116
Barnett, Harold J.	50, 63
Barney, Gerald O.	51
Barrett, Scott	12, 91
Barro, Robert J.	14, 47, 82, 143, 167, 203
Barry, Brian	9, 20, 25, 27, 79
Bateman, Ian	109
Bättig, Michèle	91
Baumol, William J.	74, 190
Becker, Gary S.	81
Becker, Robert A.	167
Beckerman, Wilfred	21, 24, 51, 53, 56, 78, 82, 84, 122–3, 126, 129, 197
Behrens, Arno	178
Bell, David E.	114
Beltratti, Andrea	12, 108
Berck, Peter	61, 77
Berkes, Fikret	197
Bernauer, Thomas	91, 93
Berndt, Ernst R.	70, 72, 100
Berrens, Robert P.	110–11
Best, Aaron	172, 180
Biancardi, C.	66
Binder, Seth	93
Binswanger, Mathias	77
biodiversity	80, 103, 106, 116–18, 130
opportunity cost problem	124–5
Bishop, Richard C.	111, 113, 130
Blanchette, Stephen	55
Bleys, Brent	154, 161
Bodansky, Daniel	107, 110
Boehmer-Christiansen, Sonja	110
Bond, Craig A.	91
Bongaarts, John	124
Boserup, Ester	101
bounded rationality	13
Bovengaer, A.Lans	12
Boyce, James K.	91, 92
Boyd, R. 63
Boyer, Joseph 29, 32
Boyle, Kevin J. 109
Brennan, Andrew John 164
Bringezu, Stefan 99
Bromley, Daniel W. 85
Bromley, D.W. 109
Brookes, Len 77
Broome, John 10, 30, 35, 47
Brouwer, Roy 182
Brown, Gardner M. 64, 65, 69–70
Brown, Katrina (1994) 106
Brundtland Report (World Commission on Environment and Development) 47
Brunnermeier, Smita B. 87
Burda, Michael 168
Cameron, James 110
capital
conserving/preserving 9
defined 7, 8–9
human 1, 7, 9, 167
man-made/human-made see man-made capital
natural see natural capital
carbon dioxide (CO\textsubscript{2}) 80, 90, 118, 119, 151
and sustainable development 30, 39–40, 47–8
Carpenter, Richard A. 111
Carson, Carol S. 196
Carson, Rachel 52
Carson, Richard T. 85, 130
Carson, R.T. 109
Carter, Neal 92
Castañeda, Beatriz E. 154, 161
Castle, Emery N. 95, 110–11
categorical imperative (Kant) 16–17
Cavendish, William 86
CBA (cost-benefit analysis) see cost-benefit analysis (CBA)
CES see constant elasticity of substitution (CES)
ceteris paribus assumptions 6, 33, 77, 116
CFCs (chlorofluorocarbons) 107, 128
Chambers, Nicky 172
Chang, Kuo-Ping 72
Chapman, Duane 34, 88
Chhinh, Nyda 154
Chiang, Alpha C. 59, 69, 167
Chichilnisky, Graciela 24–5, 71, 108
chlorofluorocarbons (CFCs) 107, 128
Ciriacy-Wantrup, S.V. 110, 125, 131
Clapp, Jennifer 87
Clark, Colin W. 118, 119
Clarke, Matthew 154
Clemens, Michael 147
climate change 11, 107, 161
controversy 44–5
cost-benefit analysis 1, 29, 30, 31, 34, 36, 38, 44, 45
discounting see discounting/discount rate
extreme outcomes 39–40
Nordhaus’ approach towards 29–34 critique 2, 30, 34–44
strong sustainability 42, 43
substitutability assumption 29–45
substitutability of natural capital 40–44
see also greenhouse gas emissions, reduction
Cline, William R. 10, 30, 34, 35
closed economy, genuine savings in 23, 133–41
Club of Rome, Limits to Growth report 51, 53
coal mining 25–6
Cobb, Clifford W. 154, 156, 157, 159–60, 161, 162, 165
Cobb, John B. 154, 156, 157, 159–60, 161, 162, 165, 166
Cobb–Douglas production function 31, 69, 72, 73, 75, 167
Colby, Michael E. 24
Cole, H.S.D. 51
Cole, Matthew A. 84, 87, 88, 93, 121, 197
Commission of the European Communities–Eurostat 195–6
Common, Mick S. 88, 97
compensation of future generations 78–81
complementarity, time-series econometric studies 70, 71
constant elasticity of substitution (CES) 67, 68, 69
consumer sovereignty 14
consumption discounting 10
tingent valuation (CV) studies 79, 80
Converse, A.O. 66
Costanza, Robert 25, 125–6, 127, 154, 157, 159
cost-benefit analysis (CBA), climate change 1, 29, 30, 31, 34, 36, 38, 44, 45
Crafts, Nicholas 165
critical natural capital (CRITINC) 2, 26, 130
Cropper, Maureen 88, 92
cross-section analyses 70
Crowards, Tom M. 110, 126
Cruz, Wilfrido 147
Cummings, R.G. 108

