Index

α diversity 154
abandoned agricultural land 173–4
absolute scarcity, of ES 134
acceptance criteria (CBA) 118
access, to ES benefits 68, 72, 81, 403
accessible map surveys 228
acidification 142
adaptive development 89
adaptive management 90, 94, 97, 101, 312–14, 391
additionality (offset) 369, 386, 411
adherence, to mitigation hierarchy 369, 372–3
administrative sectors, cooperation between 250
adverse effects
avoidance of significant 76
see also negative impacts
aesthetic quality of landscape 105–6
Africa 283–8, 288–9, 290, 454, 457, 461, 463, 469
see also individual countries
aggregation of indicators 262, 263
agricultural and forest management intensity 195
land ownership and uncertainties in future 196
modelling and assessment 197–202
case studies 202–15
lessons learned and conclusions 215–18
agricultural land 173–4, 354
see also farmland
agriculture 195, 463
land management (case study) 103
Alaknanda river system 332, 339
Albertine Rift 284–5, 290, 360
Alkmade, R. 50, 145, 146, 148, 153, 155, 156
Alta East Wind Project 313–14
alternatives
developing, in SEA 44, 51–4
nature-based solutions, climate change 431
in spatial planning 251
Amazon 28–34, 36, 322, 412–13
amount, biodiversity in relation to 349
apes 283, 287, 288, 289, 290, 294, 295
see also chimpanzees; gorilla population; gorilla tourism
aquatic ecosystems, impact of dams on 325
aquatic ecotoxicity 143
Aral Sea 330
Araucanía 53, 54, 210–15
area-based estimation 407, 410, 421
Areas of Protection (AoP) 140, 141, 143
Argentina 20, 400
Arninge–Arlanda Railway 181–4, 188
Artificial Intelligence for Ecosystem Services (ARIES) 22, 51, 265
Asia 156, 321, 454, 457
at-sea collision, wind structures 302
Atlas of Global Conservation 456
Australia
biodiversity offsets 366, 376, 377, 378, 379, 380, 381, 389, 390, 391, 392
ecotourism 280–81
environmental legislation 397
HIA, coal seam fracking 77–82
non-offsetable impacts 384
regulating services 20, 400
‘averted loss’ offsets 379
avoidance
in mitigation hierarchy 368
of significant adverse effects 76
avoidance behavior 300–301, 302
avoidance criteria 115, 404–6
avoidance measures 116
awareness
of cumulative impacts of resource development 77, 82
environmental 282

487

Davide Geneletti - 9781783478996
Downloaded from Elgar Online at 02/16/2019 07:00:11AM
via free access
Biodiversity and ecosystem services in impact assessment

climate change 299
challenges for impact assessment 428–30
components and attributes 353–5
dams
and impacts on 324–5, 334
and threat to, China 321–2
definitions 349, 351–3
ecotourism 279–81
environmental impact assessment 291–4
lessons regarding 288–90
understanding impacts of 281–2
hotspots 124, 279, 280, 282, 283–8
impacts of urbanization on 169–71
life cycle assessment
biodiversity coverage 154–5
challenges to including impact assessment on 151–7
conclusions 157–8
impact mechanisms affecting 142–4
linkage between ES and 2, 348, 353
measuring and assessing 279
multi-dimensional nature 68
and poverty see poor people; poverty; poverty alleviation
restoration 188, 359, 360
spatial planning
consideration of 222
key issues and tools 223–9
wind energy and effects on 300–305
see also Convention on Biological Diversity
biodiversity banking 378–9
biodiversity conservation 284
biodiversity use vs 359
ecotourism and 282, 290, 294
interventions 360
nature-based climate adaptation 431
poverty reduction/alleviation 347, 349
protected areas and 256, 276
regional landscape strategy, Stockholm 179–81
trade-offs between economic interests and 312
see also habitat conservation; species, conservation
biodiversity damage potential (BDP) 148
biodiversity dis-services 350, 355, 361
biodiversity distinctiveness 377
biodiversity impact assessment (BIA)
 comprehensive approaches 2
 EU directive 2
 landscape approach 19–20, 171–3
 poverty alleviation 359–62
 uncertainties in 2, 311
 under climate change 430
 voluntary guidelines 347
biodiversity loss
 biodiversity offsets 364, 366, 375–8
 climate change 143
 dam construction and 334
 ecosystem degradation 86
 indicators to address, in LCA 144–8
 land use and land use change 143–4
 poverty implications 348
 reversibility 377
 though absence of ecotourism 295
 urbanization and 167–8
Biodiversity Management Plans (BMPs) 373
Biodiversity Offset Management Plans (BOMPs) 373, 391, 392
biodiversity offsets 364
 concerns about 365–6
 cumulative effects in 480
 definitions, principles and ‘no net loss’ 366–8
 design 367, 369, 372, 411
 challenges 382–90
 tools to address challenges 387–90
 within IA 374–82
 ecosystem services framework 410–21
 implementation 369, 373–4
 addressing challenges in 390–92
 community involvement 381
 interest in 364
 legal requirements 365, 368, 413
 limits to 369, 383–5
 mitigation ratios 413–21
 principles 368, 369, 375
 spatial prioritization 412–13
 trends in policy and practice 392–3
 unsuccessful 386
voluntary 365
see also offset planning
Biodiversity Strategy (EU) 195, 225
biodiversity value(s) 350
 in CIA of dams 337, 338
 impact assessment on intrinsic 371–2
 poor people and 361
see also use and cultural values
bioenergy 103–4, 465
biogeographical differentiation 156
biomass
 assessing regional strategies for
 enhancing (study) 202–9
 fragmented habitats and reduced 157
 indicator relating to 150
 poverty alleviation 358
biophysical mapping 195
biophysical perspectives 22
biophysical risks, coal seam fracking 77–8
biosphere reserve 107–8
biotic homogenization 170
biotic production potential (BPP) 150
bird species
 data availability, in LCA 152
 habit and diversity of 463
 nesting sites 306, 308
 transport infrastructure and declining 170
 wind energy impacts 300–302, 312
 limiting 306, 307–8, 309
see also individual species
bird watching 281–2, 285, 286, 287
BirdLife International 283–4
black storks 306
Bond, A. 62, 75
Botswana 359–60
bottlenose dolphins 304
Brazil 322, 379, 380
breeding birds, and wind energy effects 301
breeding species, as a biodiversity value 338
Bristol Channel study 265–8, 482
brownfield sites 173, 185, 440, 442–7
buffer zones, wind farms 306
built communities, improving 467–9
Bull, J.W. 377, 386
bundling, wind farms with other projects 305
burden of argument 76
burden of disease 67, 76
bush meat trade 289
BushBroker programmes 379
Business and Biodiversity Offsets Programme (BBOP) 366, 368, 371, 375
Bwindi National Park 285, 286, 287
Canada 78, 340, 383, 391, 400, 455, 457
Canter, L. 339
capabilities, poverty in relation to 349
capacity of provisioning services, indicators for 262
capercaillie 307–8
carbon emissions 130, 167
carbon sequestration
 Bristol Channel study 266–7
 land management case studies 97, 203, 207, 213
 nature-based solutions to climate change 431
 representation in IA 401
 road development (case study) 32
 serviceshed for benefits from 18
 water quality regulation and 20–21
 carbon value 118
Cardinale, B.J. 353
cascade model (ES) 45, 197, 216, 223, 224, 435
cause-and effect relationships 140, 326, 329, 338–9, 480
cellular automata 198–9, 201
Cesar Department (Colombia) 23–8
cetaceans 304
change
 evaluation, marine ES 264–5
 impact assessment to identify projected 408
 monitoring, in SEA 44, 54–8
 over time, and applicability of indicators 262
Chaplin-Kramer, B. 157
characterization factors, in LCA 140–41, 143, 147, 148, 152, 155, 156
chemical pollution 142
Chile 53, 54, 209–15, 282, 379
chimpanzees 285, 286, 287, 289
China 255, 321–2, 329, 334, 457, 461
cities
 consequences of localization pattern 167
 as focus of footprint analysis 455
 green areas see urban green areas and inner suburbs, improving 468–9
 species density 170
 urban ES and attractiveness of 174
Cities and Biodiversity Outlook 175
citizens’ juries 261
classification frameworks, marine ES 260
climate change
 and biodiversity 299
 challenges for impact assessment 428–30
 biodiversity loss 143
 dams and 330
 impacts, and land management 87, 92, 93, 94, 104–5
 mitigation 175, 255, 256, 299, 431
 nature-based solutions 430–32
 uncertainty factor in impact analyses 449
Climate Change Challenge 280
climate externalities 67
climate regulation
 agricultural and forest management study 203
 global serviceshed 18
 see also carbon sequestration
Co$ting Nature 51
co-benefits
 biodiversity management/conservation 284, 350
 nature-based climate adaptation 431, 448
co-production of knowledge 228, 250
coal seam/fracking, health impact assessment 77–82
coastal habitat
 total economic value 255
 see also marine ecosystem services
coastal land management,
 participatory planning, (case study) 94–109
cooperative planning 228
collisions/risk, wind energy structures 300–301, 302, 303, 308, 309
Colombia 23–8, 378, 381, 388, 412
commodification, of ecosystem services 77
Common International Classification of Ecosystem Services (CICES) 197, 203, 216, 231, 260
common pool resources (CPRs) 359
communicable disease 66
communication strategies, monitoring systems 57
community cohesion 175
community engagement 68, 72
community livelihoods 67–8
compaction (soil) 150
compensation for environmental damage 364
residual impacts, French transport projects 116
stabilization of population species 311
see also biodiversity offsets; financial compensation
compensation costs, of degradation 146
complementarity, evaluation approaches 479
compositional indicators 144–5, 157
COMTESS research project 94, 97, 110
conditions for maintained biodiversity (CMB) 147, 148
condor 313–14
confidence maps 266
Congo Basin 288
coniferous forest, Stockholm landscape strategy 180, 184
connectivity see habitat, connectivity; landscape, connectivity
consensus model, in LCA 143
conservation see biodiversity conservation; nature conservation
conservation corridors 284
conservation perspective 353
conservation planning 382
conservation portfolio 382
conservation targets 246–8
conservation value(s) 155, 335–6, 390
constitutive development impacts 90, 102–3
constitutive personal impacts 90, 101–3
construction, and habitat loss 119
contact, with urban nature 175
content analyses 259, 433
context(uality)
biodiversity conservation-poverty alleviation 349, 361
biodiversity offsets 369, 387
dam-induced impacts 326–7
of ES in SEA 44, 46, 47, 57
in HIA 63
contracts, for securing offsets 381
Convention on Biological Diversity (CBD) 2, 347, 349, 359, 367
cooling capacity assessment, GUIs 435–8
remarks for future research and practice 448–9
urban planning 438–47
cooperation, administrative sectors 250
core requirements, health and well-being 68, 69–70, 74
CORILIS spatial smoothing technique 234
CORINE Biotope typology 124, 132
CORINE Land Cover (CLC) typology 132, 153, 202, 234, 242, 243
corporate social responsibility 364
cost–benefit analysis (CBA)
marine ecosystem services 258
transport infrastructure projects 116–18, 130–32, 133, 134
Costanza, R. 2, 86
covenants, securing offsets 381
Cowell, S.J. 150, 151
‘creating supportive environments’ 64
credibility 22, 36
credits (habit banking) 379
critical habitats 321, 322, 335, 370, 383, 384
crop pollination serviceshed 18–19
cropland 103, 156, 461, 463, 465
cultural identity 93, 195
cultural impacts, in spatial planning 223
cultural services 17, 20
analyses, Finland 231, 232, 235–7
climate change and 428
land management studies 106, 109, 203, 207, 212, 213, 214
Biodiversity and ecosystem services in impact assessment

