Index

Abreu, M. 62–5, 153
absorptive capacity 52, 150, 152, 161, 163
academic research
benefits of 13–14
economic impact of 54, 56–65
funding
increased, over time 11–12
and intellectual property 51
international comparison 104–5
link to quality 80–85
link to university productivity 75
performance based, in UK and Italy 102, 118–38
public and private 105–11
from third parties 97–9
impact on innovation processes 58–9
and knowledge transfer activities 19–21, 24–5, 64, 143
performance indicators 80–85, 90–91, 95–9, 101
vs. teaching 17–19, 24–5, 32, 85, 104–5, 171
Adams, J.D. 58, 59, 64, 120, 121, 123–4
Aghion, P. 10, 33
Agrawal, A. 61, 87
Andersen, B. 15, 50–51, 72–3
Angrist, J. 39–40
‘anti-commons effect’ 21–2
Antonelli, C. 14, 22, 52, 66, 141
ANVUR 116–17, 125–6, 131–3
‘appropriable’ knowledge model 50–51, 55
Arrow, K.J. 49, 52
‘Arrow’s paradox’ 50
arts and humanities
contributions to economy 15
less expensive research 84–5
peer review as dominant method of assessment 126
Arundel, A. 62–3, 65, 141, 153
Asheim, B.T. 141, 157
Autant-Bernard, C. 59, 157
AUTM 70, 86
Ballarino, G. 41, 106
Barro-Lee database 29, 30
Barro, R. 29, 30, 42
basic research 13, 22, 49–50, 51, 171
Bayh–Dole Act 20, 164
bibliometric indicators 80–81, 83–4, 122–3, 126–7, 131–2
Block, F. 66, 68
Bodas Freitas, I.M. 139, 142, 150
Bonaccorsi, A. 22, 92, 128
Bowen, W. 41, 172
Bozeman, B. 64, 68
Brown, R. 121–2
Carasso, H. 121–2
Card, D. 39, 40
Cassone, A. 14, 27
Cave, M. 74, 78
Chalmers, D. 61, 76, 91
Checchi, D. 41, 106
Ciccone, A. 37–8
Cohen, W.M. 52, 53, 59, 61, 63, 65, 87, 143, 150, 153, 156
competitive advantage 139–40
Cowan, R. 52, 54
Crespi, G. 22, 87, 120
CUC (Committee of University Chairmen) 89, 91
Daraio, C. 22, 92
Dasgupta, P. 3, 50, 53
David, P.A. 3, 6, 50, 51, 60
D’Este, P. 61, 64, 142
differentiation 23–7, 168, 171–2, 175
Dosi, G. 13, 52, 107
economic growth
- effects of education 32–46
- impact of academic research 54, 56–65
- knowledge and technological progress 8–10
- university contributions to 10–16, 23, 165–6
education, effects on economic growth
- macroeconomic evidence 41–5, 46
- mechanisms proposed by economic theory 32–3, 165–6
- microeconomic evidence 33–41, 46
- Eigenfactor (EI) score 82, 90
employment
- by education levels 34–6, 39–40, 41
- as performance indicator 79, 90–91
in Piedmont Regional Innovation System 144–6, 153
endogenous growth models 8–10
Etzkowitz, H. 22, 143
European Commission 69, 113, 145–6
Eurostat 95, 144
Feldman, M.P. 22, 164
firms
- and basic research 49–50, 51
- collaboration with universities 21–2, 53, 68–71, 139–44
- lessons for 169
- Piedmont Regional Innovation System 144–64
- reasons for non-interaction 151
- and geographic proximity 58–9, 139, 156–61
- and innovative processes 13–14, 54
- returns on private spending 60
- shared research activities 19
- tendency to protect research outcomes 57–8
- university R&D funded by 106–7
- use of academic research 20, 61–5, 71–2
Fondo di Finanziamento Ordinario/Ordinary Financing Fund (FFO) 111, 115–17, 127–8, 135
Freeman, C. 6, 141
Fritsch, M. 59, 157
funding
- changes in 74–6
