Index

707 (Boeing) 18
737 (Boeing) 29, 71, 125, 131–2, 258
747 (Boeing) 2, 29, 71
757 (Boeing) 109
787 (Boeing) 43, 53, 71, 125–6, 258
9/11 attacks 21
A320 (Airbus) 29, 54–5, 71, 125, 131–2, 135
A330 (Airbus) 131–2, 135
A350 (Airbus) 125–6
A350 XWB (Airbus) 71
A380 (Airbus) 2, 21, 29, 39, 43, 63, 71, 124, 258
A400M (Airbus) 20, 91, 97
‘abnormal profits’ 78
acquisition costs 40, 42, 47, 128, 195, 212, 226, 240–41, 247
Afghanistan 3, 21, 150
Airbus (formerly EADS)
 business model 90
duopoly with Boeing 19, 21, 28, 120, 125–6, 150, 251
firm size data 24, 97, 136–7
formation of 18–19, 96
and international collaboration 250–51
labour productivity/profitability data 138–9
and oligopolies 71–2
output data 131–2
proposed merger with BAE Systems 96, 147
and state provision 6, 19, 32
trade dispute with Boeing 6, 19, 32, 173, 177, 185–6
Air Mail scandal (1934) 15
airspace rights 30, 31
allocative efficiency 77, 130
Alvis Vickers 145
‘anti-competitive’ mergers 30
anti-trust laws (US) 15
Ariane rockets/launchers 2, 129
Armor Holdings 146
Army Balloon Factory 11
Astute submarine (BAE Systems) 147, 148
atomic bomb 16
ATR (French-Italian aircraft firm) 127
AUC (average unit cost) 44, 48
auctions 120
Augustine, Norman 43–4, 256, 258
Augustine’s Law 44
Austrian School of economics 81, 82, 253, 254
Aviation Technology Group 129
AVIC (Aviation Industries of China) 21–2, 113
BAE Systems
 bribery and corruption allegations 153–4
 comparisons with top defence companies 150–51
 core defence business development 145
cost overruns and delays 148, 156
BAC (British Aircraft Corporation) 106, 108, 142
BAe (British Aerospace)
 acquires Marconi Electronics Systems 110, 142, 144, 145
diversification of 143–4, 158
formation of 109, 142
nationalisation of 142–3, 169–70
privatisation of 109, 143, 158, 169–70

Keith Hartley - 9781782544968
Downloaded from PubFactory at 09/15/2023 07:50:29PM via free access
The political economy of aerospace industries

data analysis 141
and Defence Industrial Strategy 110–11, 152
dominance in UK industry 28, 110, 141, 148, 151–2, 156–8, 159
exports 157–8
firm size data 24
formation of 96, 110, 142, 144–5, 158
future challenges 158–9
Gripen case study 238
history of 142–8
labour productivity/profitability data 138–9, 155–6
mergers and take-overs 91, 96
organisation of 149–51
ownership interests in foreign companies 99
performance of 155–8
pricing contracts 153, 156
project problems 147–8
proposed merger with Airbus 96, 147
and public choice analysis 141
R&D spending 152–3, 154
structure and conduct 151–4
Typhoon case study 227–8
US business development 145–7, 158
‘bailing-out’ firms 30, 105
‘blank cheque’ contracts 202
Bleriot Aeronautique 64
Bleriot, Louis 11, 63, 64
Boeing
business model 90
development time averages 135
duopoly with Airbus 19, 21, 28, 120, 125–6, 150, 251
firm size data 24, 136–7
labour productivity/profitability data 138–9
merged with Pratt and Whitney 15
and oligopolies 71–2
output data 131–2
trade dispute with Airbus 6, 19, 32, 173, 177, 185–6
Bombardier 2, 21, 28, 90, 120, 126–7, 173, 186
Brabazon Committee 17, 104–5
Brazil 113, 136, 186
Brazilian industry 113
Bristol Siddeley Engines 142
Buggins’ turn principle 105, 106, 179
bureaucracies 164–5, 167, 178
business cycles 167
business jet market 127–8
business models 90, 143, 159
Buy American Act (1933) 93
C-47 military transport (Douglas Dakota) 17
Camm, Sydney 64
Canada 136, 186
Canberra (English Electric) 51–2
CASA (Construcciones Aeronáuticas SA) 96, 144, 227–8
China 21–3, 113
Chinese Academy of Aerospace Aerodynamics 113
Chinese industry 113
Citation Columbus (Cessna) 127–8
civil helicopter market 129–30
CoA (certificate of airworthiness) 38
Cold War 17–18, 20, 21, 46, 105–6
COMAC (centre for civil aircraft development) 113
Comet (de Havilland) 18, 60, 104–5, 120, 258
common property 33–4, 36, 257
competition
and aircraft development 11, 13, 14–15, 21–2
and defence procurement policy 189, 191, 192, 193–5, 198–9
and future prospects 253, 260
and government influence on markets 30–31
imperfect 5–6, 85
and industrial organisation systems 2–3
and industry conduct and performance 117–18, 121–3, 124–7
and industry structure 78–9, 82–3, 85, 89, 91, 93–4, 98–9, 106, 114
and market failure 4
and military markets 28
perfect 77–9, 81–2
and public choice analysis 35
Index

