Index

absorptive capacity 23
agriculture 97
Ajzen, Icek
theory of planned behaviour 326
theory of reasoned action 326
Akaike information criterion (AIC) 207
ambidexterity 23
Apple, Inc.
product lines of 326–7
Aristotle 228
Audi 324, 333
Australia 200
 New South Wales 201
Bayesian information criterion (BIC) 207
Berkeley Lab 128
Berners-Lee, Tim
 Director of W3C 363
 role in development of Semantic Web 363
binomial regression
 negative 201
bioethics 236
BioHeat Alternative Heat 181
biological systems 232, 236
biotechnology 4, 106, 157–8, 223, 230, 238
 as boundary object 222, 224, 234–5
 communication in 222–3, 238
 companies 121, 139
 concept of 3, 225–7
 definitions of 223, 225
 development of 225, 233–5, 238
 early applications of 227–9, 235
 genetically modified organisms (GMOs) 236
 microbiology 228
 output potential of 232
recombinant DNA technology 221, 229–30
 XNA integration 236–7
BMW AG 333
Brazil 264, 271
 business intelligence 93
Cambridge Econometrics
 energy-environment-economy model (E3ME) 267
Canadian Survey of Innovation (1999) 269
cancer therapy 117, 127–8, 140
 Bragg peak 127–8
 particle therapy 117, 125–6, 130, 137–9
 development of 112
capital
 human 73, 138, 314
 intellectual 64
 socio-economic 311
carbon dioxide (CO2) emissions 265, 269
Chamber University
 indicator-based tool 103
Chiba University 127, 132, 137
China 264, 271
Cisco Systems 54
clean change 262
carbon credits 265, 273
 Certified Emission Reduction (CER) credits 270
Clean Development Mechanism (CDM) 262, 265, 270–72
 Emission Reduction Units (ERUs) 270
Feed-in tariff (FIT) 272–6
 renewable energy certificates (RECs) 272–3

Dimitris G. Assimakopoulos, Ilan Oshri and Krsto Pandza - 9781782547884
Downloaded from Elgar Online at 02/04/2019 10:07:34AM via free access
Managing emerging technologies for socio-economic impact