- costs 128–9
- comparison with research allocation 134–6
- Italy’s VQR 131–4
- United Kingdom’s RAE 129–31
- international comparison 103–4
- public and private 105–11
- research and teaching 104–5
- introduction to 102–3
- in Italy 114–17
- models for European universities 173–6
- performance-based research
 - in Italy 124–8
 - in United Kingdom 118–24
- public, reasons for and models of 166–7
- study conclusions 136–8
- in United Kingdom 111–14
Garfield, E. 80, 81
GDP
- effects of education 42, 44–5
- Europe, R&D expenditure 145–6
- expenditure for university research 12
- in Italy
 - expenditure on universities 103–4
 - grant-based funding through FFO 115
 - per capita, and degree-holders 29–30
 - Piedmont 144, 145–6
- in OECD countries
 - per capita, and share of graduates 31
 - university expenditure by type and source 105–6
- technological progress and investment 56–7, 58
- geographic proximity 40, 59, 71, 139, 141, 156–61, 169
Germany
- development of chemical industry 4
- doctoral students 95, 96, 100
- employment and salaries 34–5, 36, 37
- firms’ funding of research 69–70, 106–7
funding system 176
higher education certificates 10–11
Godin, B. 12, 48
governance
of collaborations 142–3, 149–56
models for European universities 173–6
Griliches, Z. 39, 48, 60
Gurney, K. 120, 121
H-index 83
Hansmann, H.B. 109–10
Hanushek, E.A. 10, 32, 33
Henderson, R. 59, 60, 61, 87
HESA (Higher Education Statistics Agency) 112, 130
Hicks, D. 70, 118, 138
higher education institutions of 4–5
unprecedented growth 10–11, 29
Hughes, A. 14, 70, 122, 143
human capital
increase of stock as a mechanism to increase growth 32, 33–41, 42–3, 45, 165–6
and the university 28–32
Ichino, A. 40, 106
impact factor (IF) 81–2, 90, 126
incentives 50–51, 53–4, 166–7, 173–4, 175
industry see firms; university-industry knowledge transfer
innovation processes
and system failure 53
benefits of research activities generated through 13–14
impact of academic research on 58–9
importance of collaborations 149, 153
models of 12–13, 48–9
need for knowledge acquisition 140–141
institutional models 26
‘institutionalization’ of knowledge transfer 19, 164
institutions of higher education 4–5
intellectual property
protection system 50–51, 55, 141
sectors 6
within universities 19–20, 72, 87
‘interactive’ knowledge model 52–4, 55
international comparisons
performance measurement 89–100
university funding 103–11
ISTAT 144–5
Italy
autonomy without assessment 174–5
catering for ‘poorer’ students 27
employment and salaries 34–6, 37–8
funding 102–10, 114–17, 137, 138
performance-based research 131–6
public 67–8
graduations 29–30
higher education certificates 11
university-industry collaboration in Piedmont region 144–64
Jensen, R. 64, 143
Kline, S. 13, 141
knowledge
as economic good 8, 47, 48
‘economics of’ 52
technological progress and economic growth 8–10
theories 48–54
knowledge accumulation process 10
knowledge economy 6–7
knowledge production and transfer models
‘appropriable’ knowledge 50–51, 55
‘interactive’ knowledge 52–4, 55
‘public’ knowledge 48–50, 55, 71
and public policies 65–71, 72–3
