Index

AES Corporation 68
Africa, North 44, 207
Agency for the Cooperation of Energy Regulators (ACER) 13, 107, 118, 128
Algeria 44
Ample, Secure and Competitive Supply 112
aquifer storage 48
Atlantic Basin LNG 56
auctions
 and hubs and market areas, relationship between 242–5
 implicit auctions 113, 242–4
 interconnection point auctions 212–15, 217–21
back-pack principle 86–7
balancing see network balancing
Board of Regulators 127
bundling see also unbundling
line-pack flexibility, and LNG re-gasification 101–2
capacity
 allocation 79–81, 155–6, 158–9
 back-pack principle 86–7
 capacity increments 153–4
 challenges 209–14
 first come first served 86–7
 interconnection point auctions 212–15, 217–21
 joint allocation 212–13
 long-term contracts 209–20
 and market connectedness 212–14
 mechanisms 86–7, 155–6, 209
 open subscription processes 215–16, 220–21, 253
 pro rata 86–7, 105
 reservation duration 212
 solutions 214–20
time challenges in electricity gas demand 92–3
definitions 83–5, 96
entry/exit capacity 83–5
hoarding 212, 221
nomination 79–81, 105–6
point-to-point capacity 83–5, 105
postal capacity 83–5
reservation 79–80, 212
shipper costs to change 83
timing 85–6
Capacity Allocation Mechanism (CAM) 86–7
CCGT see combined cycle gas turbines
Cheniere Energy 69
China 61
coal-fired power plants, flexibility 26–7
combined cycle gas turbines
 fuel switching costs 52
influence on gas network usage 8
inter-day cycle influences on 39–40
seasonal and daily cycle influences on 35–7
role in US 52
commodity markets 6
 compared, gas, oil and electricity 199–200, 232, 254
 hubs and virtual hubs 232–4, 236–7
 information technology role 232
 and market area mergers 236–7
competition
 capacity, relationship with 235–6
 free-riders 222
 and gas storage flexibility 94–5
 in gas target models 200–202, 222
 gas-to-gas competition 2–3, 63
 and gas transmission investment 201–2
 and market area connections 236
Building competitive gas markets in the EU

congestion
- auctions, role of 242–5
- contractual congestion 7, 88–9
- hubs and market areas, relationship between 239–42
- physical congestion 88–91, 106
- pipeline capacity efficiency 96–7
- seasonal influences 241–2
- secondary capacity market 90–91
- ‘use-it-or-lose-it’ principle 89–90

contracts see gas contracts

Council of European Energy Regulators (CEET) 114

customers, supply information 10

daily/inter-day influences on gas demand 30, 35–7, 50
demand see gas demand

deprecated field storage 48
domestic gas consumption, seasonal influences 31–5

Dominican Republic 68

Dow 65–6

Draft Framework Guidelines on Capacity Allocation (ERGEG) 180–89, 212, 248
dual-fuel power plants 25–6

eartquakes 61

Egypt 56

Electricité de France 65–6, 68–9
electricity markets demand
- and consumer information 24
- inelasticity, influences on 23–5, 27–8
- influences on 22–3
- inter-day and intra-day volatilities 30, 35–40
- LNG, influences on 41–2
- predictability of 37
- and price increases 24–5
- seasonal influences on 30–31
- short-term inelasticity 23–5
- short-term price response 25–6
- trends and patterns 24
- weather, influences on 35
- electricity transportation, compared with gas and oil 91–4, 199–200, 232
gas demand, relationship between 22–3
- cyclical variations 30–31, 35, 91
- dependency, role of 27–8
- seasonal variations 35, 91

entry/exit systems
capacity 83–5
- hubs and market areas, relationship between 239–40
- and implicit vs. explicit allocation 4–5, 11–12, 105, 259
- integration, value of 11–12
- regulation of 5–7, 11–12
- tariff regulation, distance-based tariffs compared 223–6, 239–40

