Index

active causal network(s) 107
activity-based models 274–6, 296, 297, 300
daily activity patterns 286ff.
parallel convoluted choices 291ff.
adaptive methods 3
allocation tasks 2
attitude(s) 87, 111, 130, 138, 212, 250, 261, 264
attitudinal statements 138, 139, 174, 252
attributes of public space 195
maintenance level 196, 199, 200
natural vigilance 195, 199
visual control 196, 199, 200

Balanced Incomplete Block Design (BIBD) 5
BART 53
Bayesian network(s) 107
Beesley graph 50
best-worst response 98, 138
object case 138
profile case 138
Best-worst scaling (BWS) 3, 4
Case 1 BWS 5
Case 2 BWS 12
Case 3 BWS 14
BHHH matrix 96
bootstrap 96
causal network 108, 112
Causal Network Elicitation Technique (CNET) 108, 112
consistency 42, 139
choice consistency reweighting 100
consistency and validation 203
choice set(s) 174
choice set generation 177ff
choice set size 16, 290
cognitive mapping method 107
cognitive overload 141
cognitive testing 129
compensated and uncompensated demand 150, 152
completion times 139
Computer-based Causal Network Elicitation Technique (CB-CBNET) 114
conditional and unconditional demand 148, 153
configuration of urban space 193
correlation coefficient(s) 258
Crime prevention through environmental design (CPTED) 194
cross-‐nested logit 274
income and distance effects 279–83
parameterized structure 277–83
decision network(s) 107
decision variable(s) 110
deliberative workshops 131
diagnostic questions 130
Discrete choice experiment (DCE) 14, 117
discrete-‐continuous choice 144
discrete-‐continuous models 54, 67
discretisation 300
discriminant analysis 51, 53
dynamics of response 130
economic appraisal 51
efficient choice design 198
elasticity 66
elasticity (controlled) 276
elasticity; elasticities 223
endogeneity 85, 255, 268, 286
entropy 52, 298, 300
duality with utility 52, 53, 68
equilibriumation 65, 151–4, 161, 294
error component (for repeated responses) 79, 97
Euler’s theorem 161
expected demand 66–8, 67, 151, 152, 154ff
expenditure function 74, 76–8, 84, 148, 152, 153
experience variable(s) 261
eye tracking 140
face-to-face interview xiii, 112, 117, 133, 134, 136, 141
factor analysis 250, 251
generalised cost 51, 52
heterogeneity 26, 32, 56, 78, 79, 86, 91, 122, 139, 190
between respondent 91, 93, 94, 95, 103
within respondent 91, 95, 103
homothetic preference 163, 167
hybrid model 212–14, 220
imputation 178, 180
income 65, 145ff, 183ff, 195ff, 218, 279ff
increasing model scale with fatigue 92
Independence from Irrelevant Alternatives (IIA) 231
Individual-level model(s) (ILMs) 1
infeasible choice sets 283–4, 297
internet panel, online panel 133ff, 233
cognitive issues 135
penetration 134
jack-knife 96
latent consideration set 79
latent variable(s) 181, 212, 215
Level of service (LOS) 173
logsum or log sum 52, 166, 168
market share(s) 265
mate preferences 229
maximum difference, max-diff 4
McFadden as key researcher 53
measurement equation(s) 215
measurement error(s) 175
measurement error correction 179
mental representation(s) (MRs) 107, 108, 117
mode choice 50, 176
Monte Carlo simulation 98, 100, 101
multiple discrete-continuous choice 67, 297
Bayesian methods 78, 83
GHK simulator 83
Kuhn-Tucker approach 74–7, 85–7
MDCEV 77
multiple discreteness 73
outside good (numéraire) 74, 75
prediction 79, 80, 85, 86
virtual prices 75, 76
welfare analysis 79, 83, 85, 86
multiple response 56
nested logit 54, 274, 277
online 255
online discussion groups 132
online shopping 243
ordinary least squares (OLS) 20, 99, 100
Orthogonal fractional factorial design 16, 197
Outcome variable(s) 110
perception 193ff
perception variable(s) 263
pictorial information in SC experiments 201
pre-purchase behaviour 243
‘professional’ respondents 135
prospect theory 56
purchase behaviour 243
purchase channel 246
probit
multivariate probit 258
trivariate probit 257
qualitative research 126–8, 133, 140
heuristics 127
psychographic profiling 128
random utility models (RUM) 53, 54, 56, 144, 156, 162
Index