see also knowledge transfer
knowledge spillovers 9, 54–5, 58, 61, 71, 143
knowledge transfer
and academic research 19–21, 24–5, 64, 143
channels 64, 72, 145
collaboration
with firms 163–4
objectives 157
economic impact of 54, 56–65
excessive emphasis on returns 171
funding 112, 113, 114
‘institutionalization’ of 19, 164
perfect 48–9
performance indicators 85–9, 90–91
synergy with teaching 22–3, 24–5
university-industry 139–64, 169
see also knowledge production and transfer models
KPIs (key performance indicators) 89–100
Krueger, A.B. 37, 39–40, 42, 43, 45
Laursen, K. 59, 61, 63, 149, 156, 157
Lawton Smith, H. 61
Lee, J.-W. 29, 30
Lepori, B. 75, 92
Levinthal, D.A. 52, 150
Leydesdorff, L. 22, 143
Lindahl, M. 37, 42, 43
Lissoni, F. 18, 87
Lundvall, B.-Å. 52, 142
Mansfield, E. 53, 58, 59, 60, 141
Martin, B. 14, 60, 70, 101, 118, 124, 134, 174
Meyer-Thurow, G. 4, 142
Mincer, J. 36–7
Mincer’s equation 36–8, 41
macro-Mincer 43–5
micro-Mincer 36, 44, 45
MIUR (Ministero dell’ Istruzione Universita’ e Ricerca) 114–16, 125, 147
Molas-Gallart, J. 76, 144
Mowery, D.C. 61, 64, 67, 69, 85
Muscio, A. 19, 142–3
Nelson, R.R. 4, 13, 21, 32, 49, 52, 66, 85, 142
NPM (new public management) 74
OECD 6, 7, 11–12, 34–5, 67, 70, 77, 103–7, 110–118
‘open science’ as access channel 64, 72, 153
durability 22
nature of 3, 19
PA Consulting Group 129, 130, 134
‘Pasteur’s Quadrant’ sciences 20
Patel, P. 64, 142
patents
‘anti-commons effect’ 21–2
economic gain from 51, 72
importance as knowledge transfer channel 153, 154, 156
legislative measures 68–9
PatVal study 62, 156
as performance indicator 86–90, 145–6, 148
protection system 50–51
spending on research 58–9
universities and firms 20, 65, 70
PatVal study 62, 156
peer review 84, 118–19, 126–7, 131–2, 137
performance-based research
Italy
costs of 131–6
research assessment 124–5
Valutazione della Qualità della Ricerca (VQR) 125–8
United Kingdom 137, 138
costs of 129–31, 134–6
Research Assessment Exercise (RAE) 118–22
Research Excellence Framework (REF) 122–4
performance measurement
need for 74–6
performance indicators 76
international comparison 89–100
knowledge transfer 85–9
limitations of 100–101, 167–8, 175–6
research 80–85
teaching 77–9
Perkmann, M. 64, 143
personal collaboration 149–52, 153–4, 161, 163–4
Peterson, P.E. 10, 32
Piedmont Regional Innovation System 144–7
collaborations
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>geography of 156–61</td>
<td>149–56</td>
</tr>
<tr>
<td>governance of 149–56</td>
<td></td>
</tr>
<tr>
<td>data 147–9</td>
<td></td>
</tr>
<tr>
<td>empirical results</td>
<td></td>
</tr>
<tr>
<td>PIEMINV survey 148–9, 153–6</td>
<td></td>
</tr>
<tr>
<td>UIPIE survey 147–8, 149–53</td>
<td></td>
</tr>
<tr>
<td>study conclusions 161–4</td>
<td></td>
</tr>
<tr>
<td>Piolatto, M. 102</td>
<td></td>
</tr>
<tr>
<td>Politecnico of Torino 146, 147, 158, 161</td>
<td></td>
</tr>
<tr>
<td>private funding 105–11</td>
<td></td>
</tr>
<tr>
<td>production functions 8, 9, 56–7</td>
<td></td>
</tr>
<tr>
<td>public funding 105–11, 166–7</td>
<td></td>
</tr>
<tr>
<td>‘public’ knowledge model 48–50, 55, 71</td>
