Index

Abreu, M. 114
Academy of Management Review 131
accelerated depreciation schemes 20
acceleration additionality 82
access to expertise (policy goal) 11, 544, 546, 557–8
Acharya, K. 464, 466
adaptive procurement 359
ADEME (Agence De Maîtrise de l’Energie, French energy agency) 527–9, 531, 536, 538
additionality
behavioural additionality 59, 73–4, 81–3, 106–7, 250, 253, 255–8, 273, 552
input additionality
collaboration support policies 250, 251, 252, 253, 255, 264
direct support to R&D and innovation 55, 59, 72, 74–8, 86, 96–101
fiscal incentives for R&D 25–9, 49
policy mix 514, 516–18
output additionality
collaboration support policies 250, 251–3, 254, 256
direct support to R&D and innovation 59, 72, 74, 78–81, 102–5
fiscal incentives for R&D 29–31
policy mix 514, 515, 516–18
administrative costs 47, 68, 133, 412
adoption externalities 328, 334, 346
Aerts, K. 76, 96
Afcha Chávez, S. M. 252, 254
agglomeration economics 197, 226
Aghion, P. 455, 456
Aharonson, B. S. 199
Ahuja, G. 305
AIRC (alternative incremental research credit) 34
Akkermans, D. 466
Albaladejo, M. 114
Albors-Garrigos, J. 78–9, 82, 102, 106
Alecke, B. 77, 79, 97, 102
Almus, M. 76, 97
Alvey Programme (UK) 250, 260–61, 513
Amable, B. 454, 455, 459
Amara, N. 114
Amezcuea, A. S. 154
Anastas, P. 409, 412, 415
Anderson, S. T. 340
ANRT (National Association for Research and Technology) 121
anti-takeover provisions 455–6
antitrust regulation 454, 455, 458
Antonelli, C. 97
ANVAR (French innovation agency) 63–4, 69–70, 76, 93, 512
Aoshima, Y. 80, 102
Aphrodite, K. 439
APL (Local Productive Arrangement, Brazil) 221–2, 235, 238
Apostol, A. R. 395
Aragon, C. 237
Aranguren, M. J. 220, 237
Araujo-Carod, J. M. 217–18, 237, 251, 254, 266
Archibald, R. B. 395
Arena programme (Norway) 212–13, 216, 232, 237
Armour, J. 467
Arnold, E. 520
Arque-Castells, P. 24, 29
Arranz, N. 251, 266
Arrow, K. 4
Aschhoff, B. 362, 518
Ashford, N. A. 468–9
ASIC (alternative simplified credit) 34
Aström, T. 94
Atkinson, R. 174, 471
ATN (average treatment effect on the non-treated) 39
ATP (Advanced Technology Program, US) 77, 82, 98, 106, 251, 252–3, 257, 258, 259, 260
ATT (average treatment effect on the treated) 39
Audretsch, D. B. 398
Australia
collaboration support policies 250, 251–2, 260, 267–9
direct support to R&D and innovation 71, 80, 94
public procurement of innovation 359
skill formation policies 115, 118
standardisation standards on innovation 435–6
Austria
cluster policy 200
collaboration support policies 245–6
direct support to R&D and innovation 64, 68, 71, 76, 82, 93, 98, 106
entrepreneurship policy 150, 151
fiscal incentives for R&D 20, 29, 30, 39–40
innovation networks 291, 298, 299–300, 301, 305, 309
policy mix 514, 515, 516
public procurement of innovation 368, 374
technology foresight 497

Austria
cluster policy 200
collaboration support policies 245–6
direct support to R&D and innovation 64, 68, 71, 76, 82, 93, 98, 106
entrepreneurship policy 150, 151
fiscal incentives for R&D 20, 29, 30, 39–40
innovation networks 291, 298, 299–300, 301, 305, 309
policy mix 514, 515, 516
public procurement of innovation 368, 374
technology foresight 497

Baer, H. L. 473
Bager-Sjögren, L. 142–3
Baldwin, J. R. 114
Banerjee, A. 340
Bankruptcy laws 463, 464, 467, 468
Baptista, R. 198–9
Barber, J. 66, 69
Barbero, J. L. 153
Barbosa, N. 454, 468
Barcelona Knowledge Cluster (Spain) 217–18, 232, 237
Baron, J. 441
Barre, R. 497
Barrera, R. R. 78–9, 82, 102, 106
Bartelsman, E. J. 466
Basque Cluster Programme 211, 219–20, 232, 237
Bassanini, A. 75, 97, 454, 465, 466
Bavarian clusters (Germany) 218, 232, 237
Bayona-Sáez, C. 264
BBBS (Bangladesh, Barbados, Bolivia and Suriname) 412
BBG (Federal Procurement Agency, Austria) 368
Beare, P. M. 395
Beauchamp, W. D. 35
Becker, G. 112
Belgium

