advanced biofuels 85–109
algae and microorganisms 95, 97, 105
bio-oil upgrading in fast-pyrolysis 92, 95
capital costs 94
cellulosic biomass 2, 92, 95, 97, 99, 101
competitiveness with fossil fuels 6, 86
cost reductions, RD&D effects on 100–101, 105–6
current position and development 86–8, 89
demonstration activities, importance of funding for 97–8
developing countries 101, 106
diffusion 101–4
diffusion, ceiling projection 102
diffusion, potential barriers 102–3
economic and financial barriers 86–7, 103
efficiency improvements, need for 94
enzymes selection in hydrolysis 92
EU public funding for biofuels technologies 87, 88
European Biofuels Technology Platform 87, 101
experts participating in survey 90–91
fermentation 95
first generation technologies, comparison with 86, 104
Fischer-Tropsch process 95, 99
food crops, competition with 85, 102–3, 104
gasification process 92, 95, 97, 99
geographical areas most likely to reach commercial breakthrough 103, 106
and GHG emissions 85–6, 104
knowledge spillovers 103
methanol and ethanol synthesis 95–7
non-food biomass use 86
optimal RD&D budget allocation for 2010–30 94–5
as percentage of global road transport fuels 85
policy recommendations 104–6
private vehicle market 101, 106
RD&D and future costs 98–101
RD&D needs for second and third generation biofuels 92–8
refining processes 92–4, 95, 105
research survey 88–92
sustainability concerns 85, 102–3, 104
sustainability concerns, and certification systems 102–3
technological barriers 92–8
third generation production, difficulties with 86–7
see also biomass power
Agostini, A. 36
agricultural development see land use
Aleluia, Laura ix–xxiv
algae and microorganisms, advanced biofuels 95, 97, 105
Amirault, J. 113
Anadon Diaz, Laura 66–84
anaerobic digestion technical barriers, biomass power 47, 48
Anderman, M. 112
Anderson, D. 112
Angelis-Dimakis, A. 35
Apostolakis, G. 1
Armand, M. 114
Arvizu, D. 23, 28
Axsen, J. 112
Baddeley, M. 4
Innovation under Uncertainty

Banja, M. 37
battery technologies see electric vehicles and battery technologies
Bauen, A. 36, 38, 39
Baxter, D. 36, 39
Beach, P. 113
Berndes, G. 85
Beurskens, L. 37, 57
biofuels, advanced see advanced biofuels

agricultural development, need for improvement in 59
anaerobic digestion technical barriers 47, 48
barriers to diffusion of biomass technologies 58
biochemical conversion 45, 47–8, 49
biochemical conversion costs 55
bioenergy penetration in electricity generation, 2050 probability 56–7

Bioenergy Technology Roadmap of the SET-Plan development focus 39–42
carbon dioxide capture and storage (CCS) budget 49
ceiling to future share of electricity produced from bioenergy technologies 57–8
certification system suggestion 58–9 and climate change mitigation 35
commercial success by 2030, probability estimation and optimal budget allocation 48
competitiveness 36, 56
conversion technologies 38–9, 40–41, 43
cost reduction, need for 36, 37
current use of bioenergy 37–42
developing countries 37
development targets, differing 39–42
diffusion of bioenergy technologies 56–9

efficiency improvement and cost reduction 36
electricity costs 39
electricity generation processes and budget allocation 47–9
electricity supply contribution 37
EU public funding 38, 39, 51
EU states’ National Renewable Energy Action Plan 37
Europe
European Bioenergy Industrial Initiative development focus 39
experts participating in survey 42–4
experts participating in survey, classes of expertise 44
feedstock choice and sustainability 59
feedstocks’ cost 55
gasification and co-gasification technical barriers 45–7
globally area with highest probability of commercial success 56
GHG life cycle emissions 59
land use and land cover changes 35–6
large scale deployment of bioenergy, potential effects of 52–4
mandatory sustainability criteria at the EU level, need for 36
Organic Rankine Cycle technical barriers 48
policy requirements 58–9
pyrolysis technical barriers 47
RD&D effectiveness on future electricity cost 49–56
RD&D funding 36, 39–42, 49
regional differences in use 37
resource scarcity 35–6
survey on technologies 42–5
sustainability considerations 36, 54, 58, 59
technical barriers 45–7, 48
technical development of bioenergy technologies and budget allocation 45–9
technology transfer dynamics 56
 thermochemical conversion 45–7, 48, 49
 thermochemical conversion costs 55
torrefaction technical barriers 48
woody biomass as most advanced feedstock 45