and technical progress 58, 63–4, 68, 69–71, 72
Concorde (Anglo-French) 18, 60, 108, 183, 208, 209, 259
decision see industry conduct
consumer groups 165, 166
contestable markets 81, 98
continuous learning 54, 55–6
Convention on International Civil Aviation (1944) 31
co-operative strategic behaviour 119
cost escalation 42–3, 45–6, 47, 202–3, 204, 256–7
cost estimates 39, 40, 42, 44, 53, 200–201, 203
cost trends 43–6, 83, 84, 207, 256
cost-plus contracts 81, 105, 174, 191, 199, 202–5, 238
cost–quantity relationships 49–53, 83
CRJ series (Bombardier) 126
cube root rule 221
cumulative average learning curves 48
cumulative output 48–9, 54, 83
Curtiss–Wright 64
Cyber and Intelligence division (BAE Systems) 149

DASA (DaimlerChrysler Aerospace) 96, 144, 227–8
Dassault 20, 56, 133–4, 153–4, 156, 242–4
DC-2 (Douglas) 13, 120
DC-3 (Douglas) 13, 63, 120
DC-8 (Douglas) 18
de Havilland (company) 18, 105
de Havilland, Geoffrey 11, 64
decreasing cost industries 46, 85, 114, 175, 177–8
defence budget cuts 167–9
defence firm business model 90
defence inflation 43
Defence Land Systems India 146
defence procurement policy choice set 190–91
and competition 189, 191, 192, 193–5, 198–9
defence contractor selection 191, 192–3

