Preface The ‘Anthropocene Gap’

The idea to write a book about governance and technology in a possibly new geological era dominated by humans, was born in May 2012 in the corridors of a gloomy and dark building in the industrial outskirts of London. Renowned Earth system scientist Timothy M. Lenton had just finished presenting a paper at a scientific conference on the likely transgression of an Arctic ‘tipping point’ in the next decades. In short, this implies that the North Pole could be largely ice-free in summer, inducing drastic changes in one of planet Earth’s critical climate regulating levers with profound global consequences.

One could really feel the odd mixture between curiosity and nervousness amongst the audience. As we all left the room, I was immediately handed a colorful leaflet from what I thought, was a conference participant. After a closer look, I understood that the leaflet in fact was a call from a non-governmental organization called The Arctic Methane Emergency Group (AMEG). The group suggested putting a break on ice melting in the Arctic region, by reflecting away solar radiation through a geoengineering technology called ‘cloud brightening’. In short, by deploying large fleets of ships with the ability to eject salt particles into the atmosphere, thereby brightening clouds and initiating a cooling of the areas.\(^1\)

As I walked to the next session, it also became increasingly evident to me that there was no obvious scientific or political arena able to handle these intermingled scientific and social debates about potentially catastrophic Earth system ‘tipping points’, and suggested remedial but highly controversial technologies. Of course these issues were, and still are, debated in different international arenas – including the meetings of the parties of the Convention on Biological Diversity. But there really was no potent legal setting and international arena with the capacities to seriously investigate, discuss and govern these highly contested issues.

Then it hit me. This call by AMEG wasn’t a unique and peculiar event at the fringes of sustainability science. On the contrary, it very much captured what I perceived and still perceive as the most critical challenges facing environmental politics and society in this new era of rapid environmental change: Earth system complexity and ‘tipping points’, technological change and the fragmented nature of governance in the Anthropocene.
As I elaborate in this book, the combination of these three issues creates a whole new set of institutional challenges that we as social scientists (or more precisely, political scientists) have just started to come to grips with. This last claim might seem overstretched considering the long history of groundbreaking studies of global environmental problems and their institutional dimensions, championed by prominent social science scholars such as Oran Young, Nobel Laureate Elinor Ostrom and Frank Biermann. As I elaborate in-depth in this book, the political and institutional implications posed by the Anthropocene run deeper than currently has been acknowledged in current debates. The difficulties we all – citizens, scholars, decision-makers, business leaders and a flurry of non-governmental actors – have in grappling, analysing and responding to these issues, is what I explore as the ‘Anthropocene Gap’.

WHAT THIS BOOK IS NOT

Global environmental change, emerging technologies and politics are issues that could very well fill a whole library. My ambition is obviously more modest. This is not a book about climate or biodiversity politics, environmental policy, or governance for sustainable development in general. Nor is it an analysis of ‘green’ technologies such as solar power; of how social media can support environmental awareness; nor an attempt to settle the debate between so-called techno-utopians and promoters of environmental doomsday scenarios. Instead, this is essentially a book about new institutional and political challenges posed by the interplay between rapid nonlinear global environmental change and emerging technologies.

This might very well be considered an extremely narrow perspective for such contested and multifaceted issues, and I agree. Current discussions about sustainability, politics and technology are immensely rich thanks to the vigorous long-term commitment from fellow scholars, entrepreneurs, activists, politicians and others. Whenever the analysis here feels too limiting, I would modestly urge the reader to keep in mind that institutions matter. That is, humanly devised institutions, and the way we organize the interplay between state and non-state actors (what I call governance), have repeatedly been proven to play a fundamental role in shaping, and responding to environmental change. This insight applies all the way from locally contrived rules to govern forests, to global commons such as climate change and the ozone layer. Hence despite its limited focus, this book should be viewed as a contribution to intense and ongoing debates about how humanity is to navigate environmental change of an
unprecedented scale and complexity. My approach to governance analysis is both analytical and normative. By that I mean that I combine an empirical and theoretical understanding of societies’ capacities to steer environmental change, with a normative ambition to bring out shortcomings, and possible ways ahead (Dingwerth and Pattberg 2006).