<td></td>
</tr>
<tr>
<td>public policy 65–71, 72–3, 135, 143</td>
<td></td>
</tr>
<tr>
<td>quality</td>
<td></td>
</tr>
<tr>
<td>accommodating 171–2</td>
<td></td>
</tr>
<tr>
<td>international indicator for 33</td>
<td></td>
</tr>
<tr>
<td>measuring 90–91</td>
<td></td>
</tr>
<tr>
<td>research 80–85, 101, 119–21, 123–4, 126–7</td>
<td></td>
</tr>
<tr>
<td>teaching 75, 77–9, 101</td>
<td></td>
</tr>
<tr>
<td>RCUK (Research Councils UK) 134, 136</td>
<td></td>
</tr>
<tr>
<td>Regio Politecnico di Torino 4</td>
<td></td>
</tr>
<tr>
<td>regional capabilities 139, 140–141</td>
<td></td>
</tr>
<tr>
<td>regional technology transfer analysis 140–144</td>
<td></td>
</tr>
<tr>
<td>research see academic research; scientific research</td>
<td></td>
</tr>
<tr>
<td>Research Assessment Exercise (RAE) 84, 114, 118–22, 129–31, 133–4, 135</td>
<td></td>
</tr>
<tr>
<td>Research Excellence Framework (REF) 84, 122–4, 127</td>
<td></td>
</tr>
<tr>
<td>Rettore, E. 37, 40</td>
<td></td>
</tr>
<tr>
<td>return of public investment 60</td>
<td></td>
</tr>
<tr>
<td>Rhoades, G. 67, 70</td>
<td></td>
</tr>
<tr>
<td>Ritzen, J. 23, 174</td>
<td></td>
</tr>
<tr>
<td>Romer, P.M. 9, 32</td>
<td></td>
</tr>
<tr>
<td>Rosenberg, N. 4, 13, 20, 52, 66, 141</td>
<td></td>
</tr>
<tr>
<td>Rosli, A. 15, 86, 88, 89</td>
<td></td>
</tr>
<tr>
<td>Rossi, F. 15, 50, 51, 69, 86, 87, 88, 89</td>
<td></td>
</tr>
<tr>
<td>salaries study 35–41, 44–6</td>
<td></td>
</tr>
<tr>
<td>Salter, A. 61, 63, 149, 156</td>
<td></td>
</tr>
<tr>
<td>Sampat, B. 64, 69</td>
<td></td>
</tr>
<tr>
<td>Schartinger, D. 64, 142</td>
<td></td>
</tr>
<tr>
<td>Schubert, T. 25, 27, 168</td>
<td></td>
</tr>
<tr>
<td>scientific research</td>
<td></td>
</tr>
<tr>
<td>financed from public purse 137</td>
<td></td>
</tr>
<tr>
<td>incentives for investment in 106, 166</td>
<td></td>
</tr>
<tr>
<td>interactions with technology transfer 22, 64</td>
<td></td>
</tr>
<tr>
<td>models focussing on contribution to growth 9–10</td>
<td></td>
</tr>
<tr>
<td>place of 3–5</td>
<td></td>
</tr>
<tr>
<td>provision of, as role of universities 7</td>
<td></td>
</tr>
<tr>
<td>secrecy clauses 21</td>
<td></td>
</tr>
<tr>
<td>synergy with knowledge transfer 20–21</td>
<td></td>
</tr>
<tr>
<td>university engagement in 80–85</td>
<td></td>
</tr>
<tr>
<td>Scott, A. 13, 60</td>
<td></td>
</tr>
<tr>
<td>Sizer, J. 76, 77</td>
<td></td>
</tr>
<tr>
<td>Slaughter, S. 67, 70</td>
<td></td>
</tr>
<tr>
<td>social sciences</td>
<td></td>
</tr>
<tr>
<td>contributions to economy 15</td>
<td></td>
</tr>
<tr>
<td>less expensive research 84–5</td>
<td></td>
</tr>
<tr>
<td>peer review as dominant method of assessment 126</td>
<td></td>
</tr>
<tr>
<td>Solow, R.M. 5, 56</td>
<td></td>
</tr>
<tr>
<td>source normalized impact per paper (SNIP) 82–3</td>
<td></td>
</tr>
<tr>
<td>standards, university 33, 172</td>
<td></td>
</tr>
<tr>
<td>Stephan, P. 66, 136</td>
<td></td>
</tr>
<tr>
<td>Stokes, D.E. 13, 20</td>
<td></td>
</tr>
<tr>
<td>Sylos Labini, M.S. 29, 115, 116</td>
<td></td>
</tr>
<tr>
<td>tacit knowledge 19, 24, 52, 53–4, 141, 157</td>
<td></td>
</tr>
<tr>