Equatorial Guinea 65

EU gas markets
centralization of 3–4
- challenges 1, 257–8
- cross-border cooperation/interconnectedness under gas target models 115–16, 131–2, 138–44
- need for 121–2, 257–8
- development 19–20, 77
- and electricity market, compared 3, 6
- features 197–8, 257–8
- hub-to-hub trading 116–17, 125–6, 158–9
- infrastructure investment 126–7, 258

integration
- assessment criteria 123–8
- capacity load factors 126–7
- challenges 120–22
- effective use of existing capacity 127
- infrastructure investments 126–7
- and market share 126, 205–7
- monitoring and implementation 128
- price alignment 124–6, 241–2
- supplies, ample and secure 123–4

liberalization
- background 3–4, 120
- characteristics 3–4, 257–8
- interconnection, need for 121–2, 257–8
Index

273

and subsidiarity principle 248
US influences on 3–4, 196–8, 257
LNG market development trends 55
market areas, relationship with hubs
auctions, role of 242–5
congestion problems 239–42
market design
entry/exit regulation 5–7, 11–12
horizontal concentration 4–5
market share trends 126, 205–7
network planning model 221–2
network regulation
characteristics 8
Gas Supply Security Regulation
[EC 994/2010] 123
importance of 4–5
limitations 77
network cost allocation 7
production decline trends 207
seasonal influences 30–35
tariff setting practices 223–5
unbundling 4, 201–8, 257
virtual hubs 4–5, 233–4
EU gas target models 14, 111 see also
EURAM; MECO-S
alternative proposals 111–12
differences between, generally 259–60
implementation challenges 119
integration
assessment criteria 123–8
capacity load factors 126–7
challenges 120–22
effective use of existing capacity 127
infrastructure investments 126–7
and market share 126
monitoring and implementation 128
price alignment 124–6, 241–2
supplies, ample and secure 123–4
long-term contracts 112–13, 134–5, 150–56, 208–10
network balancing 119
non-binding nature of 119–20
proposals, generally 14, 111
security of supply 112
US model for 196–8
EU network regulation see network regulation
EU Third Energy Package 14, 104, 114
implementation challenges 119
importance 203–6, 258
investment exemptions 223
stakeholders 118
tariff regulation 224
EURAM gas target model
and competition 200–202, 222
and European Network Code
on congestion management 246
on efficient infrastructure, need for 247
key requirements 245–6
reform process, relevance and advantages 245–9
regime coordination, need for 247–8
on tariff structure 247
and free market 14–15, 220–22
gas transportation, compared with oil and electricity transportation 199–200
hubs, and relationship with market areas
auctions, role of 242–5
congestion problems 239–42
differences between generally 259–60
entry/exit systems 239–40