contracts/contracting 189–90, 191, 199–205
cost–benefit analysis 193–4, 197–8
and development costs 191, 193, 204
imports 188, 194, 195, 212, 225
and international collaboration 188, 196–7, 212–13, 225–6
licensed production 196
and life-cycle costs 190–91, 193, 195
and monopolies 189, 192, 198
offsets 195–6
and production costs 191, 193
project selection 190
and public choice analysis 192
and uncertainty 192–3, 194, 200, 202, 204
Defence White Paper (1957) 105
Defence–Growth Partnership 111
definition of aerospace industry 1–3
denel 113–14
Department of Justice (DOJ) 154
Detica Group 146
deployment costs in aircraft life–cycle 38–40, 41–3
and cost trends 45
and decreasing cost industries 46
and defence markets 180
and defence procurement policy 191, 193, 204
and industry conduct and performance 124, 127–8
and industry structure 83, 84–5
direct funding 32
DIS (Defence Industrial Strategy) 98–9, 110–11, 148, 152
disposal costs 38, 41, 42
Douglas, Donald 64
DSTL (Defence Science Technology Laboratory) 81
duopolies
Airbus/Boeing 19, 21, 28, 120, 125–6, 150, 251
civil helicopter market 130
and game theory 120
future prospects 261
industry size data 136
industry structure 78, 81, 87, 91, 94–8
labour productivity data 138
major European collaborative
projects 208–10
output data 132
see also individual European
countries
European industry 78, 81, 87, 91, 94–8
Eurostat (European statistics) 1, 22
‘excess returns’ 177
exports
BAE Systems case study 157–8
and importance of aerospace industry
6, 7
and industry conduct 122–3
and industry performance 132–4, 135
and international collaboration 232,
234–6, 237, 240, 242, 244, 250–51
and state provision in civil markets 32
and subsidies 174, 176
externalities 3, 5, 175–6, 177
see also technology ‘spill-overs/
spin-offs’
F-15 (McDonnell Douglas) 236, 246–9
F-16 (Lockheed Martin) 78, 96, 134–5,
196, 241, 246–9
F-18 (Boeing) 122, 234, 236, 246–9
F-22 (Lockheed Martin) 2, 246–9
F-35 (Lockheed Martin) 2, 67, 78, 99,
135–6, 148, 193, 197, 210, 234, 246–9, 256
FAA (Federal Aviation Administration)
38
Falcon 5X (Dassault) 56
‘family’ system 103
‘featherbedding’ 13–14, 103
firm price contracts 199–200, 203
firm size
and government influence on 29–30
and industry performance 136–7, 156
and industry structure 89, 97
statistical overview of aerospace
industry 24–5
and technical progress 69–71
Index

‘first mover’ advantage 119, 120, 125, 126, 128, 257
‘five forces’ model 82–3
fixed costs 45, 46, 177
fixed price contracts 199–202, 203
‘flattening out’ of learning curves 54, 55
‘fly before you buy’ policy 78, 193
‘flying bombs’ 21
foreign-ownership 80–81, 83, 98–9
France
aerospace industry data 22–3
industry structure 108
interwar aircraft development 14
major European collaborative projects 208–9
post-war aircraft development 18–20
Rafale case study 242–6
Future European Fighter Aircraft project 243
future prospects
and Austrian economics 253, 254
civil markets 258–9, 262
and competition 253, 260
and cost trends 256
future aerospace firms 259–61
government domination of aerospace industries 253–4, 262
and international collaboration 256
military markets 255–7, 262
private funding 257
role of government 260–61
space markets 257, 259
and technical progress 255, 258–9
and uncertainty 253, 254
game theory 81, 82, 89, 117, 118–21
GEC (General Electric Company) 91, 99, 142, 144
General Motors 20
Germany
industry structure 108
interwar aircraft development 15
major European collaborative projects 208–9
post-war aircraft development 18–19, 20
Typhoon case study 227–8, 244

World War II aircraft production 16, 17
‘government failure’ 184
government intervention see state intervention
Gripen (Saab) 113, 147, 157, 164, 231–2, 233–4, 238–42, 246–50
HAL (Hindustan Aeronautics) 113
Halifax (Handley Page) 50–51
Hawk (BAE Systems) 157, 167, 181
‘hold-up’ problem 65, 153, 181
horizontal integration 15, 91, 144
HSG (Hawker Siddeley Group) 142
Huygens (spacecraft) 34
IATA (International Air Transport Association) 31
ICAO (International Civil Aviation Organisation) 31
imperfect competition 5–6, 85
imperfections 3, 33
imports
and defence procurement policy 188, 194, 195, 212, 225
and militarily strategic industries 4
Typhoon case study 234–6, 237
India 22, 113
Indian industry 113
indirect funding 32
indivisibilities 46
industrial benefits 213, 226, 232, 236–7
industrial organisation systems 2–3, 82, 112, 210, 218, 254, 260
industry concentration 96, 128
industry conduct
BAE Systems case study 151–4
and competition 117–18, 121–3
in civil markets 123–30
in defence markets 121–3
defining 117–18
and game theory 117, 118–21
and oligopolies 118
industry performance
assessing 130–39
BAE Systems case study 155–8
and competition 117
development times 134–6
The political economy of aerospace industries