Daily, Gretchen C. 47, 124
Daly, Herman E. 25, 26, 28, 29, 51, 67, 73, 103, 122, 154, 157, 159, 161, 165–6, 175, 197
d’Arge, Ralph C. 111
Dasgupta, Partha 18, 19, 23, 37, 44, 47, 51, 54, 67, 69, 75, 99, 100, 115, 122, 132, 144, 147, 197
Dasgupta, Susmita 92
Dauvergne, Peter 87
Davis, Graham A. 147
DDT (dichlorodiphenyltrichloethane) 52, 107
de Boer, Bart 180
De Bruyn, S.M. 88, 100
Deadman, D. 70
Dean, Judith M. 87
defense expenditures 152, 156, 157–8
Dellink, Rob 186
Denniss, Richard 154, 159, 161
deontological approach 5, 16, 17, 46
descriptive approach, discounting 32, 34, 35
Deshmukh, Sudhaker D. 59–60
Devarajan, Shantayanan 141
Diamond, P.A. 109, 130
Diefenbacher, Hans 154, 155, 161
Dietz, Simon 35, 40, 41, 101, 164
Dincer, Ibrahim 169
discouting/discount rate 33, 36, 192

Dixit, A. 167
dMC (domestic material consumption) 178
DNA (deoxyribonucleic acid) 130
Dobbs, I.M. 130
domestic material consumption (DMC) 178
domestic process output 177
Drèze, Jean 124
dynamic optimisation model 133–4
Dyson, Tim 124, 131