Independent Transmission Operators (ITO), advantages of 203–6
long-term capacity contracts 208–10
advantages 208–10
allocation challenges 209–14
allocation solutions 214–20
binding bids 217–20
capacity allocation auctions 214–15, 217–21
capacity supply assessment 217
early-bird discounts 222–3
open subscription processes 215–16, 220–21, 253
regulatory gap 211
technical capacity assessment 216–17
and market pressure vs. regulation 198–9
and MECO-S model, compared 249–50
network congestion, absence of 202–3, 240–42
auctions, role of 242–5
and market coupling 243–4, 254
propositions 198–203
purpose/aims, generally 111–13
tariff regulation 221–31
advantages 223–4
entry/exit vs. distance-based tariffs 223–6, 239–40
in merged market areas 227–31
tariff harmonization 226–7
total network planning model, compared 221–2
European Gas Regulatory Forum 114
European Network Code
EURAM gas target model, relevance and advantages 245–9
key requirements 245–6, 258
congestion management 246
efficient infrastructure 247
regime coordination 247–8
tariff structure 247
European Network of Transmission Service Operators for Gas (ENTSO-G) 207
European Regulators’ Group for Electricity and Gas (ERGEG) 212
Excelerate Energy 69
exit systems see entry/exit systems
Exxon Mobil 68
Federal Energy Regulatory Commission (FERC) 2, 223
first come first served capacity allocation 86–7
flexibility services 13–14, 102–4 see also network balancing
advantages 79, 82
alternative mechanisms 94–5
competition in 94–5
contract capacity 91, 93–4
timing 85–6
types 83–5
costs 81–2, 104
line-pack flexibility 95–8
case studies 98–102, 258
meaning 105
storage flexibility 79, 98–103
transportation flexibility 78–9, 94–5, 102–3
France 50, 55
free-riders 222
fuel elasticity 26–8
gas contracts
bilateral contracts 2–3
contract capacity flexibility 63, 83–5, 91, 93–4, 126
destination clauses, removal 63, 126
and electricity sector, needs mismatch 93–4
interruptible contracts, impact of 28–9, 52
in LNG sector 63
long-term contracts
advantages 208–10
allocation challenges 209–14
allocation mechanisms 155–6, 209
allocation solutions 214–20
capacity hoarding 212, 221
capacity increments 153–4
and capacity management 211–12
early-bird discounts 222–3
EU trends 208–10
flat capacity 154–5
in gas target models 112–13, 134–5, 150–56, 208–20
interconnection point auctions 214–15, 217–21
investment needs 210–11
lead-times 152–3, 211
limitations 209–10
in LNG sector 62–6, 208–9
political influences 211
regulatory gap 211
reservation duration 211–12
take-or-pay clauses 209–10
uncertainty of 93–4, 209
gas demand
assessment
captive vs. non-captive segments 52
challenges 29
elasticity, influences on 22–3, 28–9
consumer demand profiles developments 21–2
Index