<td>teaching</td>
<td></td>
</tr>
<tr>
<td>funding</td>
<td></td>
</tr>
<tr>
<td>international comparison 104–5</td>
<td></td>
</tr>
<tr>
<td>in Italy 114–17</td>
<td></td>
</tr>
<tr>
<td>linked to quality 75</td>
<td></td>
</tr>
<tr>
<td>proposals for 176</td>
<td></td>
</tr>
<tr>
<td>in UK 111–14</td>
<td></td>
</tr>
<tr>
<td>performance indicators 77–9, 90–91, 93–5, 101</td>
<td></td>
</tr>
<tr>
<td>vs. research activities 17–19, 24–5, 32, 85, 104–5, 117</td>
<td></td>
</tr>
<tr>
<td>synergy with knowledge transfer activities 22–3, 24–5</td>
<td></td>
</tr>
<tr>
<td>technological progress</td>
<td></td>
</tr>
<tr>
<td>knowledge and economic growth 8–10</td>
<td></td>
</tr>
<tr>
<td>scientific research as sufficient for 54, 66, 167</td>
<td></td>
</tr>
</tbody>
</table>
The university and the economy

studies into relation with university research 56–9
technologies, adoption of 32–3, 41–3, 46, 166
total factor productivity 56–8, 71

unemployment by education levels 34–6, 39–40, 41
United Kingdom
employment and salaries 34–5
firms’ use of knowledge 61–2
funding 102, 104–10, 111–14
public 5, 58, 67–8, 75
geographic proximity 59
knowledge transfer performance indicators 88, 89
KPI requirements 91
‘new universities’ 26
share of academic patents 87
support of technology transfer projects 69
teaching performance indicators 93–4

United States
Bayh–Dole Act 20, 164
employment and salaries 34–5
firms’ use of research 61
funding 66–8, 70, 103–7, 109, 110, 136
geographic proximity 59
higher education rates 10–11, 17
history 4–5, 167
impact of academic research 58–9
interaction with firms 71, 142
KPI requirements 91
教学 performance indicators 77, 79
university as source of knowledge 62
university
accountability 74, 129, 130, 167–8
activities
combining different 168
differentiation and quality 171–2
integration of 171
time frames for assessment of outcomes 170
as complex institution 3–5
contributions to economy 10–16, 23, 165–6
diverse activities synergy 17–23, 24–6
effects on economic growth 32–46
expansion 27
funding 74–6, 102–38
and human capital 28–32
knowledge, technological progress and economic growth 8–10
models for European, in transition 173–6
organization for modern times 169–72
performance measurement 74–101, 167–8
role in knowledge economy 6–7
systemic development and 26, 168
university-industry knowledge transfer lessons for 169
Piedmont Regional Innovation System 144–7
conclusions 161–4
data 147–9
empirical results 149–61
regional technology transfer analysis 140–144
university-industry relations as source of competitive advantage 139–40
University of Gastronomic Sciences 146, 147, 148
University of Piemonte Orientale 146, 147, 148
University of Torino 116, 146–7, 148, 158–9, 161
university research see academic research; scientific research
Valutazione della Qualità della Ricerca (VQR) 125–8, 131–4, 135, 138
Van Raan, A. 80, 83
Van Reenen, J. 15, 42
Von Hippel, E. 13, 52
von Humboldt, Wilhelm 4, 28
Winston, G. 18, 109, 110

Aldo Geuna and Federica Rossi - 9781782549499
Downloaded from Elgar Online at 05/03/2019 05:47:39AM via free access