Earth Summit (2012) 1
East Asia 150
Easterlin, Richard A. 43
eccological deficit 170
eccological economics 28
eccological footprints (EFs) 6, 188
bioproductive land area 170, 172
critique 172–5
evidence 172
eccological rucksacks 176
econometric studies 70, 87–8
Economic Aspects of Welfare (EAW) 152
economic growth, and environment 3, 28, 81–94
ecosystems, biodiversity see biodiversity
Ehrenfeld, David 107
Ehrlich, Anne H. 47, 103
Ehrlich, Paul R. 47, 103, 104
Eisner, Robert 152
EKC (Environmental Kuznets Curve) see Environmental Kuznets Curve (EKC)
Ekins, Paul 26, 34, 88, 93, 130, 164, 181, 182, 186
El Serafy, Salah 147, 148, 161, 195
easticity of substitution, constant 68, 69, 71
elites 91
Elliott, Robert J.R. 87
Endangered Species Act, US 110–11
energy infrastructure 55, 56
ENGOs (environmental non-
governmental organizations) 92
environment, and economic growth 3, 28, 81–94
case for environmental optimism 82–5
case for environmental pessimism 85–7
EKC findings, unpleasant implications 93–4
empirical evidence 87–94
role of governance, inequality and civil society 90–93
whether environmental improvements policy-induced 89–90
environmental damage, long-term 159–61
environmental degradation 30, 78–94, 100, 156
economic growth and environment 3, 81–94
long-term, whether future generations can be compensated for 78–81
Environmental Kuznets Curve (EKC) 88, 89, 97
findings, unpleasant implications 93–4
environmental non-governmental organizations (ENGOs) 92
environmental optimism 81
environmental pollution see pollution
Environmental Space 169
environmentally-weighted material consumption (EMC) 180
ethics of sustainable development 15–22
Euler equations 167
Ewing, Brad 171
exponential reserve index 121, 122, 131
Faber, Malte 25
falsifiability of paradigms, difficulty of 3–4, 192–3
Fankhauser, Samuel 34, 149
FAO (Food and Agricultural Organization) 123
Farrow, Scott 61, 62, 65
Farzin, Y. Hossein 64, 91
Faucheux, Sylvie 106, 164
Ferguson, Andrew 174, 190
Ferguson, Dienneke 96, 97
Ferrari, Sylvie 169
Ferraz do Amaral, Claudio A. 147
Ferreira, Susana 133
fertility rates 84–5
Fiala, Nathan 172
Field, Barry C. 64, 65, 69–70, 72
Fischer-Kowalski, M. 175
fish resources 130
Fisher, Anthony C. 41–2, 64, 130
Fisher, Irving 50, 153
Flavin, Christopher 55, 56
Flores, Nicholas E. 85
Folke, Carl 197
food resources 122–4
fossil fuels 173
Foster, Vivien 80
Fredriksson, Per G. 93
Freeman, Myrick A. 130
Froger, Géraldine 106
future and present generations see generations, present and future
Galeotti, Marzio 88
Gallet, C.A. 88
game theory 130
Gardiner, Stephen M. 41
Garrod, Guy 109
Gawel, Erik 178
GDP (gross domestic product) 93, 195, 196, 197
strong sustainability, measuring 178, 182
technical progress 75, 76
weak sustainability, measuring 142, 151, 152, 154, 155, 162, 163, 164, 166, 168
general equilibrium model complex 204–6
genuine savings 144, 145
Hotelling and Ramsey rules 200–206
simple 200–203
generations, present and future 12, 14, 15–16
environmental degradation, compensation for 78–81
Genuine Progress Indicator (GPI) 5, 132, 164, 165, 166
studies 154–6
genuine savings (GS) 23, 132–51
in closed economy 23, 133–4
dynamic first-order conditions 137
equations of motion 137
general equilibrium effects 144, 145
Hamiltonian 136
keeping rate above zero 132, 133
measurement problems 143–7
in open economy 141–3
regional comparison 150
shocks 133, 145, 146, 167
versus traditional net savings 132
World Bank computations 5, 147–51, 163, 194
Georgescu-Roegen, Nicholas 51, 54, 66, 99
Gerlagh, Reyer 95, 184–6
Germany 155
Gil, Sebastian 154
Gini coefficient 155, 156, 158
Global 2000 Report to the President of the US (1980) 51
Global Biodiversity Programme (UNEP) 110
global environmental resources 118
Gnègnè, Yacouba 133
gNNP (net national product) 152
GNP (gross national product) 127, 168, 182, 195, 196, 197
and resources 75, 76, 93
weak sustainability, measuring 142, 151, 152, 154, 155, 162, 163, 164, 166, 168
Goeller, H.E. 56–7
Gollier, Christian 36
Goodland, Robert 25, 26, 28
Gordon, Robert B. 56
GPI (Genuine Progress Indicator) see Genuine Progress Indicator (GPI)
Graddy, Kathryn 91
Graham-Tomasi, Theodore 100
Grazi, Fabio 172
Grebenstein, Charles 72
green awareness 83
green growth 1
Greened National Statistical and Modelling Procedures (GREENSTAMP) 6, 180, 182–3, 184, 186, 187, 189
greenhouse gas emissions, reduction 29–30, 40, 91, 143, 191
see also climate change
Gregory, Paul R. 72
Gren, I.M. 108
Griffin, James M. 70, 72
Grifiths, Charles 88
Gross, L.S. 75
Grossman, Gene M. 83, 88, 90, 93, 97
growth discounting 10, 32
GS (Genuine Savings) see genuine savings (GS)
Guenno, G. 154, 161
Guha, Ramachandra 47
Gutes, Maite Cabeza 22
Hageman, Anja 62, 139, 147
Hall, Darwin C. 63
Hall, Jane V. 63
Halvorsen, Robert 61, 62
Hamilton, Clive 132, 154
Hamilton, Kirk 12, 23, 87, 138, 139, 140, 142, 144, 145, 147, 148, 154, 159, 161, 168
Hammond, P.J. 47
Hanley, Nick 79, 80
Harbaugh, W. 88
Hardin, Garrett 118
Harris, Michael 168
Harrison, G.W. 108, 130
Hartwick, John M. 1, 22, 61, 62, 65, 69, 100, 133, 135, 139, 141, 146, 147, 167
Hartwick rule 22
Hausman, Daniel M. (1992) 13
Hausman, J. 109, 130
HDI (Human Development Index) 133
Heal, Geoffrey 19, 29, 36, 51, 54, 67, 69, 75, 99, 100, 108
Heinen, J.T. 47
Helm, Dieter 30, 41, 121
Herendenen, Robert A. 169
Heyes, Anthony G. 13
Hicks, John Richard 24, 153
Hicks–Kaldor test 24
Hicks-neutral technical progress 75

Eric Neumayer - 9781781007082
Downloaded from Elgar Online at 12/18/2018 09:51:58AM
via free access
Weak versus Strong Sustainability