see also advanced biofuels
Booker, J. 3, 4, 7, 67, 68, 71
Bosetti, Valentina ix–xxiv 1–138
Böttcher, H. 35
Bunn, Matthew 66–84
Burman, M. 68

business as usual (BaU) funding
electric vehicles and battery technologies 124
nuclear energy 73, 74–5, 76, 77, 78, 79

Valentina Bosetti and Michela Catenacci - 9781782546474
Downloaded from Elgar Online at 02/22/2019 03:22:56AM via free access
Canis, B. 113
carbon dioxide capture and storage (CSS)
  biomass power 49
expert judgement elicitation protocols 2
carbon intensity associated with battery production 132
Catenacci, Michela ix–xxiv, 1–138
cellulosic biomass, advanced biofuels 2, 92, 95, 97, 99, 101
certification system
  advance biofuels 102–3
  biomass power 58–9
Chan, G. 2, 14, 68
Christensen, J. 116
Chum, H. 35, 39, 55, 61, 86, 87, 101, 105
Clarke, L. 66
Clemen, R. 3, 67, 68, 71
Clifford, K. 135
climate change mitigation, and biomass power 35
Cluzel, C. 113, 114, 116, 127, 133
Cochran, T. 81
commercial success probability see geographical areas with highest probability of commercial success
competitiveness
  biomass power 36, 56
  electric vehicles and battery technologies 124
  with fossil fuel technology 6, 86
  solar technologies 25, 27, 30
  see also cost reduction; economic factors
conversion processes
  advanced biofuels 95, 104, 105
  biomass power 38–9, 40–41, 43
Cooke, R. 1, 67, 116
cost reduction
  advanced biofuels 100–101, 105–6
  biomass power 36, 37
  electric vehicles and battery technologies 113–14
  solar technologies 12–13, 19
  see also competitiveness; economic factors
Crystalline-silicon PV improvement
costs, solar technologies 19–21
Curtright, A. 2, 14, 24, 68, 71, 116
Dale, V. 85
Dalkey, N. 68
Denholm, P. 13
deployment challenges, electric vehicles 112
developing countries
  biomass power 37
  electric vehicles and battery technologies 130–31
  solar technologies 26, 27
development challenges, nuclear energy 66–7, 75–6, 81–2
diffusion concerns
  advanced biofuels 101–4
  biomass power 56–9
  electric vehicles and battery technologies 129–32
  solar technologies 25–8
Dornburg, V. 35
Douglas, C. 113, 114, 116, 127, 133
Du, Y. 73
Duvall, M. 112
economic factors
  advanced biofuels 86–7, 103
  biomass power 45–9
  nuclear energy 75–6
  see also competitiveness; cost reduction; RD&D funding
Edenhofer, O. 66
Edwards, R. 87
electric vehicles and battery technologies 110–38
alternative fungible materials, flexibility in use of 113
battery charging points 130
battery development and secrecy 111
battery recycling, need for improvement in 125, 132
BEV vs. PHEV battery costs 112–13, 114–16
business as usual (BaU) funding 124
calendar life, need for improvement in 125
carbon intensity associated with battery production 132
cost reduction strategies 113
cost-competitiveness issues 124
current technologies 111–14
cycle life, need for improvement in 125
deployment challenges 112
developing countries 130–31
diffusion ceiling 131
diffusion of electric vehicles and non-technical barriers 129–32
driving behavior, difficulties in changing 130
EU Climate and Energy Package and GHG emissions 111
EU investment 114
experts’ cost estimates, variations in 2, 124–8
experts participating in study 116–18
geographical areas with highest probability of being first to reach commercial breakthrough 130
GHG emissions and transport sector 110
high energy density needs 114–16
infrastructure, lack of adequate 130
Lead acid (Pb-acid) batteries 114
‘learning-by-searching’ and ‘learning-by-doing’, effects of 121–2
Lithium Metal Polymer (LMP) batteries 118, 120–21, 122
Lithium Redox Organic technology 118