landscape impacts in SIA 93
losses per route option, French rail project 127, 128
marine and coastal 263
proximity and access to 403
target section, impact assessment 400–401
urban green areas 174, 175
urban planning, Stockholm 185–6
cumulative impact assessment (CIA) 480
dams 326–30
key to successful outcome 334–40
relevance, and relationship with SEA 330–34
cumulative impacts 480
awareness of, in resource development 77, 82
lack of specific definition 326
landscape approach to BIA 19, 171
wind farms 304
curiosity-driven scenarios 201
curlews 301
‘current mix of land uses’ 153
curtailment plans 312

Daily, G.C. 2, 86
dams
biodiversity threats 321–2
cumulative impact assessment 326–30, 480
key to successful outcome 334–40
relevance, and relationship with SEA 330–34
environmental impact assessments 321
pace of construction 322
potential effects on biodiversity 324–5
transformation of river systems 321, 324, 327, 329, 332

Dasgupta, P. 134
data availability
applicability of indicators 262
cumulative impact assessment of dams 337
health and socio-economic data 73
landscape assessment 172
life cycle analysis 151–2
use of production functions 410
data evaluation, in monitoring systems 56, 57
Dawson, J. 280, 282
De Baan, L. 145, 148, 153, 156, 157
De Groot, R. 186
De Schryver, A.M. 143, 153
Debang Multipurpose Project 338
decision support tools 51, 123–4, 409–10, 477–8
decision-making
trade-offs 75–6
use of ES in real-life 113
see also impact assessment; strategic decision-making
deforestation 29, 31, 32, 34, 201, 288, 290, 382, 386, 457
degradation 2–3, 86, 146, 147, 170, 283
demand mapping 227, 234–7
demand side (ES) 90, 92, 133, 237, 250, 405–6, 454–5
Denmark 255
densification activities 177, 184–7, 188, 239
developing countries 42, 358, 359, 386, 455
diarrhoeal disease 66
dietary diversity 66
direct impacts
dams 325
infrastructure development 28, 29, 31, 36, 119–20, 121
renewable energy 300
direct offsets 376
direct use 350
discounting/discount rate 117–18, 122, 131, 388, 421
discriminative loss assessment 122–3
disease(s) 66, 67, 70, 76, 80, 289, 290
displacement 269, 300, 301, 302, 303
distributional effects, road development (case study) 28–34, 36, 412–13
Dong Nai 2 Dam 329
dosage, in health risk assessment 78
drinking water 18, 22, 23, 25, 36, 66, 103, 104, 406, 413
drought risk regulation 203, 206, 207
drought tolerant food species 464
drylands 455, 464
earth-slides 119
East African Afromontaine Biodiversity Hotspot 283–8, 288
Ebola virus 289
ecological bottlenecks 385, 388
ecological damage potential (EDP) 148
ecological economics 83, 86
ecological footprint 454, 455, 462
economic impacts, in spatial planning 223
ecological integrity 195, 203, 205, 206, 207, 278
ecological knowledge 172, 179, 181, 189, 228
ecological network models 172
ecological profiles 173, 179, 180, 184
economic contributions, of ecotourism 282, 287, 290
economic impacts in ES and SIA 91–3
land management (case study) 103–4
scenario-based assessments 196
in spatial planning 223–5
economic interests, trade-offs between biodiversity conservation 312
economic valuation, ES 18, 222, 387, 479
Cultural, Stockholm 186
and environmental studies as complementary 133
estimation of overall 2
identifying priority ES 48
incorporation of spatial context in 120
marine and coastal 255, 258, 260
sustainable urban management 173
see also cost–benefit analysis
The Economics of Ecosystems and Biodiversity (TEEB) 3, 45
ecosystem functions
distinction between ES and 17
ecosystem services and 150, 353
habitat loss and 121
holistic mitigation strategy 133
impact of dams on 324
indicators of 262, 263
social costs of loss 324–5
species richness/diversity 146, 155
urban green areas 176, 465
use of FD index to predict 147
ecosystem level indicators 147–8
ecosystem resilience 93, 121, 386
ecosystem scarcity (ESc) 133–4, 147
ecosystem services analysis
marine and offshore energy 256
for SEA 41–58
building a conceptual framework 44, 45–7
determining priority services 44, 48–50
developing alternatives 44, 51–4
monitoring changes 44, 54–8
tools to support 51
see also spatial ecosystem service analysis
ecosystem services (ES)
calls for inclusion in EIA 397
capacity to transcend different value systems 76
commodification 77
definitions 4, 16–17
delivery see service delivery
distinction between ecosystem functions and 17
health impact assessments challenges and concluding remarks 82–3
as a framing device 63, 74, 82
valuation and trade-offs 74–7
human demand 454–5
ignored in impact mitigation 397
impact of dams on 324
international initiatives 4
as key concept in impact assessment 195
life cycle assessment challenges to including impact assessment on 151–7
conclusions 157–8
impact mechanisms affecting 142–4
indicators to address 148–51
linkages between biodiversity and 348, 353
linkages between human health and 64
linking the settings approach with 65–74
Biodiversity and ecosystem services in impact assessment