renewable portfolio standards (RPSs) 272, 276
Joint Implementation (JI) 262, 265, 270, 272
Montreal Protocol on Substances that Deplete the Ozone Layer (1987) 262
taxation 264–6, 276
environmental tax reform (ETR) 266–8
R&D tax credits 264
Tradeable Green Certificates (TGCs) 273–4
cloud computing technology (CCT) 34–7, 39, 41–4
adoption of 39
customers in 35, 38–9
service-level agreements (SLAs) 39
impact of 42–4
life cycle of 35–6
technological architecture of 37–8
co-classification analysis 155, 159
cognitive interdependency 86
Community Innovation Survey (CIS) 218
questionnaire 247, 252
competencies
marketing 250
operationalization of 251
technological 250
competitive action
intergroup 76
competitive advantage sustainable 312
Conference Proceedings Citation Index 124
construction 97
cooperative action
group-level action 72–3
intra-group 66–7, 69–70, 76
Copenhagen Economics Renewables Innovation Model 267
Cothrel, Joseph 324
customer relationship management (CRM) 354, 357–8, 360, 362
concept of 357
social (SCRM) 306–7, 355, 363–6, 368
technology-organization-environment (TOE) framework 355–6
strategy 354–5, 358, 360–62
process 358–9
use of Web 2.0 in 355–6, 362, 364, 366
Darwin, Charles 228
Denmark
Copenhagen 262
Deutsche Telekom 96
dichlorodiphenyltrichloroethylene (DDT) 227
Ducati 334–5
Tech Café 331
dynamic capabilities 23
ecological resilience
concept of 342–3
Elettra Synchrotron Trieste (Elettra ST) 188
emerging technologies 6, 10–11, 17, 26, 33, 46, 80, 89, 111, 216–18
actor networks in 7–8
adoption of 29, 31, 39
diffusing of 7–8
gatekeepers 41, 45
impact on organizational routines 33
innovation networks for 8–9
key enabling technologies (KETs) 7
study of 6
Energy Ireland 172–3
Enterprise Ireland 173
entrepreneurship
entrepreneurial competencies 286, 294
institutional 296–7
ETH Zürich
opportunity landscape tool 102
European Commission (EC) 3, 8, 11, 94, 113, 141, 189, 263, 285, 288–9
6th Framework Programme 186
FPs of 285
FP7 289, 291
‘Roadmap for Moving to a Competitive Low Carbon Economy in 2050’ 262–3
European Economic Area (EEA) 267
definition of ‘eco-innovation’ 263
<table>
<thead>
<tr>
<th>Index</th>
<th>379</th>
</tr>
</thead>
<tbody>
<tr>
<td>European Economic Community (EEC) 223</td>
<td></td>
</tr>
<tr>
<td>European Industry Association 290</td>
<td></td>
</tr>
<tr>
<td>European Organization for Nuclear Research (CERN) 127, 138, 141</td>
<td></td>
</tr>
<tr>
<td>European Patent Office 158</td>
<td></td>
</tr>
<tr>
<td>European Strategic Forum for Research Infrastructures (ESFRI) 189</td>
<td></td>
</tr>
<tr>
<td>European Technology Platforms (ETPs) 11, 216, 288–9</td>
<td></td>
</tr>
<tr>
<td>WeETP 289–93</td>
<td></td>
</tr>
<tr>
<td>Implementation Action Plan 290</td>
<td></td>
</tr>
<tr>
<td>Strategic Research Agenda 290</td>
<td></td>
</tr>
<tr>
<td>European Union (EU) 8, 93, 179, 236, 248–9, 265</td>
<td></td>
</tr>
<tr>
<td>Council Decision 2002/358/EC 175</td>
<td></td>
</tr>
<tr>
<td>Directive 2003/96/EC 179</td>
<td></td>
</tr>
<tr>
<td>Directive 2009/28/EC 175</td>
<td></td>
</tr>
<tr>
<td>Emissions Trading Scheme (ETS) 264, 268, 270–72, 275</td>
<td></td>
</tr>
<tr>
<td>Framework Programmes for Research and Technological Development (FP) 285, 291–2</td>
<td></td>
</tr>
<tr>
<td>funding provided by 1 member states of 157, 269, 273, 276</td>
<td></td>
</tr>
<tr>
<td>Renewable Energy Feed in Tariff scheme (REFITs) 179–80</td>
<td></td>
</tr>
<tr>
<td>Facebook 306, 325</td>
<td></td>
</tr>
<tr>
<td>First World War (1914–18) 228</td>
<td></td>
</tr>
<tr>
<td>Fishbein, Martin</td>
<td></td>
</tr>
<tr>
<td>theory of reasoned action 326</td>
<td></td>
</tr>
<tr>
<td>Fleming, Alexander 228</td>
<td></td>
</tr>
<tr>
<td>forecasting innovation pathways (FIP) concept of 103</td>
<td></td>
</tr>
<tr>
<td>France 31, 269</td>
<td></td>
</tr>
<tr>