Hille, John 169
Hinterberger, Friedrich 175, 176, 178–9, 189, 190
Hoevenagel, Ruud 109
Hofkes, Marjan 186
Hohl, Andreas 111, 114
Hohmeyer, Olav 26, 55, 101
Holland, Tim G. 92
Holling, C.S. 111, 116
Holtz-Eakin, Douglas 88, 101
Hotelling, Harold 57, 58, 61, 138, 141, 148, 205
Hotelling rule
 genuine savings 138
 resource constraints 57–8, 59, 61, 62, 100
 in simple general equilibrium model 200–203
Howarth, Richard B. 14, 34, 77, 100
Hudson, Edward 72
Huesemann, M.H. 55
Hueting, Roefie 6, 25, 26, 98, 164
 pioneering work 180–81
 sustainable national income
 according to 180, 184–6, 187, 189
 human capital 1, 7, 9, 167
Human Development Index (HDI) 133
human-made capital see man-made capital
Hung, N.M. 146
Hüttler, Walter 175
hybrid indicators, strong sustainability (SS) 6, 180–88
hydrogen 55
hyperbolic discounting 36, 37
ideal types 12
ignorance
 coping with 107–15
 natural capital 102, 105–15
 veil of ignorance (Rawls) 16–17
Ilg, L. 52
IMV 173
income
 ‘Atkinson’ 155
 inequality 155–6, 158–9
 ‘psychic’ 153
 sustainable national (Hueting) 180, 184–6, 187, 189
income–expenditure cycle 50
indeterminacy see ignorance
Index of Sustainable Economic Welfare (ISEW) 5, 132, 151–63, 164, 165, 166
 accumulation 160
 defensive expenditures 152, 156, 157–8
 environmental damage, long-term 159–61
 income inequality 158–9
 methodological problems 156–63
 resource depletion 161–3
 review 154–6
 threshold effect 154–5, 162
industrialisation, effects 52
interest rates, resource constraints 58, 59, 61
inter-generational equity/fairness 10, 12–13, 29, 35
Intergovernmental Panel on Climate Change see IPCC
(Intergovernmental Panel on Climate Change)
International Energy Agency (IEA) 90
International Society for Ecological Economics (ISEE) 25
intertemporal arbitrage 58
intra-generational fairness 12, 13, 47
IPCC (Intergovernmental Panel on Climate Change) 15, 30, 42
 and natural capital 107, 110
ISEW (Index of Sustainable Economic Welfare) see Index of Sustainable Economic Welfare (ISEW)
Islam, Sardar M.N. 154
Jackson, Tim 98, 154, 155, 156, 158
Jacobs, Michael 25, 47, 109, 126, 157, 194
Jänicke, Martin 83
Jevons, William Stanley 50
jewellery 47
Jordan, Andrew 109, 130
Jorgenson, Dale 72
Kahneman, Daniel 13, 109
Kaldor, Nicholas 24
Kallis, Giorgos 98
Kammen, Daniel M. 55
Index

Kanbur, Ravi 85
Kant, Immanuel 16, 17, 46, 47
Kaufmann, Robert K. 76, 100
Keefer, Phil 115
Kelsey, David 130
Khalil, E.L. 66
Khazzoom, J. Daniel 77
Klepper, Gernot 25
Kneese, Allen V. 175
Knetsch, Jack L. 108–9
Knight, F. 130
Koetse, Mark J. 71
Kolar, Jan 183
Kopp, Raymond J. 194
Kot, Hagai 154
Koubi, Vally 91, 93
Krisström, Bengt 85
Krueger, Alan B. 50
Krutilla, John V. 41–2, 111
Krutilla–Fisher approach 41, 42
Kuhn, Thomas S. 29
Kummel, R. 66
Kuznets, S. 88

Lackner, Klaus S. 55
Lagrange-multiplier 59, 136
Lancaster, Kelvin J. 144
Lawn, Philip A. 153, 154, 160, 164, 168
LDCs (Less Developed Countries) 93
Lecomber, R. 78, 95
Leggett, Jeremy 43
Lenssen, Nicholas 55, 56
Leontief production function 69
Levinson, Arik 87
lexicographic preferences 80
Li, Quan 91

Limits to Growth report, Club of Rome 51, 53
Lind, Robert C. 38
Lipsey, Richard G. 144
Lipton, Michael 123
List, J.A. 88
Liston-Heyes, Catherine 13
Livernois, John 58, 61
Lockhart, J.E. 90
Löfgren, Karl-Gustaf 146, 167
Loomes, Graham 114
Lopez, Ramon 85–6
Low, Patrick 87
Luks, Fred 178–9