marine see marine ecosystem services
multi-dimensional nature 68
offsets targeting 386–7
rate of degradation and its consequences 2–3
in real-life decision-making 113
relationships 20–21
roles for biodiversity in 353
in science and policy 3, 86
social impact assessment
participatory planning process 88–93
stakeholder participation (case study) 93–109
spatial planning 113–14
consideration of 222
key issues and tools 223–9
supply and demand see demand side (ES); supply side (ES)
threshold see threshold(s)
tradeoffs between renewable energy and 300
transport infrastructure projects conclusions 132–5
consideration of 114
integrating in planning 119–23
loss assessment, (case study) 123–32
in urban green areas 173–6
valuation 17–18, 113, 195
see also economic valuation
and well-being 2–3, 65–74, 89, 174
see also cultural services;
provisioning services; regulating services; supporting services
ecosystem services framework 397–423
conclusions 421–3
impact assessment 406–10
offsets 410–21
siting 398–406
Ecosystem Services for Poverty Alleviation (ESPA) 355
Ecosystem Valuation Toolkit 51
ecosystem vulnerability (EV) 147–8
ecosystem-scale models 216
ecosystems
degradation 86
orientation of urbanization towards productive 167
poverty alleviation 358–9
renewable energy and change in 299
Ecosystems and Human Well-Being. A Framework for Assessment 86
ecotourism 276–95, 483
‘big picture’ principles 293
biodiversity 279–81
environmental impact assessment 291–4
importance in identifying places for 276
lessons regarding 288–90
loss through absence of 295
socio-political and economic context 283–8
understanding impacts 281–2
definitions 277–9
environmental impacts 276–7
standards 292
ecotoxicological impacts 143, 145
edge habitat 169–70
endangered species see rare, endangered and threatened (RET) species
endemic species 155, 338, 457
endpoint modelling 141, 143, 144, 146, 150, 157
enhanced ES 63, 68, 75, 77
environmental awareness 282
environmental benefits, inventories 259–60
environmental degradation 2–3, 86, 146, 147, 170, 283
environmental economics 113, 125
environmental education 281, 282
environmental health concerns 62
environmental impact assessment (EIA)
in areas of high biodiversity 290
biodiversity considerations in 2
calls for inclusion of ES in 397
Chile 209
dams 321
ecotourism-biodiversity nexus 291–4, 295
EU directive 368
focus 1
guidance 3
legislation 1
limitations 255–6
in transport infrastructure projects 115–16, 117
wind energy development 304

see also spatial ecosystem service analysis
environmental impacts
ecotourism 276–7
in ES and SIA 92, 93, 107
scenario-based assessments 196
environmental legislation 1, 115, 397, 403
Environmental Management Plans (EMPs) 373, 391
environmental modelling
in CIA 338
innovative tools 2
marine ES 265–70

see also decision support tools; GISCAME; spatial ecological models
environmental planning, limiting impacts of wind energy 305–8
environmental policies 195, 214, 299, 364
environmental water requirements (EWR) 143
Equator Principles 15, 368
equity, biodiversity offsets and 369

see also exchange rules 389–90
evolutionary land use, poverty due to 360
exhaustive loss assessment 122
existence value 403
expert knowledge 172, 205, 227, 230
explicit justification, in trade-off decisions 76
expropriation, land management (case study) 102
extent of habitat, biodiversity as a reference to 349
family livelihoods 67–8
farmland
improving 462–5