<td>Fraunhofer Institute for Systems and Innovation Research (PhG-ISI) 102</td>
<td></td>
</tr>
<tr>
<td>identification of emergence of technologies 105–6</td>
<td></td>
</tr>
<tr>
<td>Gephi (software package) 177</td>
<td></td>
</tr>
<tr>
<td>Germany 112, 128, 264, 271</td>
<td></td>
</tr>
<tr>
<td>Getty Research Institute 199</td>
<td></td>
</tr>
<tr>
<td>global supply chains 7</td>
<td></td>
</tr>
<tr>
<td>Godin, Seth</td>
<td></td>
</tr>
<tr>
<td>Tribes (2008) 325, 327</td>
<td></td>
</tr>
<tr>
<td>Google, Inc. 35</td>
<td></td>
</tr>
<tr>
<td>government laboratories 121</td>
<td></td>
</tr>
<tr>
<td>Greener Homes 181</td>
<td></td>
</tr>
<tr>
<td>greenhouse gas (GHG) emission reduction 261–3, 265, 267–8, 273–4</td>
<td></td>
</tr>
<tr>
<td>targets 262–3</td>
<td></td>
</tr>
<tr>
<td>GSI Darmstadt 127, 137</td>
<td></td>
</tr>
<tr>
<td>Harvard Medical School 132</td>
<td></td>
</tr>
<tr>
<td>Harvard University 112</td>
<td></td>
</tr>
<tr>
<td>Havensine formula 199</td>
<td></td>
</tr>
<tr>
<td>healthcare 97, 111–12</td>
<td></td>
</tr>
<tr>
<td>Heavy Ion Medical Accelerator (HIMAC) 128, 132</td>
<td></td>
</tr>
<tr>
<td>Heidelberg University Hospital (HIT) 112, 128</td>
<td></td>
</tr>
<tr>
<td>Helmholtz Centre for Heavy Ion Research (GSI) 112, 128, 141</td>
<td></td>
</tr>
<tr>
<td>Hewlett-Packard (HP) 32</td>
<td></td>
</tr>
<tr>
<td>Hippocrates 228</td>
<td></td>
</tr>
<tr>
<td>Hitachi, Ltd. 112, 127, 135, 137</td>
<td></td>
</tr>
<tr>
<td>human resilience concept of 343–4</td>
<td></td>
</tr>
<tr>
<td>Ibaraki University 135, 137</td>
<td></td>
</tr>
<tr>
<td>IDEO 86</td>
<td></td>
</tr>
<tr>
<td>independent technology service providers (IDTSPs) 94</td>
<td></td>
</tr>
<tr>
<td>TI in 94</td>
<td></td>
</tr>
<tr>
<td>India 264, 271, 325</td>
<td></td>
</tr>
<tr>
<td>information communication technology (ICT) 3–5, 12–14, 38, 112, 153–6, 354</td>
<td></td>
</tr>
<tr>
<td>collaboration networks 177</td>
<td></td>
</tr>
<tr>
<td>concept of 3–4</td>
<td></td>
</tr>
<tr>
<td>infrastructure 12, 346</td>
<td></td>
</tr>
<tr>
<td>innovation 2</td>
<td></td>
</tr>
<tr>
<td>relationship with work practices 13</td>
<td></td>
</tr>
<tr>
<td>role in organizational socialization</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>semiconductors 160</td>
<td></td>
</tr>
<tr>
<td>tools used in online communities 326</td>
<td></td>
</tr>
<tr>
<td>use in TMS 15–16</td>
<td></td>
</tr>
<tr>
<td>innovation 2–3, 8, 141, 155, 169–70, 218, 246–7, 264, 285, 305–6, 311</td>
<td></td>
</tr>
<tr>
<td>architectural 10</td>
<td></td>
</tr>
<tr>
<td>ecosystems 11</td>
<td></td>
</tr>
<tr>
<td>emergent technology 5</td>
<td></td>
</tr>
<tr>
<td>networks 8–9</td>
<td></td>
</tr>
<tr>
<td>gap 249</td>
<td></td>
</tr>
<tr>
<td>management 218</td>
<td></td>
</tr>
</tbody>
</table>
networks 8–9, 168–9
issue-driven 10
policy 217
processes of 3, 67, 129
systems 170–71
path-dependency 170–71
technological 1, 23, 26, 55, 63, 215, 260
ICT 2
innovation capability 55–6, 58–9, 69, 74
development of 54, 73
organizational-level 75
as strategy driver 63
integrated technology service provider (ITSP) 24–5, 92, 94, 99, 106–8
concept of 96–7
TI in 94, 96–8
Intel Corporation 178
intellectual property
commercialization of 139
development 55
interdisciplinarity 219
nanotechnology as 156, 161
in scientific networks 127
International Business Machine (IBM) Corporation 330
International Energy Research Centre (IERC) 178
Iran
Zagros Mountains 227
Irish Nanotechnology Commercialisation Framework 162
Italy 190, 199, 207, 335
RIs of 188, 190–92, 196
Japan 112, 125, 128, 137, 140, 223
kai-retsu culture of 137
knowledge base (KB) 154–5
knowledge-based economy 154
knowledge transfer 14, 16–17, 153–4, 169–70
intra-organizational 24
material factors affecting 24
Kodak European Research 96
Kuhn, T.S.
view of scientific developments 118
Kyoto Protocol 262, 270