M3ED (multi-sectoral dynamic simulation model) 183
Machina, Mark J. 115, 130
Mackellar, F. Landis 61, 62, 63, 65
MacLean, Douglas 130
macroeconomics 23, 50
Magnani, Elisabetta 92
Magnus, J.A. 72
Malthus, Thomas Robert 50
man-made capital 1, 7, 9, 100
genuine savings 133, 146
substitution with 67–74
Manne, A.S., Richels, R.G. 32
Mansfield, Carol 100
Mansson, B.A. 66
marginal rate of substitution (MRS) 68
marginal revolution 50
marginal utility of consumption 32, 44
Markandya, Anil 32, 71, 82, 84
Marks, Nick 154, 155, 156
Marshall, Alfred 50
Martin, P. 83
Martinet, Vincent 10
Martinez-Alier, Joan 85
Martinot, Eric 55
material flows (MF) 6, 175–80, 196
critique 178–80
evidence 176–8
Materials Policy Commission (US) 51, 56
Matthews 176–7, 179, 189
maximin rule 18, 19
Max-Neef, Manfred 154
Mayo, Ed 156
McCormick, John 52
Meadows, Dennis 51, 52, 57, 131
measure of economic welfare (MEW) 152
Mendelsohn, Robert O. 37, 61
MF see material flows (MF)
Mikesell, Raymond F. 23, 99
Mill, John Stuart 50
Miller, Merton H. 61
Miller, Steven M. 75
Millner, Anthony 48
Milne, Jennifer 79, 80
Mishan, Ezra J. 51, 159
Mitchell, R. C. 109
Mitchell, Robert 130
Moazzami, B. 100
Weak versus Strong Sustainability

Moffatt, I. 154, 161
Moomaw, W.R. 88
Moore, David J. 147
Moran, Daniel D. 170
Morse, Chandler 50, 63
Mourato, Susana 80
MRS (marginal rate of substitution) 68
Myers, Norman 117, 122

Narain, Suita 47, 143, 149
natural capital 1, 102–31
 basic life-support function 102, 103, 115, 117, 193
 biodiversity 80, 103, 106, 116–18, 124–5, 130
 and climate change 42–3
 critical 2, 26, 130
 defined 9
 distinctive features 103–4
 food resources 122–4
 forms 26, 102, 193
 preservation 115–24
 global environmental resources 118
 ignorance 102, 105–15
 coping with 107–15
 irreversibility of destruction 102, 104
 opportunity cost problem 4, 124–7
 option/quasi-option values 107–9, 130
 precautionary principle 4, 102, 109–10, 194
 preservation 102–31
 forms to be preserved 115–24
 production, natural resources for
 119–22
 risk 4, 102, 104–6, 115
 coping with 107–15
 safe minimum standards 4, 102, 110–15, 125, 126, 194
 stocks of 26
 and strong sustainability 26, 80–81, 94, 128
 substitutability 33, 40–44, 192
 toxic pollutants, accumulating
 118–19
 ‘unacceptably high costs’ 129
 uncertainty 4, 102, 106, 115, 125
 coping with 107–15
 and weak sustainability 23, 52–3, 94, 128

natural resources, for production 3, 119–22
neoclassical economics 2, 50, 107, 108
net national product (gNNP) 152
net primary productivity (NPP) 122, 170
Neumayer, Eric 13, 41, 47, 84, 87, 88, 90, 91, 93, 121, 124, 142, 143, 148, 149, 150, 156, 161, 162, 197
New Zealand 162–3
Ng, Yew-Kwang 10
nitrogen oxide 89
non-compensability 27–8
non-declining per capita utility for
 infinity, sustainable development
 as 9, 10, 12, 17–18, 20, 45
 non-declining versus constant utility
 21
non-identity problem (Parfit) 17
non-renewable resources 12, 25, 26, 57
 depletion 139, 156
 and ecological footprints 171
non-substitutability paradigm
 natural capital 102
 strong sustainability as 2, 25, 27
Nordhaus, William D. (on climate change) 2, 11, 29, 30, 51, 152, 191
critique of approach
 discounting the future 34–9
 extreme outcomes 39–40
 substitutability of natural capital
 40–44
description of approach 31–4
see also discounting/discount rate
Norgaard, Richard B. 14, 25, 55, 65, 66, 100
North Africa 150
Norton, Bryan G. 3, 98, 107, 126–7
Nourry, Myriam 154
NPP (net primary productivity) 122, 170
nuclear fusion, controlled use 54–5
Nyborg, Karine 144

Oates, Wallace E. 190
O’Connor, John 183
O’Connor, Martin 109, 183, 189
Odum, H.T. 169, 170
OECD countries 75, 150, 178
O’Hara, Sabine 109, 194