economic policy influences 30
fuel price responsiveness 26–8, 30, 34
gas and electricity demand convergence 30
LNG market influence 41–7, 51
seasonal influences 30–35
storage trends 41, 47–51
variations 21, 23, 30–32
cyclical influences
inter-day/daily cycles 30, 35–7, 50
intra-day/hourly cycles 30, 37–40
seasonal influences 19–21, 23, 30–35
domestic, influences on 31–5
drivers for 19–20
electricity generation demand consumer profile variations 30
cycles, variable influences on 30–31, 35, 91
elasticity 22–3
influences on 24–5
relationship between 22–3
seasonal variations 35, 91
flat gas demand trends 32
gas-fired power plant influences 51
elasticity 22–3, 28–9
and electricity generation 22–3, 92–3
flexibility 21, 28–9, 51, 92–3
gas capacity time challenges 92–3
and seasonal volatility 32–5
short-term price response 25–6
spark prices, importance of 32–3
substitutive role 22–3
industrial/commercial influences 23, 30–35
line-pack influences 35–6, 39–40
seasonal influences 19–21, 23, 30–35
short-term responsiveness 27–8
trends 19, 21–2, 29–30, 40–41
gas exchanges 178–9 see also commodity markets
gas-fired power plants
congestion patterns 89
dual-fuel power plants, flexibility 25–6
and electricity demand 13
contract challenges 93–4
dependency, role of 27–8
fuel price responsiveness 26–8, 30, 34
gas transport capacity challenges 92–3
inelasticity, influences on 23–5, 27–8
influences on 24–5
operational flexibility 21, 23, 28–9
relationship between 22–3
short-term inelasticity 23–5
short-term price response 25–6
spark-prices, role of 32–3
fuel elasticity 26–8
and gas demand 51
daily/intraday cycles 30, 35–7, 50
flexibility 21, 28–9, 51, 92–3
and gas storage, influences on 49
intra-day/hourly cycles 30, 37–40
operational flexibility 21, 51
production influences 23
seasonal influences on 31–5
short-term price response 25–6
interruptible contracts 28–9, 52
production patterns
fuel prices, responses to 26–8, 30, 34
start-up/shut-down flexibility 23, 26–8
transformation sector, influence on 33–4
gas hubs
EU development 2, 232–3
extra-hubs 174–5, 194
and gas-to-gas competition 2–3, 63
inter-hubs and intra-hubs 174–5
and market areas
auctions, role of 242–5
congestion problems 239–42
mergers 236–7
meaning 173–5
political influences 233–4
role, under MECO-S gas target model 173–5
and subsidiarity principle 248
virtual hubs
in EU gas sector 4–5, 233–4
long term impact 8–10
Gas Infrastructure Europe (GIE) 44
gas storage see also line-pack
available technologies for 48
EU development trends 41, 47–8
flexibility 48
 competition 94–5
 flexibility services 79, 98–103
investment incentives 49–51
localization, influences on 48
and market liquidity 50–51
new roles for 47–8
seasonal variations 48–9
withdrawal rates 49
working capacity 49
gas supply see also security of supply
electricity power plants role in 19
LNG role in 19, 41–7, 51, 54
gas-to-gas competition 2–3, 63
gas transportation/transmission see also gas contracts
capacity
 allocation 79–81, 86–7, 155–6, 158–9
 calculations 7
 definitions 83–5, 96
 entry/exit capacity 83–5
 first come first served allocation 86–7
 hoarding 212, 221
 line-pack flexibility 7, 95–8, 101–2
 nomination 79–81, 105–6
 point-to-point capacity 83–5, 105
 postal capacity 83–5
 pro rata allocation 86–7, 105
 reservation 79–80
 shipper costs to change 83
 shippers’ ordering mechanisms 86–7
 timing 85–6
and electricity gas demand
 allocation capacity failures 93–4
 capacity time challenges 92–3
 gas flexibility competition 94–5
 short-term volatility 91–5
 time mismatch 92–3
in EU
 compared with oil and electricity transportation 199–200, 232
competition, importance in 200–202
demand trends 207–8
financial rights vs. capacity rights 207
historical development 19–20
limitations 201
unbundling 201–8
network congestion 5, 7, 106
auctions, role of 242–5
contractual congestion 7, 88–9
hubs and market areas,
 relationship between 239–42
physical congestion 88–91, 106
and pipeline capacity efficiency 96–7
seasonal influences 241–2
secondary capacity market 90–91
‘use-it-or-lose-it’ principle 89–90
transmission costs 125
transport services
 bundling 101–2
 line-pack flexibility 95–8, 101–2
 meaning 78
 storage flexibility 79, 98–103
 transportation flexibility 78–9, 94–5, 102–3
US model, advantages of 200–202
gas velocity 96
Gaz de France 68–9
Germany 50, 86–7, 236
Hartley, P. 26
Hauteclloque, A.D. 93–4
Hayes, M.H. 61–2
Honoré, A. 34
hubs see gas hubs
hurricanes 61
hydro generation 26
Independent Transmission Operators (ITO) model 203–4, 227–8
industry, gas demand patterns 23, 30–32
infrastructure
 efficient management, challenges of 7
investment
 as assessment criteria 126–7
 influences on 1–2
Index