As some readers might notice, I take on this task inspired by what some have denoted a ‘resilience lens’, that is, a focus on the ability of institutions and governance to grapple with change, surprise and multiple interactions between human–environmental systems (Gunderson and Holling 2002, Folke et al. 2005).

COMPLEXITY AND CONNECTEDNESS

The need for the social sciences to critically explore the political and institutional implications of rapid environmental change is urgent. Well-known terms like ‘limits to growth’, ‘the great acceleration’, ‘planetary boundaries’, ‘a planet under pressure’, and ‘a new geological era’ have one important thing in common: the attempt to capture the vast challenges posed by interacting global environmental stresses and a new proposed (in other words, debated) geological epoch on a planet fundamentally shaped by humans – the Anthropocene.

Despite an increased interest in these challenges and this proposed new geological epoch, we know surprisingly little about its implications for current debates on institutions and global environmental change. And scholars of environmental governance are only at the very beginning of grasping these deep repercussions.

This book presents and elaborates one key hypothesis: we are in the midst of an ‘Anthropocene Gap’, that is, a time where we are unable to grapple, analyse and respond to the major implications induced by our transgression into a human-dominated planet. These three interrelated gaps can be summarized as follows: our mental models and causal beliefs (Lynam and Brown 2011) are being seriously challenged by the complexity, scale and speed of global environmental change; our analytical approaches (and here I focus on political science) are increasingly failing us as we gain increasing insights about the anatomy of Earth system change; and as a result, our political institutions at multiple levels of social organization are unable to effectively respond to novel risks and opportunities induced by interacting environmental, political and technological change. It is a bold statement, I know, and I will return to these acclaimed gaps explicitly in the synthesis chapter.

In this book I combine theoretical work, with in-depth analysis of
four case studies. The cases range from the governance of (1) ‘planetary boundaries’, (2) geoengineering, (3) emerging infectious diseases, and (4) algorithmic trade in financial and commodity markets. While these might seem like very different issue areas, they all illustrate complementary aspects of critical, yet poorly understood institutional and political challenges posed by complexity and connectedness in social-ecological or human-environmental systems (to be defined in the next chapter).

STRUCTURE OF THIS BOOK

This book consists of two main parts. The first part is mainly theoretical and looks at current debates on global environmental change and complexity from a governance perspective. Chapter 1 Planetary terra incognita is an introduction, but also a summary of the critique of the notions of the Anthropocene and ‘planetary boundaries’. I will not only put these terms in the context of similar notions such as the ‘great acceleration’ and ‘limits to growth’, but also provide a summary of current scientific and policy debates of the concept’s validity and practical usefulness. The chapter concludes with my position in this scientifically and politically contested area.

In Chapter 2 Governance and complexity I explore key properties of complex systems that are of relevance for governance scholars. Here I try to present an overview of the governance challenges posed by complexity with a special emphasis on thresholds or ‘tipping points’. This chapter also includes a synthesis of multidisciplinary insights on how social actors – ranging from policy-makers to artificial agents – perceive and respond to threshold behavior in human-environmental systems. I also link advances in ‘early warnings’ of pending catastrophic shifts in ecosystems, with some theoretical implications for governance (for example, early warning and response challenges). The chapter ends with a presentation of three ‘governance puzzles’, which will conclude the synthesis chapter of the book.

The second part of the book consists of in-depth analyses of four different case studies. Chapter 3, Earth system complexity discusses recent attempts by Earth system scientists to define a ‘safe operating space’ for human activity at the Earth scale. These so called ‘planetary boundaries’ are nine, possibly nonlinear Earth system processes that in addition to climate impacts, include ozone depletion, atmospheric aerosol loading, ocean acidification, global freshwater use, chemical pollution, land system change, biodiversity, and global nutrient cycles. In this chapter, I elaborate key international governance challenges posed by the notion of ‘planetary boundaries’, some emerging political tensions, misunderstandings, and some constructive ways to analyse these from a governance perspective.
The chapter also includes an elaboration of how global organizational networks of various forms attempt to respond to global ‘tipping point’ behavior.