Eric Neumayer - 9781781007082
Downloaded from Elgar Online at 12/18/2018 09:51:58AM
via free access
Olewiler, Nancy D. 61, 65
Olson, Mancur 82
OPEC (Organization of Petroleum Exporting Countries) 51, 63, 99, 120, 121
open economy, genuine savings in 141–3
opportunity cost problem 4, 124–7
Opschoor, Hans 117
Opschoor, J.B. 100
optimism, resource 3, 24, 52–3, 94, 95
option/quasi-option values 107–9, 130
O’Riordan, Timothy 109, 130
Ozatalay, Savas 72
ozone layer 103, 193
Page, Talbot 9, 130
Panayotou, Theodore 94, 96–7, 124
Pareto improvements 24
Parfit, Derek 17
Pasek, Joanna 129
Patterson, Murray G. 76, 100, 154, 159, 163
Payne, Rodger A. 90
Pearce, David W. 14, 25, 27, 32, 52, 59, 74, 84, 99, 115, 116, 147, 158, 164
Pearse, Peter 56
Pedroso-Galinato, Suzette 71
Perman, Roger 61
Perrings, Charles 25, 82, 116, 117, 125
Persson, U. Martin 31, 34, 41
pessimism, resources 55, 57
Pezzey, John C.V. 8, 21, 47, 83, 132, 145, 153
Philibert, Cédric 41
Pigou, A.C. 10, 35, 167
Pigouvian taxes 138, 139, 140, 143, 168
Pindyck, Robert S. 40, 60, 72
Pliska, Stanley R. 59–60
Plüümper, Thomas 124
policy ramp 31
‘polluter-pays principle’ 142
pollution 2, 11, 52, 98, 176, 181, 190, 193, 205, 206
environmental degradation 79, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91–2, 93, 94
global 141, 142, 143
lasting 27
natural capital preservation 100, 118, 125, 126
noise 165
toxic pollutants, accumulating 118–19
transboundary 141, 142
weak sustainability, measuring 133, 134, 135, 136, 138, 139, 140, 141, 142, 143, 144, 145, 148, 151, 152, 161, 167
weak versus strong sustainability 24, 26, 27, 28
poor countries 19, 39, 82, 97, 142
Popp, David 29
population growth 12, 47, 87
Portney, Paul R. 36, 194
Posner, Stephen M. 154, 159
Poterba, James M. 148
poverty
environmental consequences 84
external, image of sustainable development locking society into 18–20
see also poor countries
precautionary principle, natural capital 4, 102, 109–10, 194
precious metals 47
Prell, Mark A. 54
prescriptive approach, discounting 32, 35
present and future generations see generations, present and future
present-value maximisation and extinction 198–9
versus weak sustainability 24, 25
Preston, Samuel H. 123
Price, Colin 34
prices, and resource constraints 57–66
private savings 23
production, natural resources for 3, 119–22
Proops, John L.R. 25, 87, 147, 149
Prywes, Menahem 72
‘psychic’ income 153
public goods 14, 47
pure utility discounting 32
Quiggin, John 130

Eric Neumayer - 9781781007082
Downloaded from Elgar Online at 12/18/2018 09:51:58AM
via free access
Weak versus Strong Sustainability