lithium-air (Li-air) batteries 116, 118, 120, 122
lithium-ion (Li-ion) batteries 113, 114–16, 118–20, 121, 122, 123, 124, 128–9
lithium-sulphur (Li-sulphur) batteries 116, 118, 120, 121, 122
mining and metals extraction effects 132
molten salt (Zebra) batteries 114, 118, 120–21, 122, 123
Nickel Metal Hydride (Ni-MH) batteries 114, 118, 120, 121
Nickel-Cadmium (Ni-Cd) batteries 114
optimal allocation of public budget 118
penetration rate in private vehicle market 130
percentile of battery costs in 2030, assessment of 122–3
projection of battery costs 112–13, 122–3
public investments for RD&D 114, 118, 127
RD&D and future costs of BEVs and PHEVs 122–9
RD&D investments and cost reduction 113–14
RD&D and need for electric vehicles 118–22
research survey 114–18
safety standards, guaranteeing maximum 116
safety standards, need for improvement 130
stabilization of average global temperature increase, IEA goals 111–12
stock sales or market share of EVs announced by different countries 112
supercapacitors 118
technology transfer dynamics 132
thermal management, need for improvement in 125
thermal runways as potential hazard 116
Zebra batteries 114, 118, 120–21, 122, 123
Zn-air batteries 118, 121, 122
electricity
generation, bioenergy penetration in 56–8
grid, upgrade and integration, solar technologies 13, 26
share, probability of, solar technologies 27–8
supply contribution, biomass power 37
electricity, cost estimation
biomass power 39, 49–56
expert judgement elicitation protocols 6
solar technologies 22–4, 27, 150–52
enzymes selection in hydrolysis, advanced biofuels 92
EU
advanced biofuels public funding 87, 88
biomass power cost competitiveness 56
biomass power public funding 38, 39, 51
biomass power, states’ National Renewable Energy Action Plan 37
Climate and Energy Package and GHG emissions 111
electric vehicles investment 114
European Bioenergy Industrial Initiative development focus 39
European Biofuels Technology Platform 87, 101
solar technologies and cost-competitiveness 25, 27, 30
expert judgement elicitation protocols 1–11
battery technology for electric drive vehicles 2
carbon capture and storage technologies 2
cellulosic biofuels 2
clean energy technologies 2
cognitive and motivational biases 3, 6–9, 25
competitiveness with traditional fossil fuel technologies, assessment of 6
electricity cost estimation 6
face-to-face interviews, benefits of 4–5
group-think bias avoidance and online questionnaire 8–9
interviews with double question on costs 4–7
overview 2
probability estimate for 2030 technology costs 6–7
protocol designs 3–4
self-assessment of expertise 5–6
techniques 1
web conferences 5
web questionnaire and workshops on future of nuclear energy 7–10
web questionnaire and workshops on future of nuclear energy, graphic displays 9

gasification process
advanced biofuels 92, 95, 97, 99
biomass power 45–7
Gelfand, I. 36
gеographical areas with highest probability of commercial success
advanced biofuels 103, 106
biomass power 56
electric vehicles and battery technologies 130
solar technologies 25
GHG emissions
advanced biofuels 85–6, 104
biomass power 59
electric vehicles and battery technologies 110, 111
Goldston, R. 66
Goossens, L. 1, 116
Gopal, A. 36
group-think bias avoidance and online questionnaire 8–9
Grubb, M. 30
Grübner, A. 67
Henrion, M. 1, 3, 67, 71, 88
Heywood, J. 112, 113, 127
Hill, J. 86
Hogarth, R. 1, 88
Hultman, E. 73
infrastructure, lack of adequate for electric vehicles 130
installation costs, solar technologies 12–13
investment risk premiums, nuclear energy 76
Jäger-Waldau, A. 13