Chapter 4 *Epidemics and supernetworks* instead focuses on the complex institutional and governance challenges posed by emerging infectious diseases (EIDs) such as animal influenzas (for example, ‘avian influenza’ and ‘swine flu’), and hemorrhagic fevers such as Lassa fever and Henipah virus. While this might sound like an odd focus for a book on environmental change and complexity, it should be noted that diseases such as these are driven not only by increasing connectivity through trade and travel, but also by environmental factors such as land use change, climate change and rapid urbanization. In this chapter I explore how international actors such as the World Health Organization try to grapple with epidemic surprise in terms of early warning and response. Here I also explore the role information and communication technologies play in the way international actors collaborate across cross-national networks, and how these networks interact with more formal institutions such as the International Health Regulations.

Suggestions of large-scale technological interventions to combat climate change that a decade ago would have been discarded as science fiction are slowly moving toward the center of international climate change discussions, science, and politics. Chapter 5 *Engineering the planet* elaborates the intriguing governance challenges created by the development of geoengineering technologies – another illuminating example of the ‘Anthropocene Gap’. The emphasis here is on the intricate governance challenges posed by emerging and converging technologies as we enter a new geological epoch. I explore regulatory gaps and the complex actor constellations in this domain, as well as the poorly understood and contested trade-off between innovation and precaution in a new setting characterized by rapid and nonlinear environmental and technological change.

In the last case study chapter (Chapter 6), I analyse another emerging technology with implications for our ability to govern global change in the Anthropocene: algorithmic trade in commodity markets. While market-based conservation policies, and the ‘neoliberalization’ of natural resources has already induced considerable academic debate (Arsel and Büscher 2012), the approach in this book is different, and focuses more on the dynamics of financial–ecological connectedness and their underlying technologies. Algorithmic trading (sometimes denoted as ‘automatized trade’, ‘high frequency trade’, ‘computer based trading’ or ‘robot trade’) is having profound impacts in the way and speed in which financial assets are traded. The capacities of computer algorithms to process increasing amounts of market information including financial news items, and
conduce extremely rapid and complex trading patterns are clearly on the rise. As I intend to show, the rapid advancement of algorithmic trade pose until now unexplored environmental governance challenges due to the increased connectivity between financial markets, commodity markets, and ecosystem services on the ground.

The last chapter sums up the whole book and tries to show how we can start bridging the ‘Anthropocene Gap’. It draws together key common conclusions across the cases, and links back to emerging theories on governance for sustainability in the Anthropocene. Hence this chapter summarizes theoretical insights related to the ability of governance – including institutions and networks at multiple levels – to cope with human–environmental complexity and connectivity at multiple temporal and spatial scales.

A THEORETICAL CONTRIBUTION

The issues elaborated in this book hopefully draw broader interest than for scholars of environmental governance. Governments constantly struggle to reconcile the need for institutional stability and flexibility through collaboration, institutional innovation and soft-steering instruments. Charles Perrow’s (1984) now classic book Normal Accidents provides a detailed elaboration of the generics of complex technological systems and the type of organizations able to cope with their associated risks (see also literature on ‘High Reliability Organizations’). Moreover, governance scholars such as Jan Kooiman, Jon Pierre and Guy B. Peters, present interesting insights related to the ability of governance systems to cope with change and uncertainty. Researchers following the innovative path laid out by the late Elinor Ostrom, have also shown an increased interest in the role of polycentric governance for more flexible and robust forms of steering in complex settings.

The issues explored in this book – such as coordination in multi-level networks, institutional flexibility, diversity and robustness – hence are strongly linked to governance analysis in general (for example, Pierre and Peters 2005, Kooiman 2003). This book therefore aims to contribute to this wider (in a sense non-environmental) theoretical debate, identify strengths and weaknesses in our understanding, and build an argument firmly anchored in rich case studies.

The issues explored here are several. What characterizes international institutions able to detect and respond to ‘global human–environmental surprises’ of great importance to human well-being? Are international institutions able to address complex Earth system interactions?
is it at all possible to create rules that are strong enough to ‘weed out’ technologies that carry considerable ecological risk, but still allow for novelty, fail-safe experimentation, and continuous learning? These are far from easy questions, and my intention is not to present simple answers, robust hypothesis testing or quick-fix solutions. My ambition instead, is to portray an extremely exciting evolving landscape of emerging issues, puzzles, and controversies at the very heart of debates on global environmental change, politics and technology.