Bergen, A. 335
Berger, P. 26
Bertrand, F. 304, 311
Bérbé, C. 71, 79, 102, 514, 515
Besen, S. M. 464
Bessen, J. 468
Bill and Melinda Gates Foundation 405
Billings, B. A. 79, 102
BioLondon (UK) 213, 222, 233
BioRegio programme (Germany) 204, 205, 211, 214–15, 216, 217, 222, 224, 233, 237
BIS (Department for Business, Innovation and Skills, UK) 243, 367, 374–5, 403
Blind, K. 333, 428–9, 436, 437, 439, 440, 467
Bloom, N. 26, 41, 44–5
Blumenthal, D. 253
BMF (Federal Ministry for Research and Education, Germany) 497, 498, 522, 523
Boekholt, P. 201
Boer, J. de 341
Borgar Hansen, T. 93
Borrás, S. 10, 202, 203, 507, 508, 510
Boudreau, K. J. 409, 410–11, 415–16
bounded rationalities 6, 555
Boynton, A. C. 305
Bozeman, B. 55, 251, 254, 428
Branstetter, L. 251, 254, 265
Bravo Ibarra, E. R. 79, 80, 99, 104
Brazil 221–2, 235, 238, 374
Breschi, S. 199
Bressers, H. A. 506–7, 509
Brévignon-Dodin, L. 440
bridging allowance programme (Germany) 143
broader outcomes (programme logic model) 171, 172, 173, 181–2
brokering 163, 200, 202, 226, 296
Brunnermeier, S. B. 336
Bruno, N. 239, 243, 244–5, 289–90
Brunt, L. 407, 416
BSI (British Standards Institution) 424
Buen, J. 336, 525–6
Buigues, P. A. 96
Business Growth Service (UK) 176
Business Link programme (UK) 141, 156, 179, 192
business outcomes (programme logic model) 171, 179–80
Busom, I. 252, 254, 256

Cafe (corporate average fuel economy) standards 471
Caliendo, M. 143
Callejón, M. 75, 97
Calof, J. 496, 501