and line-pack flexibility 95–8
and third party access 6
investment
and entry/exit market integration 12
in gas transmission
capacity 166–70
competition in 200–202
exemptions 223
interconnection capacity 162–5
intraconnection capacity 165–6
implementation 161
on infrastructure
influences on 1–2
short-term gas storage 49–51
market forces, influences of 9
under MECO-S gas target model 166–70
in security of supply 159–61
trends 9
Ireland 236
Italy 50, 101
Japan 61, 65, 68–9
Japanese Customs Clearing 63
Jensen, J.T. 46, 56
joint ventures 66–7, 206–7
Korea Gas Corporation 65
Lapuerta, C. 82–3, 90
‘law of one price’ 124
LDZ see local distribution zones
Libya 44
line-pack 7
 bundled with re-gasification 101–2
 flexibility 95–8
gas demand cycles, influences on
 supply 35–6, 39–40
 loops 97–8, 107
 pipeline optimization 96–7, 106–7
link chain products 116–17, 135,
 157–9, 195, 245
liquefied natural gas (LNG)
 arbitrage practices 46–7, 52–3, 61–2,
 65–6
 buyer/seller characteristics 62
 contract developments 55
 destination clauses 63, 126
 flexibility 65
free-on-board contracts 63, 65
long-term contracts 62–6, 208–9
short-term market development 65–6
swap agreements 65–6
corporate strategy developments 62
cost implications 42
demand, seasonal influences on 61–2
flexibility advantages 41–6, 56, 58–9
gas-fire power plant demands,
 compatibility with 47
gas networks, influences on 8, 19, 41
gas transportation, share in 199
globalization 58–62
increasing role of 41–3, 51
infrastructure investments 55–6
institutional framework
 developments 56–7
integration trends 69–71
 backward integration 68–9
 forward integration 67–8
 joint ventures 66–7
 non-integration practices 69
 self-contracting 67–8
tolling facilities 67
unbundling practices 67–8
vertical integration 70
liquefaction trends 56
market development trends 58–62,
 69–71
market limitations 46–7, 66
peak shaving 48, 107
prices
 influences on 63
 schemes and structures for 63
 spot market price trends 59–61
 trade pattern relationships 61–2
re-gasification trends 41, 56
regulatory developments 55
sector development trends 42–6,
 54–8
new market entrants 55–6
North American market 54–5
shipping capacity developments 58–9
supplier trends 42–4, 55–6
terminals
 locations 45
 usage patterns and trends 42–3
vertical integration, impact of 56, 58
liquidity
assessment, and market integration 125, 232, 234–5, 238
LNG see liquefied natural gas
local distribution zones
inter-day cyclical influences on 39–40
seasonal and daily cyclical influences on 35–7
long-term contracts see under gas contracts
loops 97–8, 107
Market Design for Natural Gas: The Target Model for the Internal Market 111–13
market design, generally
entry/exit markets 5–7, 11–12
hubs
auctions, role of 242–5
congestion problems 239–42
EU development 232–3
and market area mergers 236–7
political influences 233–4
virtual hubs 8–10
information technology role 232
market area connections 234–5
and market competition 236
and market consolidation 236–7
and reinforced import infrastructure 235–6
and supply competition 235
market coupling/splitting 12, 190–91, 243–4, 254
and market liquidity 125, 232, 234–5, 238
and network characteristics 75
security of supply 10–11
MECO-S gas target model
aims and principles 111–18, 137
operationalization of 128–37
political goals 129
assessment criteria 123, 129–34
balancing and nomination management, impact on 170–72
and EURAM gas target model, compared 249–50
gas exchanges role 178–9
implementation
balancing and nomination 184–5
capacity allocation management 180–84
and capacity extension 188–9
and capacity products 181–2
and capacity selling processes 182–3
and commercial network structure 180–81
and cost recognition 188
and cross-border harmonization 188
in Framework Guideline Process 180–89
generally 179–80
interoperability 186
market areas 185, 187
and security of supply 189
short-term capacity management 184
tariffs 186–7
trading regions 185–7
and 'use-it-or-lose-it' principle 183
implicit auctions 113
investment
aims 117
in gas transmission capacity 166–70
implementation 161–70
in interconnection capacity 162–5
in intracanion capacity 165–6
in pipeline capacity 136–7
results of 117–18
in security of supply 159–61
market interconnectedness 14–15, 115–16, 123
balancing and nomination management 171
connection methods 144–6
cross-market trading 146–7
hub-to-hub trading 116–17, 158–9, 171
