Index

agent-based modelling 101–102
agricultural and food systems 9, 10, 51–52, 119

Berkes, Fikret 42–43, 47, 137, 143, 148–149

Brundtland report 6, 8, 23, 29, 41

climate change 4, 8–10, 16, 18–19, 25, 126
Cofradias fishery management (Spain) 93, 94
commons 22–24, 88
community-university research partnerships 103–106
companion modelling 100–102
Condorcet, Marquis de 85–86
Costanza, Robert 13, 47, 87, 145

Daly, Herman 13, 15–16, 35, 46, 56, 139–140, 145, 148
Dietz, Thomas 24–25, 146

earth ethics 79–81
Earth System Science Partnerships 51, 52, 116
ecological footprint 31–32, 119
economic growth and social welfare 54–56
and natural capital depreciation 55
and human capabilities 65
economic modelling
 Walrasian general equilibrium model 43, 63, 140
dynamic stochastic equilibrium model 63, 140
economic theories
 Ecological economics 45–48
 post-keynesian macroeconomics 60–66
Veblenian evolutionary economics 72–75
Economics of Ecosystems and Biodiversity Assessment Report (TEEB) 50
ecosystem services
degradation of ecosystems 4
integrated management 41–48
criticism of maximum sustainable yield 43, 141
energy, oil peak 9, 10, 18–20
environmental health 95–99
ergodic systems 63, 65, 84
European Commission
 Directorate General Research 1, 27, 59, 118
 Innovation Union Programme 90
Everglades National Park (US) 44, 45
financial markets
 and sustainability 60
 2008 financial crisis 3, 60–62
 and systemic risks 61
forest groups (Belgium) 22, 94
governance
 and social norms 24
 and personal values 24
Greenspan, Alan 3, 61
higher education institutions 113–116, 124–126
Hirsch Hadorn, Gertrude 95, 138, 146, 149, 156, 163
Holling, Crawford Stanley 16, 42, 44–45, 149

Indicators
 alternative growth indicators 55–57
 gross domestic product (GDP) 53–55
Sustainability science for strong sustainability

and multi-criteria assessment 57–60, 141
inequality 4, 9, 20–23, 32, 48, 53
interdisciplinarity and complex adaptive systems 33–36
in peer reviewed journals 3, 107-110
limits of interdisciplinarity 75–77
Intergovernmental Panel on Climate Change (IPCC) 8, 9, 16, 19, 129
Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services (IPBES) 50

Jackson, Tim 17–19, 53, 55, 60, 66, 150
Jaeger, Jill 1, 26, 33, 111, 113, 116–117, 121, 150–151, 156, 159, 163

Keynes, John Maynard 82, 146
Lang, Daniel 5, 38–39, 92, 120, 143, 152, 158
lexicographic preferences 47, 48, 141
Local Science Network for Environment and Sustainability 126, 127, 133
Lucas, Robert 4, 62, 146, 153

Malthus, Thomas Robert 85–86
Marshall, Alfred 82, 142
methodology of research reductionism 25, 34, 73, 81–82 and complex adaptive systems 25, 34–35
hypothetico-deductive research 25, 28
entanglement of facts and normative values 30–32, 78–79
and uncertainty 33, 37, 65, 139
extended peer review 37

Millenium Ecosystem Assessment 9, 4, 11, 12, 48–51
multi-method research 83, 87, 111, 112, 115, 123, 124, 133

National Science Foundation (US) 115, 118
Nelson, Richard 73, 82, 142, 154
Norgaard, Richard 51
North, Douglas 84, 149, 155
poverty 4, 9, 20, 21, 58
programmatic research funding 126–128, 133
public policy command and control 24
market incentives 24, 25
community state co-management 50
local community management 49
multi-stakeholder arrangements 50
Putnam, Hilary 78–80, 148, 156–157
research evaluation 111–112, 116
research policy, and socially relevant research 27, 28, 36
resilience 16, 32, 43, 116
Rifkin, Jeremy 66, 79, 119, 157
Rio Platano Biosphere Reserve (Honduras) 4, 22
Rotmans, Jan 33, 71–72, 111, 138–139, 147–148, 153, 158, 163–164
Samuelson, Paul 83–84, 143
Science-policy-society partnerships 90, 91
Sen, Amartya 30, 78, 80, 85–86, 158–159
Simon, Herbert 34, 81, 84, 101, 146, 159
social economy 103–106
Social Sciences and Humanities Research Council (Canada) 103–104
socio-ecological systems 35–36, 137
strategic science 35, 36, 76
sustainability strong sustainability 5, 14–16, 28-33, 75–77, 139
decoupling growth 13–20, 28, 53
definition 13
sustainability ethics and future generations 29–30
capabilities approach 29–30
and economic theory
sustainability plan of the City of Rome 77, 119
sustainability science
major challenges 1
institutional barriers 107–133
definition 26
critical levels of natural capital 30–32
and economics 78–89
Sustainability Transitions Research Network 117, 129, 133
Swiss Academies of Arts and Sciences, Transdisciplinary Research Net 2, 117, 123, 129, 131–132
Talloires Declaration 114
technological innovation
and risk 40
and normative values 67
and policy 68
and technological lock-in 73-75
Tokyo University
Graduate School of Frontier Sciences 2, 114–115, 122, 133
partnership with Kashiwa City 77, 90, 115, 119
Alliance for Global Sustainability 2, 117, 129, 130, 133
transdisciplinarity
definition 36, 138
components of a transdisciplinary research process 37–39
and extra-scientific stakeholder expertise 38, 57–77, 90–95
transformative science 76, 136
transition theory
and innovation 69–71, 138
regional approach to 72
and strong sustainability 71–72
typological theories 81–82
University of Greifswald, Institute for Landscape Ecology and Botany 2, 124, 125
Walras, Leon 83, 141, 162
Weaver, Paul 4, 19–20, 22, 57, 60, 111, 120, 163
Young, Oran 25, 162, 164