see also cropland; pasture expansion
farmland birds 301
FD index 147
fear of losing land, land management (case study) 102
field inventories 172
Fifth Assessment Report (IPCC) 87
financial compensation 380, 387
financing, biodiversity offsets 373–4
Finland
assessing impacts of local master plan, Tampere 239–43
assessment of green infrastructure, Helsinki-Uusimaa region 229–39
recreation, national parks 280
Finlayson, C.M. 65, 68, 75
fish species
biodiversity offsets 383
cclimate change and 428, 429–30
dam-induced impacts 329, 332, 334, 339
PDF relating to river discharge 143
target selection, impact assessment 400–401
Fish and Wildlife Service (FSW) 311
Fisher’s α indicator, species richness 145
fishery stock assessment 21
fishing pressure maps 269
flight corridors 306
flood mitigation 214, 463, 468–9
flow of ES 408
impact evaluation, transport projects 121–2
indicators for 262
marine planning 256
Flynn, D.B.F. 147
focus groups 261
food production 103, 150, 459, 462, 463, 465
forests/forestry 195
dams and fragmentation of 327
forest fires 428
land use intensity 156
management see agricultural and forest management
non-linear damage relationships 157
poverty alleviation 358
regional variety in ownership of 196
urban food 463
see also coniferous forest;
deforestation; non-timber forest products
Forman, R.T.T. 170
fragmentation
by road development, computation of CF 155
habitat 119, 120, 157, 169, 184, 300, 327
landscape 199, 289
of river systems 324, 327
framing device, in HIA 63, 74, 82
France 115–18, 123–32
free NPP 149
freshwater
availability 455–6, 457
demands on 321
deprivation 143
land management (case study) 104, 105
use 143
freshwater ecosystem impact (FEI) 143
freshwater regulation potential 151
fuel wood production, land management case study 207, 208
functional assessment 407, 408–9, 421
functional diversity 146–7, 155, 157–8
functional indicators 146–7
future, protection of, in trade-off decisions 76
Gabon 289
gardening 175
gender mainstreaming, in SEA 45
Geneletti, D. 2, 4, 45, 212, 429
geographic coverage, in LCA 155–6
genetic information systems
biodiversity assessment 171
in CIAs 339
in GISCAME software suite 198, 199
in LCA 154
use in French transport projects 116
see also mapping; spatial ecological models
geological models 178, 184
German Nature Conservation Act 249
Germany
assessing impact of regional strategies for enhancing
biomass provision 202–9
biodiversity offsets 375–6, 386
ES and SIA, land management 93–109
impact assessment in spatial planning 243–9
land pools 379
wind energy 255, 303, 307–8, 309
Gibson, R.B. 76
GISCAME 478
agricultural and forest management case studies 202–15
lessons learned and conclusions 215–18
scenario design for impact assessment 201–2
scientific and technological basis 197–201
global biomes and ecoregions dataset 152
global CF per watersheds 143
global ES valuation scheme 186
Global Land Cover 153
global land use CF accounting 156
global population growth 483–4
best places for 456–8
urban regions 459–62
as a catalyst for other changes 454–5
trends 453–4
global serviceshed, climate regulation 18
global warming 140, 299
GLOBIO3 model 146
goal description, in LCA 140
gorilla population 289, 290
gorilla tourism 281, 285, 286–7
grains 465
depth theory, in connectivity analyses 227
grassland 156, 180, 184
green cities 174
green factor 229
green net, tree-anchored 468
green urban infrastructure (GUI) assessment
checklist 249–50
cooling capacity see cooling capacity assessment
‘green factor’ 229
Helsinki-Uusimaa region (case study) 229–39
landscape structural and connectivity analyses 226–7
climate change adaptation 430–31
see also urban green areas
green wedges, Stockholm 176–7, 180
GreenFrame 230–31
greenhouse gas emissions 143, 167, 299, 430, 463
greenness, NDVI as a measure of 152
guilds 353–4
Haase, D. 443
habitat
assessment 21–2, 172
biodiversity in relation to extent of 349
as a biodiversity value 338
composition 119, 173, 186, 187, 188
connectivity 169, 170, 172, 199, 210, 465
creation/re-creation 385, 386, 388
fragmentation 119, 120, 157, 169, 184, 300, 327
maps 268, 269, 271
networks 180, 184
old-growth 385
quality 301, 305, 329, 390, 407
restoration 311, 378, 430
size 169
see also critical habitats; natural habitat; vulnerable habitats
habitat banking 378–9, 392
habitat conservation 180, 286, 381
Habitat Conservation Plans 309–11
habitat loss
central urban areas 169
dam construction 327
habitat fragmentation 157
infrastructure development and 119
offsets and 366
quantification, transport projects 184
species extinction 145
species responses 121
time lag between offset habitat and 385
wind turbines and 300, 301
habitation, time lag between habitat creation and 385, 388
Habitats and Birds Directive (EU) 384
Haines-Young, R. 113, 197, 223
Hanley, N. 125, 126
Hannover Regional Landscape Plan 246
harbor porpoises 304
hard ecotourism 278
Harper, D.J. 366, 383
Harris-Roxas, B. 62, 82
health
ecosystems as settings for 64–5
inequalities 73
linkage between ES and 64, 75
linking settings approach with ES 65–74
population data 73
social determinants 62, 74
health equity 62, 76
health impact assessment (HIA) 1, 62–83, 482
coal seam fracking 77–82
ecosystem services
challenges and concluding remarks 82–3
as framing device 63, 74, 82
valuation and trade-offs 74–7
emergence of 62
health outcomes 62, 63
need for integrative and systems-informed approach 62, 63
procedural aspects 63
scoping phase 63, 74
value of 62
health risks 70–71, 74, 77–8
heat island effect 175, 430
Helsinki-Uusimaa region 229–39
heremoby concept 147
hierarchical multicriteria assessment framework 198, 199
hierarchy of alternatives, for SEA 52
‘high conservation value’ areas 385
high density areas, wind farms 306–8
high speed rail projects, France
cost–benefit analyses 117
ES loss assessment (case study) 123–32
higher-order effects
dam construction 329
lost/degraded ES 75
Himalayas 332, 335–6, 457
historic state 153
history and tradition 90, 102
Hooper, T. 258, 259, 260
Horwitz, P. 65, 67, 68, 75
Hotelling rule 118
housing 468
human appropriation of ecosystem carbon stock (HAPECS) 150
human appropriation of NPP (HANPP) 149
hunting 129–30, 288–9, 290, 295, 303, 403
hydration 65, 69, 79
hydroenergy 35, 299, 321, 322, 327, 329, 332, 334, 335, 339
hydrology and habitat loss 119
see also dams
hygiene 66
iconic species 284, 286, 483
IDRISI Land Change Modeler 31
illegal poaching and logging 288
immunoregulation 66
impact assessment(s)
biodiversity offsets
design 374–82
integrating planning with 368–74
climate change and biodiversity 428–30
content 1–2
definition and aim 1
strengthening 477–84
as a tool for corporate social responsibility 364
see also biodiversity impact assessment; environmental impact assessment; health impact assessment; social impact assessment; strategic environmental assessment; sustainability assessment
impact assessment in spatial planning 222–51
biodiversity and ES checklist for 249–51
consideration of 222
key issues and tools 223–9

case studies
ecosystem services, Germany 243–9
green infrastructure, Finland 229–39
local master plan, Finland 239–43
‘in kind’ offsets 375, 380, 411–12
income, poverty in relation to 349
income elasticity, of WTP 125–7, 134
income generation, biodiversity and 356
India 322, 332, 335–6, 338, 339, 380
indicative impacts 90–93
integrated planning and assessment (case study) 103–7

indicators
choosing for marine ES 261–3, 270
impact assessment
ecotourism 292, 293
in spatial planning, Finland 239–42
in LCA 140
functional diversity 157–8
to address biodiversity loss 144–8, 154
to address ecosystem services 148–51
literature reviews and identification of 262
for monitoring change in ES 56, 57
for monitoring offsets 391
indices, consolidation of impact assessment data 263
indirect impacts
change in supporting services 151
dam construction 325
infrastructure development 28, 29, 32, 34, 120, 121
population growth 237–8
wind energy 300
indirect offsets 376
indirect use 350
industrial centers 463
infectious diseases 66, 70, 80
Initiative for Integration of Regional
Infrastructure in South America (IIRSA) 28
inner suburbs 468–9
institutional access, to ES benefits 403
institutional analysis 259
institutional context, biodiversity and poverty 351
Integrated Valuation of Environmental Services and Tradeoffs (InVEST) 22, 25, 31, 51, 265, 478
integrative approaches 3, 481, 482
ES and SIA, land management study 93–109
mitigation of wind energy effects 309 to HIA 62, 63
wind farm planning 306
intensiveness, of land use 156
interaction of ES, addressing through SEA 54
interdisciplinarity 62, 63, 88, 109
interest groups 134
Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) 3, 45, 195
International Finance Corporation (IFC) 15, 35, 367, 368, 384
International Rivers 321
Interorganizational Committee on Guidelines and Principles for Social Impact Assessment 87
interpretation, in LCA 140
interventions biodiversity conservation/restoration 360
CBD guidance 347
in land use 87–8
market mechanisms and blocking of 76
modelling and mapping specific impacts of 268–9
population census statistics 73
see also ‘no regrets’ interventions interviews 259
invasive species 170
inventories 172, 259–60
inventory flows, in LCIA 140
irreplaceability 375, 384, 404, 406
island biogeography theory 157
Italy 383, 437, 437–47, 461
IUCN 152, 155, 280, 384
Jenks breaks 266
justification, in trade-off decisions 76
Kenya 461
‘key biodiversity components’ 367
Kibale National Park 285, 286
knowledge co-production of 228, 250
conservation of traditional 431
cooling capacity assessment of GUI and enhancement of 448
design/implementation of biodiversity offsets 369
of wind energy impacts 311, 312
see also ecological knowledge; expert knowledge; local knowledge; stakeholder knowledge
knowledge brokers 89, 97–8, 99, 101
knowledge creation 88, 174
knowledge-based consensus building 216
Koellner, T. 145, 148, 153, 156
land clearance 119, 327
land conversion 119, 121
land management change processes and interventions in 87–8
climate change 87
need for adaptive and ecosystem-base strategies 87
optimal 113
participatory planning, in ES and SIA 88–93
Krummhörn, Germany (case study) 93–109
see also agricultural and forest management
land occupation/transformation, estimation of 150
land ownership, regional varieties in 196
land pools 379
land recovery 153
land use climate change and 429
EIA and determination of appropriate 295
governments/managers’ prioritization 294
Biodiversity and ecosystem services in impact assessment