- export data 132–4, 135
- and firm size 156
- and game theory 117, 118–21
- industry/firm size data 136–7, 156
- labour productivity/profitability measures 137–9, 155–6
- output data 131–2, 135
- industry structure
- BAE Systems case study 151–4
- characteristics of aerospace industry 83–5
- and competition 78–9, 82–3, 85, 89, 91, 93–4, 98–9, 106, 114
- and entrepreneurship 82, 114
- and ‘five forces’ model 82–3
- and government intervention 114
- and international collaboration 84–5, 91, 97, 107–8, 110
- and market failure 85–7
- mergers 91–2, 94, 96, 106, 107–8, 110
- and R&D 77, 80, 83–5, 97
- and resource allocation 77–8
- role of government 80–81, 85–6
- SCP model 76–82
- South African industry 113–14
- and state intervention 114
- and state provision 80–81, 85–6
- and subsidies 174
- supply and demand 80–81, 85, 91
- top aerospace firms 87–93, 94–5, 96–7, 99–100
- and transactions costs 81, 89, 90, 91–2
- infant industries 6, 10, 13, 103, 178, 184
- Innovation Scoreboard (European Union) 73
- interest groups
- and international collaboration 218, 219
- and public choice analysis 162–3, 165–6, 171
- and subsidies 173, 176, 179
- international collaboration
- competitiveness measures 246–8
- cost–benefit analysis 211, 212–13, 215–16, 226, 228–37, 240–42, 244–6, 250
- and cost trends 207
- and defence procurement policy 188, 196–7, 212–13, 225–6
- employment indicators 232–3, 237
- and exports 232, 234–6, 237, 240, 242, 244, 250–51
- evaluation of collaborative projects 211
- and future prospects 256
- Gripen case study 238–42, 246–50
- ideal case of 213–16
- and imports 234–6, 237
- and industry structure 84–5, 91, 97, 107–8, 110
- and interest groups 218, 219
- and life-cycle costs 226, 228, 246, 247
- major European collaborative projects 208–10
- and market failure 216, 236
- methodology of case studies 225–6
- and national comparisons 211, 220
- output data 226, 229, 239, 244, 245, 248–9, 250–51
- and political bargaining 219–20
- post-war aircraft development 18–19, 20
- and public choice analysis 217–18, 219–20
- and R&D 213–15, 216, 222, 236, 250
- Rafale case study 242–50
- and technical progress 207
- and technology ‘spill-overs/spin-offs’ 213, 216, 233–4, 237, 242, 245
- and transaction costs 212, 217
- Typhoon case study 227–37, 246–50
- and work-sharing arrangements 218–20, 230
Index