Fargione, J. 36
Farrell, A. 36, 86
Fiorese, Giulia 1–65, 85–138
Fischer-Tropsch process, advanced biofuels 95, 99
food crops, advanced biofuels competition with 85, 102–3, 104
see also land use
Fritsche, U. 36
funding see RD&D funding

Fargione, J. 36
Farrell, A. 36, 86
Fiorese, Giulia 1–65, 85–138
Fischer-Tropsch process, advanced biofuels 95, 99
food crops, advanced biofuels competition with 85, 102–3, 104
see also land use
Fritsche, U. 36
funding see RD&D funding

Kahneman, D. 3
Kalhammer, F. 113
Keeney, R. 3, 67, 68, 71
Keisler, J. 2, 14, 68, 71, 88, 101, 106
Keith, D. 1, 67
knowledge spillovers see technology transfer
Koomey, J. 73
Kromer, M. 112, 113, 127
Innovation under Uncertainty

Lal, R. 35
land use
biodiversity, need for improvement in 59
biomass power and land cover changes 35–6
food crops, advanced biofuels competition with 85, 102–3, 104
solar technologies and geographical constraints 27
see also mining and metals extraction
Lead acid (Pb-acid) batteries, electric vehicles 114
learning rate
electric vehicles and battery technologies 121–2
nuclear energy 77–8
solar technologies 24–5
see also technology transfer dynamics
Lee, Audrey 66–84
light-water reactors see under nuclear energy
lithium batteries see under electric vehicles and battery technologies
lock-in effect, solar technologies 26
McKendry, P. 35, 38
Malin, M. 66
Margolis, R. 13
methanol and ethanol synthesis, advanced biofuels 95–7
Meyer, M. 3, 4, 7, 67, 68, 71
mining and metals extraction
electric vehicles and battery technologies 132
solar technology and rare metals’ availability 27
see also land use
molten salt batteries (Zebra), electric vehicles 114, 118, 120–21, 122, 123
Morgan, G. 1, 3, 67, 71, 88
Nemet, G. 13
Newbery, D. 13
nickel batteries see under electric vehicles and battery technologies
Nogueira, L. 106
non-food biomass use, advanced biofuels 86
nuclear energy 66–84
business as usual (BaU) funding scenario 73, 74–5, 76, 77, 78, 79
capital costs 72–5
capital risks 78
development challenges 66–7, 75–6, 81–2
economic choices and interest rates 75–6
experts participating in study 68–71
fuel cycle technologies and fuel materials, RD&D investment into 80
Gen. III/III+ class, light-water reactors (LWRs) 71–2, 73–4, 75, 76, 77
Gen. IV system 74–5, 76, 77, 78, 81
growth rate, recent 66
investment risk premiums 76
life-cycle costs 78
projections for 2030 of costs and performance 71, 72–6, 77
RD&D allocations, recommended 80–81
RD&D government spending projections 71, 73, 76
RD&D recommendations and impact on costs and non-cost factors 76–9
RD&D recommendations and impact on costs and non-cost factors, disruptive innovation effects 78
RD&D recommendations and impact on costs and non-cost factors, industry experts versus experts in public institutions 76–7
RD&D recommendations and impact on costs and non-cost factors, learning-by-researching curve 77–8
research methods 67–72
research methods, individual elicitions followed by group workshops 68
SMRs (small modular reactors) 71–2, 75, 76, 77
sodium-cooled fast reactors (SFR) and increased RD&D 80–81
Very High Temperature Reactor (VHTR) and increased RD&D 80, 81
waste management considerations 81
web questionnaire and workshops on future of 7–10

O’Hagan, A. 3, 5, 7, 67, 71
optimal budget allocation
advanced biofuels 94–5
electric vehicles and battery technologies 118
solar technologies 19–21
Organic PV improvement costs, solar technologies 21, 22