Rabl, Ari 41
Ramsey, F.P. 10, 31, 35
Ramsey formula 10, 32, 33, 35, 38, 138
Randall, Alan 107, 116
Ravaoli, Carla 52
Rawls, John 10, 16–17, 18, 35, 46, 47
Ray, George F. 54, 66
Ready, Richard C. 111, 113, 130
recycling 66
Redclift, Michael 47
Redefining Progress 158, 160–61
Rees, William E. 122, 174
regional integrated model of climate and the economy (RICE) 31, 32
Reich, Utz-Peter 139
Reijnders, Lucas 26
renewable resources 11, 25–6, 55, 57, 140, 173
Repetto, Robert 139, 147
replacement cost 161
resource rent 57, 58, 59, 60, 61, 64, 161
resource-augmenting technical progress 74, 75, 76
resources
absolute versus relative scarcity 50
availability 52–78
constraints, role of prices in overcoming 57–66
depletion 149, 161–3
efficient allocation 28
exponential reserve index 121, 122, 131
extraction 61, 62, 63, 77
food 122–4
global environmental 118
history of resource and environmental concern 50–52
Hotelling rule 57–8, 59, 61, 62, 100
isoperimetric problem 59
man-made capital, substitution with 67–74
natural, for production 3, 119–22
non-renewable see non-renewable resources
optimism 3, 24, 52–3, 94, 95
people as ‘ultimate resource’ 101
pessimism 55, 57
projections 55–6
quasi-undepletable 54
renewable 11, 25–6, 55, 57, 140
scarcity 61, 63, 66, 99
substitutability 53–7, 94
man-made capital, substitution with 67–74, 100
technical progress 74–8
Reuveny, Rafael 91
Ricardian process 62
Ricardo, David 50
rich countries 19, 82–3, 87, 149
Richter, Wolfgang 18
Riddel, Mary 92
Riera, Pere Pere 85
rights-based approach 5
Rio Summit (1992) 1
Rio+20 (2012) 1
risk
natural capital 4, 102, 104–6, 107–15, 115
and uncertainty 130
Roberts, Michael 77
Rogich, Don 178
Rosenberg, D. 154, 161
Rueschemeyer, Dietrich 82
Ruta, Giovanni 147, 148
Ruttan, Vernon W. 124
Ryan, Grant 183
Sachs, Jeffrey D. 55, 142
sacrifices, voluntary 10
safe minimum standards (SMSs) 4, 102, 110–15, 125, 126, 194
insurance game example 111–13
lottery game example 113–14
Sala-i-Martin, Xavier 14, 47, 143, 167, 203
Sanders, R.D. 168
Santopietro, George D. 147
Sarkozy, N. 167
Sauré, Philip 119
savings
genuine see genuine savings (GS)
private/public 23
traditional net 132
Schelling, Thomas C. 38–9, 43
Schmidt-Bleek, Friedrich 175
Schütz, Helmut 99
Schwarze, R. 52
Scott, Anthony 56
Scott Taylor, M. 87
Scruggs, Lyle A. 92
Index

Sefton, J.A. 141
Selden, Thomas M. 88, 90
Sen, Amartya K. 11, 13, 14, 27, 47, 124
Serôa da Motta, Ronaldo 147
Shafik, Nemat 85, 88, 89
shocks 133, 145, 146, 167
‘silent spring’ 52
Silverstein, Judith 171, 190
Simon, Sandrine 181, 182, 186
‘sink’ side of economy 2, 4, 26, 28, 52, 96
strong sustainability, measuring 176, 179
Slade, Margaret E. 63, 71, 77, 99, 100
Slesynski, Jerzy 154
Smil, Vaclav 55, 121, 124
Smith, James L. 121
Smith, Tim R. 61, 62
Smith, V. Kerry 100, 111
Smulders, Sjak 12, 82
social discount rate 32
solar energy 55, 56
Söllner, Fritz 54
Solow, John L. 70, 71
Solow, Robert M. 1, 12, 18, 19, 22, 23, 47, 51, 67, 100
Song, Daqing 88
Sorrell, Steve 121
‘source’ side of economy 52, 78, 176
South Asia 150
Spangenberg, Joachim 175, 176
Spash, Clive L. 25, 27–8, 30, 41, 43, 79–80, 109, 125
species, undiscovered 107
Stähler, Frank 25
Stahmer, Carsten 139
stationary technology 133
Steady-state Economics (Daly) 25
steady-state economy 28, 47
Stern, David 88
Stern, David I. 88
Stern, Nicholas 10, 29, 30, 32, 34, 35, 36, 37, 44
Stern Review (2007) 2, 29, 32, 36, 37, 38, 45
Sternner, Thomas 10, 30, 31, 34, 35, 36, 38, 41, 48
Stevens, Thomas H. 79, 126
Stigler, George J. 81
Stiglitz, Joseph 51, 75, 166
Stockhammer, Engelbert 154, 160, 161
strong sustainability (SS)
and climate change 42, 43
critical assessment 186–8
ecological footprints 6, 169–75
and environmental degradation 80–81
Greened National Statistical and Modelling Procedures (GREENSTAMP) 6, 182–3, 184, 186, 187, 189
hybrid indicators 6, 180–88
material flows 6, 175–80
measuring 5–6, 169–90
and natural capital 80–81, 94, 128
as non-substitutability paradigm 2, 25, 27
paradigm of 1, 25–9, 191
physical indicators 169–80
sustainability gaps 181–2, 196
versus weak sustainability 22–9, 95–6, 98
see also weak sustainability (WS)
Stymne, S. 154, 161
Sub-Saharan Africa 150
substitutability
natural capital 33, 40–44, 192
resources 53–7, 67–74, 94
substitutability assumptions 11
and climate change 29–45
discernable rate 23, 32
substitutability paradigm, weak sustainability as 1
Sugden, Robert 114
Sukhdev, Pavan 117
sulphur oxide 89
sustainability
economic paradigms 14
gaps 181–2, 196
measuring by land area 169–75
measuring by weight 175–80, 196
sustainable development (SD)
assumptions 2, 11–12, 14
definitions 2, 8–11
economic concept 8
ethics of 15–22
methodology 1, 12–15
misunderstandings 2, 18–22, 46
non-declining per capita utility for infinity, capacity to provide 9, 10, 12, 17–18, 20, 45
non-declining versus constant utility 21
reasons for committing to 14, 15–17
time-inconsistency problem 17–18
whether demanding choice of greatly inferior utility paths 20–22
whether locking society into eternal poverty 18–20
sustainable national income (SNI) 180, 184–6, 187, 189
Sustainable Net Benefit Index (SNBI) 168
sustainable population size 170
Swanson, Timothy M. 116, 118, 126, 130
Swierzbinski, Joseph 61
System of National Accounts 157
Tahvonen, Olli, Kuuluvainen, Jari 12
technical progress 47, 99
resources 74–8
Theory of Justice, A (Rawls) 16–17
thermodynamics, law of 66, 81
Tiezzi, S. 154, 161
Tilton, John E. 98–9
time-inconsistency problem of sustainable development 17–18
Tisdell, Clement A. 111, 114
Tobin, James 152
Tol, Richard S.J. 34, 41, 44
Toman, Michael A. 75, 132, 136, 145, 153
Torras, Mariano 92
Total Incomes System of Accounts (TISA) 152
total net investment 22
Townsend, Kenneth N. 103
tractability 10
Trainer, Ted (2010) 55
Turnovsky, Michelle 70, 72
Ulph, David 158
uncertainty 36
natural capital 4, 102, 106, 107–15, 115, 125
and risk 130
United Kingdom (UK) 155
United Nations Development Programme (UNDP) 22
United Nations Environment Programme (UNEP), 110
United Nations Framework Convention on Climate Change 45
United States Environmental Protection Agency (EPA) 92
United States (US)	Endangered Species Act 110–11
Fish and Wildlife Service 111
threshold effect 154–5, 162
Unruh, G.C. 88
Upton, Charles W. 61
Uri, N.D. 63
utilitarianism 9–10, 11, 33
utility discounting 32
utility paths (inferior), sustainable development demanding choice of 20–22
Vadnjal, Dan 109
Van den Bergh, Jeroen C.J.M. 98, 172, 174, 188
van der Voet, Ester 180
van der Zwaan, B.C.C. 95
Van Tongeren, Jan 147
Vatn, A. 109
Veendorp, E.C.H. 75
veil of ignorance (Rawls) 16–17
Veisten, Knut 80
Verbruggen, Harmen 172, 174, 188
Victor, Peter A. 72, 95–6, 98
Vincent, Jeffrey R. 133, 142, 146, 147
Vining, Daniel R. (Jr.) 61, 62, 63, 65
Viscusi, W. 115, 130
Vitousek, Peter M. 122–3, 170
voluntary sacrifices 10, 20
Vornovytsky, Marina S 92
Vorsorgeprinzip, and precautionary principle 110
Wackernagel, Mathis 122, 169, 170, 171, 174, 190
Wade-Gery, Will 110
Index