information, GISCAME 199
in LCA
biodiversity coverage 155
characterizing impacts 143–4, 148
geographic coverage 156
measuring global 152
reference state 153
spatial differentiation 154
poverty due to exclusionary 360
scenarios 53–4, 94–7, 122, 154, 196
zoning policies 53
land use and land cover change
(LULCC) 153, 201
assessment of provisioning services 196
land management study, Chile
210–12, 215
non-linear damage relationships 157
scenarios 216
land use and land cover (LULC) 410
classification 156
ES loss estimation, rail project (case
study) 124, 131–2
information, GISCAME 199
land ownership and uncertainties
in 196
land use planning 222
landscape
composition 198, 199, 215
connectivity 121, 124, 128, 226–7,
377, 462
fragmentation 199, 289
pattern 155
renewable energy and change in 299
landscape impacts, in ES and SIA 92,
93
land management (case study) 105–7
landscape metrics 172, 197, 199, 206,
215
landscape permeability analysis 227,
234
landscape planning 133, 381, 382
landscape scale
assessment 2, 19–20, 171–3, 401,
406, 408, 411, 478
models 216
offsets 369, 378, 381–2
urban planning see urban planning
large-scale biodiversity data 152
last-chance tourism 280, 282
Latin America 156, 454
lax ecotourism 278–9
‘leapfrog’ development 461–2
legal requirements
biodiversity offsets 365, 368, 413
French transport projects 115–18
length of transport infrastructures
120–21
life cycle assessment 140–57, 480–81
biodiversity and ES
challenges to including impact
assessment 151–7
conclusions 157–8
impact mechanisms affecting
142–4
brief introduction 140–42
indicators see indicators
life cycle impact assessment (LCIA)
140
life cycle inventory (LCI) analysis
140
life support functions (LSF) 151
lifestyle(s) 68, 72, 73, 74, 81, 174
‘like for like’ offsets 375, 392
‘limits of acceptable change’ 331
linear infrastructures 119
livelihood(s) 67, 71, 73, 74, 81, 359–60,
431
livestock production 465
Living Planet Index 152
local communities
contributions of tourism to 282, 287,
290
offset acceptability 392
offset design 386–7
offset implementation 381
local impact, land use 154
local knowledge 98, 99, 101, 189, 228,
270
local zoning plans 306
location of offsets 380–81, 388
logging 288, 292, 295
long-term capacity indicators,
provisioning services 150
long-term effects
dam construction 329–30
route option (case study) 124–30
wind farms 304
long-term outcomes, biodiversity
offsets and 369
Index 501

long-term regional planning, biodiversity offsets 381
loss assessment, transport project evaluation 121, 122–3, 123–32
lower order effects, dam construction 327, 329

maize cultivation 103–4
Malmö 229
mammals
dams and CIA on endangered 338
transport infrastructure and declining 170
wind energy impacts on marine 303–4
management
of biodiversity offsets 373–4
of green areas 175–6
guidance on, in monitoring systems 57
limitation of wind energy impacts 299, 309–14
mapping
ecosystem services 225–6
spatial variation in provision potential 230–31
environmental sensitivities, transport projects 116
ES hotspots 124
see also biophysical mapping; demand mapping; participatory mapping; spatial mapping; systems mapping
Mapping and Assessment on Ecosystems and their Services (MAES) 225
Mapping European Seabed Habitats (MESH) 266
marine ecosystem services 481–2
identifying and evaluating 258–65
marine protected areas (MPAs) 256, 268, 269
modelling and spatial mapping 265–70
serviceshed 19
total economic value 255
see also coastal land management
marine mammals 303–4
marine planning 256–7
market gardening 463
mass ecotourism 278, 279, 280
mean species abundance (MSA) 145, 146, 152, 156
The Meanings of Nature for the People of Uusimaa 235
medicinal species 338
medicinal/other products 68, 72, 81
Mekong River basin 322, 334
mental health 67, 70, 80
metrics
biodiversity offsets 375, 377–8, 382–3, 392
see also landscape metrics
micro-siting, wind turbines 308
microbiomes, ecosystems, health and well-being 65–6, 69, 79
microclimate 169, 170
microclimate regulation 175, 229, 250, 440
microhabitats 466
mid-point modelling 141
Middle East 454
migratory pathways/corridors 338
migratory species
infrastructure as a barrier to movement of 120
wind energy impacts 302, 303, 312
Milà i Canals, L. 143, 150, 151, 157
Millennium Development Goals (MDGs) 347, 349
Millennium Ecosystem Assessment (MA) 2–3, 16–17, 20, 41, 45, 149, 260, 349, 361
Millennium Ecosystem Assessment (MA) Board 86
Millennium Ecosystem Assessment (MA) Report (1993) 90
minimization of impacts 406–7
minimum data set (MDS), soil quality indicators 150
minimum environmental flow required (MEFR) 339–40
mining
biodiversity offsets (case study) 370
coal seam fracking and HIA 77–82
impacts on water quality regulation services (case study) 23–8
negative impacts 288, 292, 295
mitigation banks/banking 311, 378–9
mitigation hierarchy
adherence to 369, 372–3
avoidance in 368
blending landscape planning with 382
IA best practice 367–8
offsets and strengthening of IA through 364
spatial ecosystem service analysis 34–5
see also ecosystem services framework
mitigation replacement ratios 413–21
mitigation/measures 16
climate change 175, 255, 256, 299, 431
cost comparison with cost of ES loss 129
ES ignored in 397
ES valuation and 133
French transport projects 115–16
habitat fragmentation 184
land management (case study) 214
road development (case study) 34
wind energy 305–14
Mittermeier, R.A. 288–9, 290
mobility, of marine species 263
modelling see environmental modelling
monetary evaluation see economic valuation
monitoring
change, in SEA 44, 54–8
knowledge of wind energy effects 312
offset implementation 390–91
realization of spatial planning 251
morality, trade-off decisions 76
morphological spatial pattern analysis (MSPA) 227, 234, 243
Morrison-Saunders, A. 292, 391
multi-causality 63
multi-criteria analysis (MCA) 173, 184, 198, 199, 205, 261
multidisciplinarity 62
multiple dams 322, 324, 327–8, 331, 332
multiple root causes, dam-induced impacts 329, 332, 480
multiple scenarios 135
multipliers, in offset design 387–9, 392
Multiscale Integrated Model of Ecosystem Services (MIMES) 22, 51, 410
National Biodiversity Strategy and Action Plans 337, 359–60
National Ecosystem Assessment (UK) 260
National Environmental Policy Act (US) 1, 87
national parks
Africa 285, 286–7, 288, 290
biodiversity conservation 276
dam construction 321, 322, 332, 337
visits to, correlated with biodiversity measures 280
National Research Council 312
National Strategy for Ecologically Sustainable Development (Australia) 397
native species, in cities 170
Natura 2000 sites 258, 280
natural enemy communities 353
natural habitat 384
natural land, improving 465–7
natural resources see resource(s)
naturalness, assessment of 229
naturalness degradation potentials (NDP) 147
nature
awareness of value of 86
biodiversity and differing conceptions of 280
regenerative function of urban 175
nature conservation 2, 203, 246, 248, 249
nature conservation sector, land management study, Krummhörn 97, 102, 103, 104, 105, 106, 107, 108
nature-based solutions 479–80
climate change 430–32
inclusion in urban planning 431, 432–5
motivations for 448
see also cooling capacity assessment
nature-based tourism 278, 373
nature’s resources 359
negative health outcomes 75
negative impacts
Index