<table>
<thead>
<tr>
<th>Additive income RUM (AIRUM)</th>
<th>158</th>
</tr>
</thead>
<tbody>
<tr>
<td>For discrete-continuous choice</td>
<td>74</td>
</tr>
<tr>
<td>Ranking(s)</td>
<td>2ff, 98</td>
</tr>
<tr>
<td>Rational choice theory</td>
<td>194</td>
</tr>
<tr>
<td>Regional travel models</td>
<td>274</td>
</tr>
<tr>
<td>Regret minimisation</td>
<td>229, 231</td>
</tr>
<tr>
<td>Repeated choice</td>
<td>91ff</td>
</tr>
<tr>
<td>Panel structure</td>
<td>236</td>
</tr>
<tr>
<td>Repeated observations</td>
<td>205</td>
</tr>
<tr>
<td>Representative individual</td>
<td>149, 150, 152–4</td>
</tr>
<tr>
<td>Revealed preference</td>
<td>48, 49, 57–61, 68, 174</td>
</tr>
<tr>
<td>Roy’s identity</td>
<td>147, 151, 157</td>
</tr>
<tr>
<td>Rule of a half</td>
<td>51</td>
</tr>
<tr>
<td>Sampling (respondents)</td>
<td>68</td>
</tr>
<tr>
<td>Sampling approach (to forecasting)</td>
<td>67</td>
</tr>
<tr>
<td>Sandwich matrix</td>
<td>96, 97</td>
</tr>
<tr>
<td>Scale differences</td>
<td>33</td>
</tr>
<tr>
<td>Scale-adjusted latent class model(s) (SALCMs)</td>
<td>11</td>
</tr>
<tr>
<td>Score maximisation</td>
<td>50, 53</td>
</tr>
<tr>
<td>Segmented population forecasts</td>
<td>63, 64</td>
</tr>
<tr>
<td>Income forecasting</td>
<td>65</td>
</tr>
<tr>
<td>Iterative proportional fitting (IPF)</td>
<td>64</td>
</tr>
<tr>
<td>Prototypical sampling</td>
<td>64</td>
</tr>
<tr>
<td>Quadratic minimisation (QUAD)</td>
<td>64</td>
</tr>
<tr>
<td>Semi-compensatory behaviour</td>
<td>231</td>
</tr>
<tr>
<td>Sequential best-worst scaling (SBW)</td>
<td>30</td>
</tr>
<tr>
<td>Sequential choice process(es)</td>
<td>28</td>
</tr>
<tr>
<td>Shephard’s lemma</td>
<td>148, 163</td>
</tr>
<tr>
<td>Simple approaches</td>
<td>102, 103</td>
</tr>
<tr>
<td>Simultaneous estimation</td>
<td>217</td>
</tr>
<tr>
<td>Situational variable(s)</td>
<td>110</td>
</tr>
<tr>
<td>Slutsky symmetry</td>
<td>163, 164</td>
</tr>
<tr>
<td>Small sample issues</td>
<td>101</td>
</tr>
<tr>
<td>Social housing neighbourhoods</td>
<td>196</td>
</tr>
<tr>
<td>Social network data</td>
<td>132</td>
</tr>
<tr>
<td>Socio-economic or socio-demographic data</td>
<td>57, 128, 174ff, 203, 255</td>
</tr>
<tr>
<td>Space management actions</td>
<td>193</td>
</tr>
<tr>
<td>Space Syntax approach</td>
<td>194, 196</td>
</tr>
<tr>
<td>Stability of preferences</td>
<td>37</td>
</tr>
<tr>
<td>Stated choice</td>
<td>56–8, 60, 61, 91, 195ff</td>
</tr>
<tr>
<td>Use for forecasting</td>
<td>61</td>
</tr>
<tr>
<td>Stated intentions</td>
<td>62</td>
</tr>
<tr>
<td>Stated preference</td>
<td>129, 174</td>
</tr>
<tr>
<td>Structural equation(s)</td>
<td>215</td>
</tr>
<tr>
<td>Structured choice</td>
<td>139</td>
</tr>
<tr>
<td>Translational invariance</td>
<td>157</td>
</tr>
<tr>
<td>Unable to decide</td>
<td>204</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>111, 140</td>
</tr>
<tr>
<td>Urbanism</td>
<td>193</td>
</tr>
<tr>
<td>Utility maximisation</td>
<td>229, 231</td>
</tr>
<tr>
<td>Value of time</td>
<td>51, 176, 188</td>
</tr>
<tr>
<td>Wardrop’s principle</td>
<td>49, 50, 58</td>
</tr>
<tr>
<td>Willingness to pay (WTP)</td>
<td>48, 54, 56, 207</td>
</tr>
</tbody>
</table>