Article 12 270
Article 6 270
impact of 271–2

labour
interfunctional cognitive division of 87
Lawrence, Ernest 128
Lawrence Berkeley Laboratory (LBL) 112, 127
LEGO
personnel of 324
LinkedIn 306
Loma Linda University 127, 135

manufacturing 97, 316–17
Marie Curie Initial Training Network (ManETEI) 1, 10–11
personnel of 11–12, 17
research activity 12
market intelligence 93
Massachusetts General Hospital 112
material science 97, 111, 212
McKee, Jake 324
Mendel, Gregor 228
METRO 55–6, 64, 66–7
innovation capability of 69
personnel of 63, 66–7
Mexico
Cancun 262
microfoundations 51
Microsoft Corporation 35
Most Valuable Professional program 331
multidisciplinarity
nanotechnology as 156, 161
RE technology 168

nanotechnology 4, 106, 111–13, 153–6, 161–2
application of 112–13
collaboration networks 112
concept of 3
as interdisciplinarity 156, 161
as multidisciplinarity 156, 161
network structure of 156–7, 161–2
patents (NP) 159
applications 157–8
potential impact of 65
nanotechnology, biotechnology,
information technology and cognitive technologies (NBIC) 3–4
National Institute for Nuclear Physics (INFN) 188
NIRS 127
Nokia-Siemens 54
non-profit organizations (NPOs) 180, 182

online community 325–6, 328, 337
concept of 324
ICT-related tools 326
open source software (OSS)
communities 327
role of users in 329–32
open innovation framework 309–11, 313–15
family firms 312–13, 315, 317–18
performance 316–17
wealth preservation 315, 318
ordinary least squares (OLS) 197, 276
Organisation for Economic Co-operation and Development (OECD) 157
definition of biotechnology 223
Oslo Manual 248
organizational ambiguity 59, 63, 67, 70, 74–5
influence over group social identity 72
organizational capability 48–50
development of 50–51
role of proximity 48–9
organizational identity 72
organizational innovation 1–2, 5, 23
organizational socialization 13–14
role of ICT in 14
organizational processes 81–2
organizational resilience 340, 349–50
concept of 341, 344–5
construction of 342
enhanced equilibrium phase 348–9
impact phase 346–7
incubation phase 345–6
role of leadership in 347
organizational routines 30, 34, 36, 46
dynamicity 32–4, 36
habitual 30
higher-order 33
impact of emerging technologies 33

lower-order 33
metaroutine 31
organizational theory 81, 84, 340–41
patent 158, 247
applications 157
nanotechnology (NP) 158–60
other (OP) 159–60
networks 160–61
Poisson estimates 201
Poisson regression 197–8, 204, 207
zero-inflated (ZIP) 204, 207
Poland 269
POLIS 55, 64, 66, 69
innovation capability of 69–70
members of 66
resource planning 67
public research organizations (PROs) 129
ReHeat Deployment 181
renewable energy (RE) technology 171–3, 176, 178–9, 182, 218, 260, 272–3
carbon capture and storage (CCS) 176
development 170
funding of 175–6
innovation networks 168–9
marine energy 176
as multidisciplinarity 168
R&D 170–71, 175
research clusters 169, 172–3, 177
SMEs in 181–2
solar photovoltaic (PV) 273
sustainable (SRE) 260–62, 264–6, 268–9, 273–4, 276
solar 275
wind 275
targets for 175
wind energy 180, 273
Republic of Ireland 112–13, 153, 157
Alternative Energy Requirement Programme (1996) 179
biotechnology sector of 157–8
economy of 157, 160
energy infrastructure of 174, 177–8
Environmental Protection Agency (EPA) 176
Forfás 176
government of 175
ICT sector of 157–8
nanotechnology sector of 153–4
patents 159–61
RE sector of 173, 179, 181
Sustainable Energy Act (2002) 175
‘Towards a Sustainable Energy
Future for Ireland’ (2006) 175
Sustainable Energy Authority of
Ireland 176–7
research and development (R&D) 2,
12, 24, 35, 51–2, 66, 95, 102–3,
168, 181, 247, 250, 254, 264, 268,
285, 288, 290
collaboration network 178
collaborative policy 298–9
eyear-stage 182
environmental 275
expenditure on 246–8, 254, 267
funding 172, 181
infrastructure 253
internal 250, 253
investment 248
technology transfer 222
university-industry 117
research and technological
development (RTD) 126, 139
of technological development routes
128–9, 138
research infrastructures (RIs) 113,
187–8, 190, 193–7, 200, 204, 207,
211–12
affiliation network 189
cluster position of 194
collaboration with/without 201, 204,
211
international 211
concept of 186
proximity 196, 199, 208, 211
role in scientific network 188–91,
193–4
return on investment (ROI) 360
Russian Federation 264, 271
Science Citation Index Expanded
124
scientific network 115–18, 123, 127
collaboration network 178
collaborative policy 298–9
research and development (R&D) 2,
12, 24, 35, 51–2, 66, 95, 102–3,
168, 181, 247, 250, 254, 264, 268,
285, 288, 290
small- and medium-sized enterprises
(SMEs) 180
social identity 52–3
group 59, 72–3, 76
impact of 69
on social interaction 73–4
processes of 59, 70, 72
social network analysis (SNA) 186
social networks 141, 211, 355
social networking sites (SNSs) 362
social theory 123
South Africa 264, 271
Starbucks 334
structural contingency theory
view of organizational effectiveness
81–2
Swarovski Enlightened™ 328
Switzerland 112, 135
Tat Consultancy Services 325
technological discontinuity 34
technological networks 115–18, 123
co-evolution/overlap with scientific
networks 119, 121–2, 138,
140–41
route 1 127–8
route 2 128, 135, 137
university-industry-government
relations 122
technology intelligence (TI) 92–4, 100,
107
concept of 93
frameworks 102–3
in IDTSPs 94
implementation of 94, 101, 106–7
Index