dam construction 322
ecotourism 276, 281–2
transport project evaluation, France 117
uncertainties about residual 385
net gains
trade-off decisions 76
see also no net loss/net gain (NNL/NG)
net present value (NPV) 118, 130–32
net primary production depletion (NPPD) 151
net primary production (NPP) 143, 149
Netherlands 143, 255, 380
‘netway-with-pods’ system 467
new land use strategies and measures, ES and SIA (case study) 102
Newsome, D. 281, 290
niche ecotourism 278, 279, 280
nitrogen regulation 25, 29, 32
no net loss/net gain (NNL/NG) 311, 364, 367, 368, 369, 373, 374, 378, 383, 386, 391
‘no regrets’ intervention 431
noise 118, 170, 303, 304, 467
non-commodities, trade-off decisions 75–6
non-income measure, biodiversity and poverty 356–8
non-linear damage relationships, in LCA 157
non-market valuation 113, 118, 134
non-monetary evaluation 48, 479
non-native invasive species, urbanization and 170
non-offsetable impacts 370, 372, 383–5
non-timber forest products (NTFPs) 350, 354, 356, 359
non-use 350
Normalized Difference Vegetation Index (NDVI) 152
North Devon UNESCO Biosphere Reserve (NDBR) 268–9
nutrition 65–6, 69, 79

oak stands, Stockholm landscape strategy 180
obligation to ancestors 90, 102
off-site offsets 381
offset planning 368–74, 392
offshore renewable energy 255, 256, 302, 303, 304
old-growth habitat 385
on-site engineered options, impact minimization 407
on-site offsets 381
online map surveys 228
online public participation GIS (PPGIS) 235
open process, in trade-off decisions 76
OpenStreetMap 228
orchid conservation 282
Ottawa Charter for Health Promotion 63, 64
‘out of kind’ offsets 375, 376, 388, 411–12
outer suburbs 467–8
Pan-European Common Bird Monitoring Scheme 152
paper maps 228
participatory approaches see stakeholder engagement
participatory mapping 45, 227–9
participatory planning 222
in ES and SIA 88–93
land management (case study) 93–109
partnerships, and biodiversity offsets 392
pasture expansion 157
pathogens, tourism and introduction of 282
Payment for Ecosystem Services (PES) schemes 46, 360, 373
peer review, offset design 390
performance standards (IFC) 15, 35, 367, 368
peri-urban green areas 175
peri-urban land 169
permanence, in offset policies 374
permanent threshold shift (PTS) 303–4
permits, wind energy 309
personal behaviours 68, 72, 81
Peruvian Amazon 28–34, 36, 412–13
phosphorus regulation 29, 32
photo-based methods 228
physical access, to ES benefits 403
physical hazards 67, 71, 81

Davide Geneletti - 9781783478996
Downloaded from Elgar Online at 02/16/2019 07:00:11AM via free access
planning
HIA in 82–3
renewable energy 299
see also conservation planning;
landscape planning; offset
planning; spatial planning;
urban planning
plans, in ES analyses 46–7, 48
playback calls 282
poaching 288, 289, 290, 292
policies
concept of ES in 3
ES analysis 46–7, 53–4
see also environmental policies;
projects, plans and policies
political acceptability, of offsets 391–2
political context
biodiversity and poverty 351
ecotourism 276, 283–8
pollutants 466
‘polluter pays’ principle 364
pollution
chemical 142
climate change and 429
exposure to 66–7, 70, 80
habitat degradation 170
infrastructure development 118, 119
poor people
and biodiversity 348, 351, 356, 359, 361
concept of cash 349
population census statistics 73
population growth
effect on freshwater supplies 321
expected impacts, Helsinki-Uusimaa
region 237–9
Stockholm 177
see also global population growth
population health data 73
population pressure
Finland 235–7
Stockholm 177, 186
positive health outcomes 75
positive impacts
climate change 428
ecotourism 276, 282
wind farms 304
post-construction mitigation 309
potential connectivity analyses 227
potential natural vegetation (PNV)
152, 153
potentially affected fraction (PAF) 143, 145–6
potentially disappeared fraction (PDF)
142, 143, 144, 146
potentially not occurring fraction
(PNOF) 142–3, 146
Potschin, M. 113, 197, 223
poverty
biodiversity loss 348
definitions 349
dimensions 355
impact of biodiversity use 356–8
mechanisms linking biodiversity and
355–6
reduction vs prevention 358
poverty alleviation 483
biodiversity
evidence base on linkage 351–8
implications for BIA 359–62
linkage between 347, 349–51
the reality 358–9
priority in poorer countries 348
power relations 77
pre-construction mitigation measures,
wind energy 305
precautionary principle 267, 299, 367, 372, 449
precise turbine siting 308
prevention principle 367
prioritization, offset selection 412–13
priority ES, determining 44, 48–50, 261
priority-focused offsets 375
production function approaches 22, 409–10
productive agricultural land 173–4
productive ecosystems, orientation or
urbanization towards 167
productivity 150, 152
profiling 99
project conservation plans 311
project decisions, biodiversity offsets
in 366
project lifespan 117–18, 131
projects, spatial ecosystem service
analysis for EIA of 15–37
projects, plans and policies (PPPS)
429
PROSUITE project framework 143
protected area managers 276
protected areas
 biodiversity conservation 276
 buffer zones around 306
 hunting and poaching in 290
 poor management 290
 poverty due to strict enforcement of 360
see also marine protected areas; national parks
protection of the future, in trade-off decisions 76
protection offsets 379, 385
Protocol to the Espoo Convention 42
provision-pressure analysis, cultural ES, Stockholm 186–7, 188
provisioning services 17, 20
 analyses, Finland 231, 232
 biodiversity and 353
 Chile
 land management study 212, 213, 214
 trade-off analyses 54
 economic impacts in SIA 92–3
 in health impact assessment 75
 indicators 149–50, 196, 262
 land management study, Germany 203, 206, 207–8
 losses per route option, French rail project 127
 target section, impact assessment 401
proximity, to services 403
proximity effects 197–9, 215
psycho-social touristic context 283
psychological well-being 67, 70, 80
public participation GIS (PPGIS) survey 235
public time discount rate, transport project evaluations 117–18
Puqallpa–Cruzeiro do Sul road 28–34, 36
qualitative assessments 48, 78, 89, 90, 227, 231
qualitative feedback 196, 479
quality-of-life assessment 76
quantitative assessments 34, 48, 140, 227, 231, 372, 404
quantitative feedback 196, 479
Quebec 400
Quinet, A. 118
rail
 as an alternative to road development, Peru 34
see also Arninge–Arlanda Railway; high-speed rail projects
railway corridors 181, 184, 188
rank ordering, of indicators 263
raptors 301–2, 309
rare, endangered and threatened (RET) species 282, 285, 322, 327, 331, 332, 335, 338, 383, 384, 385, 463
recreation
 within national parks, Finland 280
see also cultural services
red kite 308, 309
Red List (IUCN) 152, 280, 384
red/near red reflectance ratio 152
reed cultivation (case study) 104
reference state, in LCA 152–3
regenerative function, urban nature 175
Region Hannover 243–9
regional belonging 90, 102
Regional Development Plan
 Stockholm County 176–7, 180, 181, 184
regional impact, land use 154
regional landscape strategies 179–81, 189
Regional Plan 4 the Helsinki-Uusimaa Region 230
regional planning 231
 biodiversity offsets 381
 Hannover 243–9
regional-level analyses 2, 155–6
RegioPower project 202
regulating services 17, 20
 analysis, Finland 231, 232
 biodiversity and 353
 Chile
 land management study 212, 213–14
 trade-off analysis 54
 in health impact assessment 75
 land management study, Germany 203, 206, 207
 in life cycle assessment 150–51
Biodiversity and ecosystem services in impact assessment