interwar aircraft development 12–16, 102–3
Iraq 3, 21, 150
ISS (International Space Station) 21
Italy 14, 20, 227–8, 244
Japan 14, 17, 20, 136, 138
JAS consortium 238
Javelin (Aviation Technology Group) 129
Johnson, Amy 11
JSF (Joint Strike Fighter) see F-35
Kawasaki Aircraft Industries 14
Kirkpatrick, D. 45
Korean War 18, 105
L-1 Identity Solutions 146
labour learning curves 48, 49, 53, 54
labour productivity/profitability data 137–9, 155–6
Lancaster (Avro) 50–51
landing rights 30, 31, 86, 254
launch investment 6, 86–7, 110, 185
launch sites 34
Law of Unmitigated Optimism 44
learning curves 48–9, 53–6
learning economies 46–56, 83
LEDs (light-emitting diodes) 66
licensed production 196
life-cycle costs 38–43, 167, 190–91, 193, 195, 226, 228, 246, 247
Lightning (English Electric) 51–2
lobbying 162, 165, 171–2, 216, 218
Lockheed Martin 138–9
Luftwaffe 15
Marconi Electronics Systems (MES) 110, 142, 144, 145
market conduct (in SCP model) 77
market failure
and importance of aerospace industry 3–4, 7–8
and industry structure 85–7
and international collaboration 216, 236
and R&D 67–8
space markets 33, 36–7
and state intervention 3–4, 5, 33, 67–8, 176, 216
and subsidies 175–6, 183–4
market performance (in SCP model) 77
market valuation (of technology ‘spin–offs’) 66–7
markets
civil 29, 30–32, 87, 182–4
government 27–8, 29–32, 34–5, 87, 180–82
military 27–8, 29–30, 87, 179–82
production costs 28, 29
public choice analysis 35–7
space 32–7, 87
structure 69–70
supply and demand 27–8, 29, 31, 34, 87, 180–81
maximum speeds 12, 13, 14–15, 16, 18, 58–60, 102, 103
McDonnell, James 64
Me109 (Messerschmitt) 16
Me163 (Messerschmitt) 16
Me262 (Messerschmitt) 16
mergers 91–2, 94, 96, 106, 107–8, 110, 142, 144, 147
Messerschmitt, Willy 64
Meteor (Gloster) 16, 51–2, 104
’mid-life’ updates 40–41, 42
militarily strategic industries 4–5
military–industrial–political complex 170–72
Mill, John Stuart 254
Mitchell, R.J. 64
Mitsubishi 14
monopolies
BAE Systems case study 145, 152, 159
and defence procurement policy 189, 192, 198
and economically strategic industries 5
government influence over civil markets 30
and industry structure 77–80, 89–90, 92–3, 96, 98, 114
and public choice analysis 164, 171
and state ownership 4
and technical progress 69, 70
Monopolies and Mergers Commission 145
‘monopsony’ 28, 80, 85, 189
‘mothballing’ 41, 261
Nakajima 14
NASA (National Aeronautics and Space Administration) 66
Nash equilibrium 119
Nash, John 119
National Air Races 14
National Audit Office (UK) 228, 231
‘national champions’ 5, 114, 218, 219
‘national interest’ 108, 163–4, 178, 218, 219–20, 255
nationalisation 109, 142–3
NETMA (NATO Eurofighter and Tornado Management Agency) 227–8
Nimrod MRA4 (BAE Systems) 147, 148, 156, 180
non-cooperative strategic behaviour 119
‘non-excludability’ public goods 3
non-price competition 28, 58, 70, 77, 117–18, 121–3, 124–5
‘non-rivalry’ public goods 3
non-zero sum games 119
‘normal profits’ 78
North American Aviation 64
Northrop Grumman 138–9
OAK (United Aircraft Corporation) 112
offsets 195–6
oligopolies
and game theory 118, 120, 121
and industry conduct 118
and industry structure 79–80, 81, 89, 96, 114
and public choice analysis 171
and space markets 34
and technical progress 69, 70–72
open competition 98–9
Open Skies Agreements 31
operational service costs 38, 40–42
opportunity costs 6–7, 35, 176, 213, 232, 240, 254
‘optimism bias’ 43, 203
orbit space 33
Orbital Sciences Corporation 90
Outer Space Treaty (1967) 33, 257
output data 131–2, 135
over-exploitation of common property 33
‘over-fishing’ 33
over-flying rights 30, 31, 86, 254
Pentagon 21
perfect competition 77–9, 81–2
performance see industry performance
Piper Company 129
Platform and Services division (BAE Systems) 149–50
Plowden Report (1965) 107
political markets 162–4, 166–7
Porter, M. 82–3
Pratt and Whitney 15
price competition 28, 58, 70, 117–18, 121–3, 124–5
price-makers 118
price-setting 31
principal–agent analysis 35
‘prisoners’ dilemma’ game 119
private and light aircraft market 128–9
private funding
civil markets 29, 31–2, 182–4
defence markets 179–82
and early aircraft pioneers 10–11, 63–4
and future prospects 257
post-war aircraft development 18–19
space markets 32–3, 35, 36
privatisation 109, 143, 158, 169–70
producer groups 165–6, 171–2
production breaks 53–4
production costs
in aircraft life-cycle 38, 39–40, 41–2
civil markets 29, 32
and cost escalation 47
and cost–quantity relationships 50, 51, 53
and cost trends 45
and decreasing cost industries 46
and defence markets 180
and defence procurement policy 191, 193
and industry structure 83, 84
and international collaboration 207, 210, 213–15, 228–9, 230–31, 240–41, 246, 247
military markets 28
Profit Formula (1968) 156
project-specific funding 32
property rights 8, 30, 31, 33–4, 68, 70, 86, 164, 168, 175, 254, 255
public choice analysis
applications of 167–72
BAE Systems case study 141
and bureaucracies 164–5, 167
and defence budget cuts 167–9
and defence procurement policy 192
and future prospects 254
and interest groups 162–3, 165–6, 171
and international collaboration 217–18, 219–20
and lobbying 162, 165, 171–2
and military–industrial–political complex 170–72
and political markets 162–4, 166–7
predictions of 166–7
and privatisation 169–70
and producer groups 165–6, 171–2
space markets 35–7
and subsidies 178–9
suitability of framework 162, 172
and voting systems 163–4, 166
public goods 3, 33, 85, 176, 180, 242
Pugh, P. 45