in ITSPs 94, 96–8
processes of 92–6, 99–100, 107
roadmapping 101–2
Telco 35, 37, 42–3
personnel of 41, 43
TMT 42–4
strategic plans of 39, 41
use of CCT 41–2
telecommunications 25, 35
radio 54
theory of inventive problem-solving (TRIZ) 103, 105
top management team (TMT) 29–30, 33, 39, 43–4
members of 42
transactive memory system (TMS) 14, 87
collect of 15, 83–4
development of 82, 88
group-level 15
organization-wide 85–8
organizations as 80–81
use of ICT in 15–16
Trinity College Dublin
TrinityHaus 178
Triumf 135
Tsukuba University
National Institute of Radiological Research 112
United Kingdom (UK) 54
manufacturing sector of 316–17
United Nations (UN)
Climate Change Conference
Bali (2007) 262
Cancun (2010) 262
Copenhagen (2009) 262
Framework Convention on Climate Change (UNFCCC) 262
United States of America (USA) 69, 103, 112, 121, 125, 127–8, 132, 135, 137, 140, 223
Berkeley, CA 128
Department of Health and Human Services 128
Food and Drug Administration (FDA) 128, 132, 137
Supreme Court 229
US Trademark and Patent Office (USPTO) 158
University College Cork
Tyndall National Institute 178
University of Cambridge
T-Plan methodology 102
University of Limerick
STOKES Institution 178
University of Ljubljana
Faculty of Economics 247
University of Nottingham
strategic technology alignment roadmapping (STAR) system 102
value chain 306, 309–10, 313, 316, 318
division of labour along 218
innovation 251
value co-creation 336–7
brand management 334–5
company–customer relationship 336–7
concept of 324–5, 333
platforms 332
role of consumer in 333–4
Varian 127
Venter, Craig 234
Vienna Convention for the Protection of the Ozone Layer (1985) 262
Volkswagen 334
Volvo Group 333
Web 2.0. 307, 355, 362–3, 368
impact of 355
use in CRM systems 355–6, 362, 364, 366
Weizmann, Chaim 228
Williams, Ruth 324
Wilson, Robert 128, 132
WIRELESS 57, 59
founding of (2002) 54–5, 63
innovation capability of 55–6, 58, 70
workflow processes 85
World Intellectual Property Organization (WIPO) 172–3
World Wide Web consortium (W3C) personnel of 363
zero-inflated negative binomial (ZINB) 198, 207–8