market coupling 116, 147–50, 171
and price alignment 145–7
and tariffs 177–8
supply patterns security 115–16, 123
balancing and nomination management 171
and cross-market capacity 135
 fallback capacity contracts 117
 investments 159–61
 link chain products 116–17, 135, 157–9, 195
 long-distance transports 150, 156–9
 long-term capacity contracts 113, 115–16, 134–5, 150–56
 operationalization 134–5
 optimization procedures 116–17
 and tariffs 178
 tariffs
 impact on 175–8
 implementation 186–7
 wholesale market functioning
 114–16, 123, 129–32
 advantages 131
 balancing and nomination
 management 115, 138–44, 170–71
 cross-border cooperation 115–16, 131–2, 138–44
 definitions 129–30
 entry/exit networks 131, 138–40
 entry/exit zones 131, 137–8, 140–44
 market area model 115, 138–40, 144, 170
 and market efficiency 133
 multiple balancing systems 140–44
 operationalization 129–32
 policy options, national/regional 143–4
 and price alignment 132–4, 147–8
 single balancing system 115, 138–40
 structural conditions for success 130–31
 and tariffs 175–7
 trading region model 115–16, 140–44, 170–71, 185–7, 254
 within-day markets, role of 173–4, 193
 mergers, of market areas
 advantages 236–7
 challenges 237
 Moselle, B. 82–3, 90
 Netherlands 68–9
 network balancing
 bundled line-pack and re-gasification 101–2
 case studies 98–102
 and EU Third Energy Package 119, 258
 under gas target models 115, 138–41, 170–72, 248
 responsibility for, changing emphasis 248–9
 rules 95–8
 storage withdrawal capacity 101
 supply swing 99–101
 and within-day markets 99–100, 148–9, 173–4, 183, 193
 network management see also network balancing
 capacity
 allocation processes 79–81, 155–6, 158–9
 reservation and nomination 79–81, 105–6
 congestion management
 auctions, role of 242–5
 contractual congestion 7, 88–9
 hubs and market areas, relationship between 239–42
 physical congestion 88–91, 106
 pipeline capacity efficiency 96–7
 seasonal influences 241–2
 secondary capacity market 90–91
 ‘use-it-or-lose-it’ principle 89–90
 importance 6
 transport infrastructure allocation 79–80
 network regulation see also network balancing
 and congestion management 90–91
 entry/exit market regulation 5–7, 11–12
 flexibility 77
 competition 94–5
 costs 81–2, 104
 line-pack flexibility 95–8, 101–2
 restrictions on 104
 of storage 77–9, 98–103
 of transportation 78–9, 94–5, 102–3
limitations/constraints on 77
and security of supply 10–11
networks, generally
adaptation choices 75
challenges 6
cost allocations 7
influence of CCGT on 8
infrastructure
flexibility 77–9, 102
influences on 75
limitations 75, 77
and market design, link between 75
national network rules 77–8
network congestion 5, 7, 106
auctions, role of 242–5
contractual congestion 7, 88–9
physical congestion 88–91
redundancy 135
third party access 6
virtual hubs, influence on 8–10
Neumann, A. 70
Nigeria 56
Nissen, D. 55
oil
embargo, influence on gas demand 32
transportation, compared with gas and electricity transportation 199–200, 232
Oman 56
Patrik, S 25
peak shaving 48, 107
pipelines see also congestion
erosion 106
investment in
and gas transmission competition 201–2
under MECO-S gas target model 136–7
line-pack 7
bundled with re-gasification 101–2
flexibility 95–8
gas demand cycles, influences on supply 35–6, 39–40
loops 97–8, 107
pipeline optimization 96–7, 106–7
point-to-point capacity 83–5, 105
postal capacity 83–5
prices
‘law of one price’ 124
and market liquidity 125
price alignment
advantages and limitations 133
as market integration assessment criteria 124–6, 241–2
under MECO-S gas target model 132–4
price elasticity of demand
gas-fired power plant influence on 22–3, 28–9
meaning 52
short-term inelasticity 23–5
spot prices
convergence, as assessment criteria 125
trends, in LNG sector 59–61
and transmission costs 125
pro rata capacity allocation 86–7, 105
Qatar 44, 56, 68
Qatar Petroleum 68
regulation see network regulation
‘rucksack principle’ 240
Ruester, S. 63–5, 70
Russia 207
salt cavern storage 48
seasonal influences on gas supply and demand 19–21, 23, 31–5
additional daily influences 35–6
gas storage needs 49–51
gas storage patterns 48–50
security of supply 10–11
and interruptible contracts 28–9, 52
market willingness to bear risk 10
under MECO-S gas target model 112, 115–16, 123, 134–5
balancing and nomination management 171
and cross-market capacity 135
fallback capacity contracts 117
Index