losses per route option, French rail project, provisioning services 127
as potential umbrella services 400
in social impact assessment 93
urban green areas 174, 175
regulations, reviewing in ES analyses 46–7
relative prices, rail project (case study) 125, 126, 132
remote sensing 152, 172, 202
remote-area experience 279–80
renewable energy
deadlock in development 314
environmental policies 299
offshore 255, 256, 302, 303, 304
planning and siting 299
see also wind energy
report cards 263
representative services, in impact assessment 20, 400–401
reproducibility, in analyses 123
reproductive skipping 302, 305
reservoirs 321, 324, 466
resettlement, land management (case study) 102
residential water use 167
residual impact(s)
assessment 372, 407
compensation, French transport projects 116
non-offsetable 384
uncertainties about negative 385
residual losses 364
resource(s)
biodiversity as a reference to amount 349
bottlenecks 385, 388
category 354
consumption 167, 350
development 68
HIA and 77–82
efficiency 184
willingness to pay (WTP) 125–7, 134
resting birds, wind energy impacts 301
restoration offsets 378–9, 388
Retief, R. 75, 76
rice paddies 73
A Rich Diversity of Plant and Animal Life 179
risk assessment, resource development 77, 78
river systems, hydrology and transformation of 321, 324, 327, 329, 332
road corridors 184
road development
computation of CF for fragmentation by 155
distributional effects (case study) 28–34, 36, 412–13
habitat destruction 288
road mortality 170
road networks 467
rule-based scenarios 201–2
RUSLE 199
Russia 322, 380
Rwenzori Massif volcano 285
safe minimum standard 86, 406
safe water 65, 69, 79
safety 105
salmon 429–30
sanitation 66
scarcity, of ecosystem services 133–4, 147
scenario-based assessments 478–9
cumulative impacts 335, 339
land use 53–4, 94–7, 122, 154, 196
transport project evaluation 117, 135
see also GISCAME
scientific literature, data collection 152
scientific reliability 123
scoping 44, 63, 74, 82, 83, 99, 116, 141, 361, 370–71, 482
seals 304
seascape scale assessment 401, 406, 408, 411
selection of offsets 412–13
semi-natural reference states 153
Sen, A. 349
’sense of place’ 67, 90, 101
sensitive species 170, 180, 305, 309, 360
sensitivity analyses
ecosystem vulnerability 147–8
French transport project evaluations 118, 131–2
scenarios and support for 202
service delivery
biodiversity as underpinning 2
hunting recreation 130–31
in impact assessment 408, 409
marine ES 257, 258, 265–8
proximity and access as integral to 403
spatial ES analysis 21
service supply, impact assessment 21
servicesheds 18–19, 481
size and replaceability 406
spatial ES analysis 20, 23–5, 28, 29–31, 35, 401–3
‘setting’ stage, in SIA 99
settings approach to health 64–5
awareness of cumulative impacts and relevance of 82
linking with ecosystem services 65–74
severity of impact 371
severity of risk, in resource development 77
shading function, green infrastructure 435–7
shale gas development, risk assessment 78
Shannon’s entropy, species richness 145
Siang River 331
significance of impact 371, 372
site-specific assessment 398–406
site-specific CF impacts, water consumption 143
siting, limiting impacts of wind energy 305–8
skylark 301
social acceptability, of offsets 391–2
social choice theory 134
social costs, loss of ecosystem services and functions 324–5
social impact assessment (SIA) 1, 87, 482
in areas of high biodiversity 290
ecosystem services
participatory planning process 88–93
stakeholder participation (case study) 93–109
social impacts 87, 223
social inequality, offsets and 412
social network analysis 259
social relationships, urban nature and 175
Social Values for Ecosystem Services (SoLVES) 51
societal benefit, from flows of ES 262
societal support, for urban green areas 174
socio-cultural values, mapping 227–9
socio-ecological systems 68, 74
socio-economic benefits, nature-based solutions 448
socio-economic context
ecotourism 276, 283–8
offset design and implementation 387
socio-economic data 73
socio-economic hierarchies 77
socio-political characteristics, in GISCAME 199
soft ecotourism 278
software tools see decision support tools
soil erosion 119, 150–51, 465, 466
land management study 203, 206
soil organic carbon (SOC) 150, 151
soil organic matter (SOM) 150, 151
soil quality 150, 151
solar energy 175, 299, 300
Sørensen’s Ss 145
South Africa 322, 370, 378, 381, 384, 388
South America 379, 457, 469
South Australia 378
Southwest Australia 400
Souza, D.M. 147, 155
Spash, C.L. 125
spatial data, Greenframe methodology 230–31
spatial differentiation, in LCA 153–4
spatial disconnect, marine ES and their beneficiaries 263
spatial ecological models 171–3
urban planning, Stockholm 179, 180, 184, 187–8
see also IDRISI Land Change Modeler; InVEST
spatial ecosystem service analysis 2, 15–37
benefits 16–19
best practices 19–22
Biodiversity and ecosystem services in impact assessment

case studies
distributional effects of road development 28–34
mining impacts on water quality regulation services 23–8
explicit 19
flexibility of approach 34–6
spatial extent, impact mitigation 401–4
spatial extent of impacts, transport project evaluation 121
spatial mapping, marine ES 265–70
spatial planning 222
defining alternatives in 251
impact assessment see impact assessment in spatial planning
inclusion of ES in 113–14
marine 257
modelling see GISCAME
monitoring realization of 251 and SEA
Chile 209–10
integration of 196
wind farms 305

species
composition 152, 153
congregation 338
conservation 282, 288, 290
density, cities 170
extinction 145, 152, 169, 299, 327, 364, 467
loss, fragmented habitats 157
mortality 116, 170, 289, 300–301, 302, 304–5
responses, habitat loss 121

species abundance
biodiversity as a reference to 349
habitat size and connectivity 169
measurability 377
poverty alleviation 358
wind energy/turbines 301, 304
see also mean species abundance (MSA)