Waggoner, Paul E. 124
Wagner, Martin 88
Walras, Léon 50
Walter, Jörg 34
Warner, Andrew M. 142

weak sustainability (WS)
genuine savings 132–51
Index of Sustainable Economic Welfare 151–63
measuring 5, 132–68
and natural capital 23, 52–3, 94, 128
paradigm of 1, 22–5, 191
resource optimism 3, 24, 52–3, 94, 95
versus strong sustainability 22–9, 95–6, 98
as substitutability paradigm 1, 23
see also strong sustainability (SS)

Weale, Martin 141, 197
Weber, Max 12
Weigert, Gerhard 175
Weikard, Hans-Peter 44
Weiner, Robert J. 141
Weitzman, Martin L. 30, 34, 36, 39, 40, 41, 48
Weizsäcker, Ernst von 176
Weyant, John P. 36
Wheeler, D. 83
Willey, David 174
Willis, Ken 109
Wilson, E.O. 106
Wilson, M.C. 154, 161
Wood, David O. 70, 72, 100
World Bank 22, 76, 92

genuine savings, calculating 5, 140, 147–51, 163, 194

World Summit on Sustainable Development, Johannesburg (2002) 1
Wyplosz, Charles 168

Yang, Zili 44
Yohe, Gary W. 37
Yom Kippur War (1973) 51
Young, Allan H. 196
Yount, J. David 170, 171

Zeckhauser, Richard J. 115, 130
Zhu, Xuegin 44
Ziegler, Rafael 156
Zieschank, Roland 154
Zolotas, Xenophon 152
Zucker, A. 56–7