investments 159–61
link chain products 116–17, 135, 157–9, 195
long-distance transports 150, 156–9
long-term capacity contracts 113, 115–16, 134–5, 150–56
operationalization 134–5
optimization procedures 116–17
and tariffs 178
political influences 10
regulation, importance of 10
Shaw, D.C. 96
Shell 68
’shopping mall’ approach 236
shrinkage 229
Sisman, N. 236–7
Spain 37–8, 55, 61, 101–2
supply and demand see gas demand; gas supply; security of supply
take-or-pay clauses 209–10
Target Model for the European Natural Gas Market 112
tariff regulation
challenges and solutions 223–4, 226–31
revenue cap tariffs 229
tariff transit reform 229–31
EU practices 223–7
under EURAM gas target model 221–31
advantages 223–4
entry/exit vs. distance-based tariffs 223–6
in merged market areas 227–31
role of ITO 227–8
tariff harmonization 226–7
under MECO-S gas target model 177–8, 186–7
reasons for 223–4
US model 223–5
temperature, influence on gas/electricity demand 31
temporal asset specificity 105
Ten Year Network Development Plan (TYNDP) 207, 221
Tokyo Electric Power 65
Tokyo Gas 65, 68
Total 68
transmission rights, generally
allocation
financial rights vs. capacity rights 207
implicit vs. explicit 4–5, 11–12, 105, 259
regulation
third party access 6
and virtual hubs 4–5, 8–10, 233–4
in US gas markets 2–3
Transmission System Operator (TSO) 3–4
capacity development activities 206–7
Independent Transmission Operators (ITO) model 203–6
network cost allocations 7
network management role 6–7
and network planning model 221–2
obligations 6–7
unbundling trends 203–6
Trinidad and Tobago 56
TSO see transmission system operator
UK
gas demand trends 34–6, 39–40
gas storage patterns 50
LNG market role 55
long-term capacity allocation 210
market-based capacity allocation 86–7
network balancing case study 99–101
short-notice nomination 105–6
unbundling
commercial influences on 204–6
EU gas market trends 4, 201–8, 257
Independent Transmission Operators (ITO) model 203–5
in LNG sector 67–8
regulatory influences on 205
and tariff regulation 226
Union Fenosa 68–9
US gas trade
bilateral contracts in 2–3
characteristics 1–2, 206
compared with oil and electricity transportation 199–200, 232–3
competition in 201
economic optimum capacity 240–41
and EU market, as model for 3–4, 196–8, 257
hubs 237–9
liberalization 1–2, 198, 257
LNG market development trends 54–5, 69
long-term capacity contract trends 209, 211
market characteristics 3, 6, 198
non-regulated agents, role of 1–2
shale gas developments 196
tariff regulation 223–5
trading developments 196
transmission rights, generally 2–3
unbundling 206
upstream regime, advantages of 196
‘use-it-or-lose-it’ principle 89–90
virtual hubs see under gas hubs
weather, influences of 19–20, 31, 61
wind generation 26
withdrawal rates 49
within-day markets 99–100, 148–9, 173–4, 183, 193
Zhuravleva, P. 62