species diversity
biodiversity as analogous to high 107
dam construction and decline in 327
as ES proxies 401
farmland and 463
freshwater deprivation and 143
habitat size and connectivity 169
impacts on habitat and 148
land use impacts 154
measurability 377
transport infrastructure and declining 170
species level indicators 144–6
species population compensation and stabilization of 311
wind farms 304
species richness as a biodiversity value 338
in life cycle assessment 143, 144–6, 148, 152, 153, 154, 155, 157
species sensitivity distribution (SSD) 146
species-area relationships (SAR) 144–5
species-specific take threshold 311
species-specific temporary threshold shift (TTS) 303–4
specific change, and applicability of indicators 262
stacking 413
stakeholder engagement
health impact assessment 74, 75
identifying priority ES 261, 270–71
integrating ES modeling and 36
offset decisions 369, 391–2
regional planning, Hanover 250
social impact assessment 87, 88–93
land management (case study) 93–109
strategic environmental assessment 45
urban planning, Stockholm 179, 181, 188–9
see also public participation GIS (PPGIS) survey
stakeholder knowledge 36, 89
standards, ecotourism 292
stingrays 281
stock-based indicators 149–50
Stockholm 176–87
stonechats 301
stormwater 175, 229, 466, 469
strategic actions 41, 44, 46, 47, 48
strategic decision-making 41, 42, 43, 261, 331
strategic environmental assessment (SEA) 1, 479
biodiversity considerations in 2
and climate change, papers addressing 429
dams, CIA and 330–34
defining principles 42
EU initiatives promoting 42
expansion of 397
growing interest in 41
guidance 3
integration of spatial planning and 196
landscape and regional analyses of biodiversity in 2
mainstreaming ES into building a conceptual framework 44, 45–7
determining priority services 44, 48–50
developing alternatives 44, 51–4
monitoring changes 44, 54–8
tools to support 51
methodological approaches 42–3
national legislative or other provisions for 42
optimizing offsets in the landscape 382
spatial planning, Chile 209–10
stages 43, 44, 45–58
ultimate objective 41
urban planning 187, 431
Strategic Plan for Biodiversity 2011–2020, 347, 348, 359
strategic questions, rule-based scenarios 201–2
strategic thinking 181
stress, perceived value of marine ES linked to 261
stressor–response relationships 142–3
stringent ecotourism 279
strong sustainability 134
structural analyses (landscape) 226–7
structural dimension, in LCA 147, 155
Sub-Saharan Africa 403, 461
substitutability 125, 126, 134
suburbs 467–9
supply side (ES) 17, 18, 86, 90, 92, 133, 237, 408
supporting functions 17
supporting services 17, 20
in health impact assessment 75
in life cycle assessment 151
in social impact assessment 93
trade-off analysis, Araucanía 54
surface water 23, 24, 77, 119, 143, 231, 324, 463, 465
surface water canalization 119
sustainability assessment 1, 62, 75, 76, 83, 292
sustainable development 89, 90, 167, 168, 222, 332, 431
sustainable energy production 299
sustainable mobility 185
sustainable tourism 106–7, 278, 287
Sweden see Malmö; Stockholm
System of Environmental-Economic Accounting (SEEA) 260
systems mapping 261
systems-informed approach, to HIA 63
Tampere 239–43
Tardieu, L. 123, 124
target concept 249
target ES
impact mitigation 398–401
in spatial ES analysis 19–20, 23–5, 29–31
taxonomic groups, FD index for 147
technical progress 134
technology, green cities and 174
temporary threshold shift (TTS) 303–4
terrestrial ecosystems 143, 325
Theun-Hinboun Project 329
Threatened Species (IUCN) 155
see also rare, endangered and threatened (RET) species
threatened status 155, 280
Three Gorges Dam 329
Three Parallel Rivers 321
threshold(s)
behaviour 121
identification 406, 422
indicating conservation priorities 384–5
of significance 331
values 184
timber provision, land management (case study) 207–8
time discounting 388
time lags, in offsets 385, 388
timeframe, for impact assessment 407
Torres del Paine Biosphere 282
total economic value (TEV) 255, 350
total ecosystem value 409
tourism see ecotourism; nature-based tourism; sustainable tourism
tourism sector, land management study, Krummhörn 97, 104, 106–7
tourist gaze 279
toxicants 66–7, 70, 80
trade-offs
 biodiversity conservation and economic interests 312
 ecosystem services analysis, Araucanía 54
 ES valuation in HIA 74–7
 renewable energies and biodiversity-focused ecosystem functions and services 300
‘trading up’ exchanges 375–6, 388
trail networks 467
transdisciplinarity 109, 210
transferability of indicators 262
transnational migration 457
transparency 22, 36, 75, 369, 391
transport infrastructure projects and ecosystem services
 conclusions 132–5
 consideration of 114
 integrating into planning 119–23
France
 ES loss assessment (case study) 123–32
 legal framework 115–18
 implementation options, comparison of 124–30
 reduced habitat connectivity 170
 research avenues, ES valuation 135
see also rail; road development
tree canopy coverage 437
Tree Top Walk 280–81
‘trend’ scenario, land management (case study) 94–7
Trento 437–47
Trewick, J. 2, 389
triage method, strategic decision-making 261
tropical forests, pasture expansion into 157
trusts, offset financing 373
turtles 282
Uganda 281, 285, 286–7, 290, 294, 295, 360
umbrella services 400
umbrella species 20
uncertainty(ies)
 about offset outcomes 386
 about residual negative impacts 385
 in biodiversity impact assessment 2, 311
climate change and impact assessment 430, 449
offsets for, Australia 392
uncertainty multiplier systems 388
UNEP-WCMC 50
UNESCO 256–7, 321, 332
uniqueness 384, 404
United Kingdom
 biodiversity offsets 376, 389, 391
 National Ecosystem Assessment 260
 use of BBN models 268
 wind turbines 255
United Nations 453
see also Millennium Ecosystem Assessment
United Nations Environment Programme (UNEP) 45, 397
United States
 as best place for increasing global population 457
 biodiversity offsets 366, 367, 376, 377, 380, 381
 cumulative impact assessments 340
 ecological footprint, large cities 455
 environmental legislation 1, 397
 ES and climate change 428
 inclusion of ES in marine planning 257
 mitigation banks 379
 outward urbanization 462
 wetland mitigation programmes 16
 wind energy 255, 309, 310–11, 313–14
UNWTO 292
Upper-Elbe-Valley-Eastern-Ore-Mts 202–9
urban adaptors 170
urban areas/regions
 best places for increasing population 459–62
 climate adaptation in 431
improving built communities 467–9
improving farmland near 462–3
improving natural land near 465–6
and population growth 456
see also cities
urban development
according to thermal benefits of
GUlcs 440–42
planning and sustainable 168
spatial ecological models 172
urban green areas
preservation of 250–51
role in addressing climate change
433–4
Stockholm 176–7
and their ecosystem services 173–6
see also green urban infrastructure
urban nodes, Stockholm 177, 181,
184–5
urban planning
cooling capacity assessment of GUlcs
438–47
ecological profiles 173
green areas 175–6
landscape approach 168–9, 189
case studies, Stockholm 177–87
lessons learned and
recommendations for best
practice 187–9
nature-based solutions in 431, 432–5
region-scale 469
sustainable development 168
urbanization 167
biodiversity impacts 169–71
biodiversity loss 167–8
multi-criteria analyses 173
outward patterns 461–2
unplanned 470
use and cultural values 366, 371, 372,
381, 386
USEtox 143
Uttarakhand 332, 335
validation, of offset design 390
value(s)
in ES impact assessment 21, 408
of nature, awareness of 86
participatory mapping 227–9
see also biodiversity value(s); carbon
value; conservation value(s)
value systems, ES capacity to transcend
different 76
valued ecosystem components (VECs)
327, 339
Vanclay, F. 90, 92
Vancouver 455
vascular plants 152, 154, 155, 206
vegetation 466
vegetation diversity measure 152
vegetation offsets 389–90
vegetation productivity 152
Vietnam 329
Virunga volcano and national park 285
visibility, wind towers 308
vision statement, regional planning 246
visualizations 98, 171, 179, 188, 225,
239, 265
voluntary biodiversity offsets 365
voluntary geographical information
(VGI) 228
vulnerability
acceptability/feasibility of offsets
375
avoidance criteria, impact
assessment 404, 405, 406
ecosystem (EV) 147–8
information on spatial patterns of
45
non-offsetable impacts 384
vulnerability analyses (climate) 434
vulnerable habitats 172, 268
vulnerable species 120
The Walkable City – Stockholm City
Plan 185
wastewater aquaculture 463
water
consumption, site-specific CF
impacts 143
resource management 66
safe 65, 67, 79
scarcity 143, 455–6
shortages 455
supply 103, 104, 169, 175, 397, 407,
428, 466, 469
unsafe 66
use 143, 167, 321, 455
see also drinking water; freshwater;
groundwater; stormwater;
surface water
Biodiversity and ecosystem services in impact assessment

water erosion risk 199, 214
Water Framework Directive (EU) 384
‘water management’ scenario (case study) 97, 106
water purification potential 151
water quality 66, 143, 324, 413
water quality regulation and carbon sequestration 20–21
minimization of impacts 406, 407
mining impacts on (case study) 23–8
water-related services, servicesheds 18
weak sustainability 134
well-being
in ecosystem services analysis 21, 29, 45, 52–3
ecosystem services and 2–3, 65–74, 89, 174
poverty as an absence of 349
Western Australia 280, 281, 366
wetland ecosystems 66, 67, 75, 143
wetland mitigation programmes 16
wetland offsets 379, 380
wild nature 351
Wildfinder database (WWF) 152
wildflower viewing 281
wildlife hunting 129–30, 288–9, 290, 303, 403
wildlife passageways 129–30, 467
wildlife tourism 283, 290
willingness to pay (WTP) 125–7, 134
wind energy 299
effects on biodiversity 300–305
limiting impacts by management 309–14
limiting impacts through siting and environmental planning 305–8
see also offshore renewable energy
wind facility design 308
World Bank 15, 349
World Heritage Sites (WHS) 321, 322, 332
α diversity 154
zoning plans, wind farms 206
zoning policies (land use) 53