Parabolic Trough systems, solar technologies 13
Parsons, J. 73
Patiño-Echeverri, D. 112
Phillips, L. 3, 71
policy recommendations
advanced biofuels 104–6
biomass power 58–9
solar technologies 29–30
Poppe, M. 106
Price, H. 13, 152
production costs see competitiveness;
cost reduction
public awareness, need for, solar technologies 26
public funding
advanced biofuels 87, 88
biomass power 38, 39, 51
electric vehicles and battery technologies 114, 118, 127
pyrolysis
advanced biofuels 92, 95
biomass power 47
Quigley, J. 3, 67, 71
Rathmann, R. 85
RD&D funding
advanced biofuels 92–101
biomass power 36, 39–42, 49, 49–56
electric vehicles and battery technologies 113–14, 118–29
nuclear energy 71, 72–81
solar technologies 19–25
technology costs xv, xix–xxii
recycling
electric vehicle batteries 125, 132
solar technologies and toxic substances 27

see also waste management
refining processes, advanced biofuels 92–4, 95, 105
Reilly, T. 3, 67, 68, 71
resource scarcity, biomass power 35–6
Roman, H. 68
Romero, M. 152
safety standards, electric vehicles and battery technologies 116, 130
Searchinger, T. 36, 86
self-assessment of expertise 5–6
Shaheen, S. 13
Shropshire, D. 74
Sims, R. 86
SMRs (small modular reactors), nuclear energy 71–2, 75, 76, 77
sodium-cooled fast reactors (SFR), nuclear energy 80–81
solar technologies (PV and CSP), future prospect of 12–34
Concentrating PV improvement costs 21
cost reductions and support schemes 12–13, 19
Crystalline-silicon PV improvement costs 19–21
demonstration funding 21, 22, 30
developing countries 26, 27
diffusion of 25–8
electricity costs, 2030 estimation 22–4, 27, 150–52
electricity grid upgrade and integration 13
European leadership and cost-competitiveness 25, 27, 30
expert coverage and specialization in research 16–18
future costs under different RD&D scenarios 19–25
future costs under different RD&D scenarios, assumptions that might affect costs 22
geographical area with highest possibility of commercial success 25
government fiscal support 13, 21, 22
installation costs 12–13
land availability and geographical constraints 27
learning rate estimation 24–5
maximum share of global electricity, probability of 27–8
non-technical barriers and diffusion of solar technologies 25–8
optimal distribution of current RD&D budget 19–21
Organic PV improvement costs 21, 22
Parabolic Trough systems 13
past capital investments in fossil power as non-technical barrier (lock-in effect) 26
policy recommendations 29–30
power pricing rules for feeding into grid 26
public awareness, need for 26
questionnaire 139–49
rare metals’ availability as non-technical barrier 27
research data 14–16
storage systems, need for improved 27
supply intermittancy problems 26–7
technical barriers to development of solar technologies 19
Thin-film PV improvement costs 21
Third Generation PV improvement costs 21, 22
toxic substances, recycling of 27
uncertainty, effects of RD&D on 24
Sorda, G. 85
storage systems, solar technologies 27
supercapacitors, electric vehicles and battery technologies 118
sustainability concerns
advanced biofuels 85, 102–3, 104
biomass power 36, 54, 58, 59
Tarascon, J. 114
technical barriers
advanced biofuels 92–8
biomass power 45–7, 47, 48
solar technologies 19
technology costs
future costs of power technologies, coefficient of variation xvii–xix
investment risks xix–xxii
RD&D spending effects xv, xix–xxii
technology transfer effects xxii
Sorda, G. 85
storage systems, solar technologies 27
supercapacitors, electric vehicles and battery technologies 118
sustainability concerns
advanced biofuels 85, 102–3, 104
biomass power 36, 54, 58, 59
Tarascon, J. 114
technical barriers
advanced biofuels 92–8
biomass power 45–7, 47, 48
solar technologies 19
technology costs
future costs of power technologies, coefficient of variation xvii–xix
investment risks xix–xxii
RD&D spending effects xv, xix–xxii
technology transfer effects xxii