qualitative indicators (of technical progress) 61

R&D (research and development)
and aircraft manufacture 2
BAE Systems case study 152–3, 154
and defence procurement policy 188, 194
and economically strategic industries 5

and future prospects 260
and importance of aerospace industry 8
and industry conduct and performance 122, 131
and industry structure 77, 80, 83–5, 97
and international collaboration 213–15, 216, 222, 236, 250
and market failure 8, 67–8
space markets 34
and state provision in civil markets 32
and subsidies 174, 175, 176, 186
and technical progress 64–5, 69–70, 71
and technology ‘spill-overs/spin-offs’ 67–8
‘race to be first’ 11
Rafale (Dassault) 157, 231–2, 233, 240–41, 242–50
referenda 164
regional turboprop airliner market 127
regional/locational funds 32
resource allocation 4–5, 6–7, 35–6, 77–8, 174
rocket launchers 34, 129
Rolls-Royce 91, 98–9, 107–8, 109, 138–9, 142, 152–3, 169–70, 172
Rover Group 143
Royal Aircraft Factory 11–12, 102
Royal Flying Corps 11, 102
Royal Ordnance Factories (ROF) 143
Russia 22–3, 112, 136, 138
Russian industry 112
Saab 20, 143, 147, 238–40
satellite technology 66
Saturn V rocket 20
Schneider Trophy 14
Scottish Aviation 142
SCP (structure–conduct–performance) model 76–82, 117, 130, 139
Serious Fraud Office (SFO) 154
shadow factory scheme 16, 103
The political economy of aerospace industries

SIPRI (Stockholm International Peace Research Institute) 22
'Slots' 30
'Soft budget' constraints 174, 202
South Africa 113–14
South Korea 22
Soviet Union 14, 17–18, 19, 20, 21
space debris 33
Space Race 20, 21
Space Shuttle 20, 34
space tourism 32–3
Space X 129
Spain 227–8, 244
specialist aerospace firm business model 90
'spill-overs' see technology
'spill-overs/spin-offs'
'Spin-off' see technology 'spill-overs/spin-offs'
Spitfire (Supermarine) 16, 50–51
square root rule 220–21, 231
SR-71 Blackbird (Lockheed) 18
state intervention
and industry structure 114
and market failure 3–4, 5, 33, 67–8, 176, 216
space markets 33–4, 36
and strategic industries 5–6
state provision
civil markets 32
defence procurement policy see defence procurement policy
and early aircraft pioneers 10, 11
and industry structure 80–81, 85–6
and infant industries 6, 10, 13, 103
interwar aircraft development 13–14, 103
subsidies see subsidies
and technical progress 64–5
state-ownership 4, 30, 35, 81, 114
statistical games 119
statistical overview of aerospace industries 22–5
Strategic Defence Review (UK, 2010) 148
strategic industries 4–6
structure (in SCP model) 76–7
subsidies
Airbus/Boeing trade dispute 6, 19, 32, 173, 177, 185–6
civil markets 182–4
and contracts 174
defence markets 179–82, 187
definitions of 174–5
and exports 174, 176
and industry structure 174
and infant industries 178, 184
and interest groups 173, 176, 179
and market failure 175–6, 183–4
and public choice analysis 178–9
and R&D 174, 175, 176, 186
strategic trade policy 177–8
variety of 174–5
supply and demand 27–8, 29, 31, 34, 80–81, 85, 91
Sweden 20, 238–42
take-off rights 30
take-overs 91–2
target cost contracts 204–5
tax revenues 234
technical progress
and competition 58, 63–4, 68, 69–71, 72
costs of 61–3
eyear aircraft pioneers 12
and economic growth 72–4
and entrepreneurship 63, 64–5, 69
and firm size 69–71
funding 63–5
and future prospects 255, 258–9
and international collaboration 207
interwar developments 14
and market structure 69–70
measuring 58–61
and oligopolies 69, 70–72
post-war developments 18–20
qualitative indicators 61
and R&D 69–70, 71
and technology 'spill-overs/spin-offs' 66–8
World War II developments 16–17
technology 'spill-overs/spin-offs'
and importance of aerospace industry 3, 7
Index

and international collaboration 213, 216, 233–4, 237, 242, 245
space markets 34, 35–6
and technical progress 66–8
Tenix Defence 146
terrorism 21, 146, 158, 168, 255–6
TFEU (Treaty on the Functioning of the European Union) 96
‘threat of entry’ 81, 96, 198
‘tournament good’ equipment 45–6
transaction costs
and defence procurement policy 191
and future prospects 260
and industrial organisation systems 2
and international collaboration 212, 217
and interwar aircraft development 15
and industry structure 81, 89, 90, 91–2
transmission mechanisms 67
Treaty of Versailles (1919) 15
Tri-Star (Lockheed) 53
Tu-144 (Tupolev) 18
Typhoon see Eurofighter Typhoon

UAC (United Aircraft Corporation) 21
UATC (United Aircraft and Transportation Corporation) 15
UAVs (unmanned air vehicles) 42, 80, 98, 113, 123, 255, 256
UK (United Kingdom)
aerospace industry data 22–3
development time averages 134–5
export data 133
industry dominance of BAE Systems 28, 110, 141, 148, 151–2, 156–8, 159
industry structure 81, 87, 98–112
interwar aircraft development 13–14, 16
and learning curves 54–6
major European collaborative projects 208–9
post-war aircraft development 18–19

Typhoon case study 227–31, 244
World War II aircraft production 16, 17
UK industry 81, 87, 98–112
uncertainty 192–3, 194, 200, 202, 204, 253, 254
unit learning curves 48
United Defense Industries 146
United Launch Alliance 90
USA (United States of America)
aerospace industry data 22–3
BAE Systems business development 145–7, 158
Cold War arms race 17–18
development time averages 134–6
export data 133
industry size data 136
industry structure 87, 89–91, 93–4, 95, 97
international collaboration comparisons 246–50
interwar aircraft development 13, 15, 16
labour productivity data 138
and learning curves 54–6
output data 132
Platform and Services division of BAE Systems 149–50
post-war aircraft development 18, 19
Space Race 20
World War II aircraft production 16–17
USA industry 87, 89–91, 93–4, 95, 97

V-1/V-2 rockets 16
Vampire (de Havilland) 51–2
vertical integration 15, 18, 90, 91–3, 110, 144
Victor (Handley Page) 51–2
Virgin Galactic 129
voting systems 163–4, 166, 178
VT Group 145
Vulcan (Avro) 51–2

Westland 109, 142
World Trade Center 21
274

The political economy of aerospace industries

<table>
<thead>
<tr>
<th>World War I 11–12, 102</th>
<th>WTO (World Trade Organization) 6, 19, 32, 113, 185–6, 259</th>
</tr>
</thead>
<tbody>
<tr>
<td>World War II 16–17, 103–4</td>
<td>zero-sum games 119</td>
</tr>
<tr>
<td>Wright Brothers 11, 43, 63–4, 102</td>
<td></td>
</tr>
<tr>
<td>Wright, T.P. 48–9</td>
<td></td>
</tr>
</tbody>
</table>