Jakob Edler, Paul Cunningham, Abdullah Gök and Philip Shapira - 9781784711856
Downloaded from Elgar Online at 12/26/2018 08:58:54AM
via free access
Canada
cluster policy 198, 214, 215, 224, 235, 238
direct support to R&D and innovation 68, 71, 79, 94, 102
entrepreneurship policy 139–40
fiscal incentives for R&D 22, 23, 26, 29, 30, 34–5, 47
innovation networks 294–5, 297, 298–9, 300–301, 304, 305–6, 307–8, 309–10, 311
policy mix 514, 515
skill formation policies 115
standardisation and standards on innovation 435–6
technology and innovation advisory services 162, 168–9, 174, 176–7, 179, 180, 183, 190
technology foresight 496
Cantono, S. 338–9
capacity for change (intermediate business outputs) 178
Cappelen, A. 29, 30, 31
Carboni, O. A. 71, 97, 514, 515
Carlaw, K. 183, 190
Carlin, W. 453
Carnot Centres (France) 174
CAS (Chinese Academy of Sciences) 493
CAs (contracting authorities) 382
Casey, P. 119
Caswell, J. 463
‘catalytic procurement’ 386
Catapult Centres (UK) 161, 174
causality 31, 153, 154, 224, 251, 253, 273, 373, 437, 439–40, 531, 543, 549, 550
CCR (Crown Commercial Representative) 367
CCs (centres of competence) 245, 291
CDTI (Centre for the Development of Industrial Technology) 65
Centres of Competence programme (Austria) 291
Cerulli, G. 77, 79, 97, 102
chaebol industrial structures (Korea) 265
changed firm capability (intermediate business outputs) 178
changes in attitudes/behaviour (collaborative support evaluation metric) 246–7
changes in practice (intermediate business outputs) 178
Chapman, R. 183, 192
Chemmanur, T. J. 455, 456
‘cherry-picking’ 371–2
China
cluster policy 200, 202
direct support to R&D and innovation 71, 75, 101
fiscal incentives for R&D 24
policy mix 514
public procurement of innovation 357, 361, 370, 374, 377
technology foresight 493
Choi, D. G. 425, 437
choice of control group (methodological challenge to evaluation of R&D tax incentives) 32
Cho, M. 264–5
CIFRE (Convention Industrielle de Formation par la Recherche) Programme 120, 121–2
CIR (French research tax credit) 37
circumventive innovation 453
CIS (Community Innovation Surveys) data collaboration support policies 265–6
direct support to R&D and innovation 72, 76–7, 78–9, 82, 84
regulation 454
standardisation and standards on innovation 437–9
technology and innovation advisory services 180
Clarysse, B. 255, 256
‘classical’ approach to policy instruments 7
classification of policy instruments 9–12, 544
Clausen, T. H. 77, 97
Cleff, T. 341
cluster policy actors in 206–7
characterisation of cluster policies 207
cluster identification 204
cluster operations and processes 212–15
cluster selection mechanisms 204–5
co-location of specialised industries 197–9
collaboration and ‘soft’ impacts 215–16, 223, 225
cost of intervention 206
defining clusters 197
design, implementation and instruments 203–7
economic effects of 219–22, 223, 225–7
economic importance of clusters 198–9
evaluation 208–10
evidence gap 196
impact evidence production 551, 553
impacts on innovation and entrepreneurship 217–19, 223–4, 225–6
innovation networks 281–2, 294, 295–6, 310
instruments promoting clusters 205–6
key findings from case studies 212–22
lessons from case studies 223–4
levered funding 214–15
longer-term outcomes 216–22, 223–4
management and governance 212–14, 223
narrow and broad approaches 202
‘natural clustering’ 196, 201–2, 208, 227
policy goals 11, 546, 558
policy lock-in 202
private sector involvement 202, 203, 206, 212, 214, 223–4, 226
quality of support services 215
R&D 199, 200, 201, 205–6, 208, 211, 213, 216, 217–20, 222
rationales for 196, 201–3, 210, 216–17, 223, 224–6
rise of cluster policies 200–201
scope and characteristics of selected cluster programmes 210–12
SMEs 200, 201, 203, 206, 219, 220, 221, 225
specific analysis of selected policies 210–24
supply- and demand-side policies 11
clusters (EUREKA instrument) 262
cost–benefit ratios 261, 290
cooperating/mentoring 134, 136, 143–8, 149, 154, 156
CoEs (centres of excellence) 245, 285, 287, 290, 294–5, 297, 298–9, 300–301, 304, 305–6, 307–11
Cohen, B. W. 303
Cohen, L. 462
Cohen, M. A. 336
collaboration support policies 240
behavioural additionality 250, 253, 255–8, 273
challenges for evaluating policy 246–9
costs and savings 246
conceptual framework of study 240–46
counterfactuality and benchmarking 249
defining collaboration 240–41
economies of scale 239, 240, 243
evidence on selected thematic areas 260–69
future research 273–4
impact evidence production 549, 551
informal contacts 241
informal relationships 249
input additionality 250, 251, 252, 253, 255, 264
knowledge transfer 239, 240, 242, 243, 245, 248, 257–8, 270
lessons and conclusions 269–74
major anticipated impacts 246–8
output additionality 250, 251–3, 254, 256
patents 248, 249, 251–2, 254, 266, 270
policy goals 11, 546–7, 558
programme design and governance 258–60, 270–71, 272–3
property-led initiatives 241
rationales for 239–40, 241–4, 271, 273
scope of impact 249
selection of participants 271–2
success factors 269–73
summary of findings 250–565
supply- and demand-side policies 11
targets, governance and practice 244–6
timing and periodicity of evaluations 248–9, 273
universities/higher education 239, 241, 242, 245, 249, 252–3, 257, 266, 267, 268, 270–71
collaborative research projects 245

collaborative governance of policy instruments 8
collective goods 56
Colombo, M. G. 29, 31, 38, 90, 97, 103
Committee for Capitalizing on Science, Technology, and Innovation (US) 393, 394, 396–7
compatibility and interoperability (type of standard) 427
‘Compendium of Evidence on the Effectiveness of Innovation Policy’ 1
competitive advantage 197
competitive dialogue procedure (EC) 370–72
complementarities (in policy mix) 505, 506, 508, 509, 510–11, 512–13, 520, 531, 533–4
complete innovation networks 284, 285
compliance costs 24, 35, 42–3, 47, 49, 68, 453, 457, 458, 460–61, 463, 466, 468, 470, 547
‘comprehensiveness index’ 151–2
collaborative research projects 245
consultants/consultancy 140, 141, 145, 147, 149, 164, 166–9, 177, 178, 181, 184–5, 408
Cooke, P. 205, 238
‘cooperation paradigm’ 55–6
Cooperative Awards in Science (UK) 120
COPEs (centres of procurement expertise) 368
co-producing innovation 318, 320, 326–7, 345
Corchuelo, B. A. 39
Corchuelo, M. B. 39
Cosh, A. 239
cost–benefit ratios 261, 290
counselling 130, 141, 145, 147, 151
counterfactual analysis 85, 145, 150, 156, 249, 290, 291
Cowling, G. M. 70, 80, 94
Cox, D. 129
CR&D (collaborative R&D) programmes 246, 252, 257
CRCs (Cooperative Research Centres, Australia) 250, 251–2, 260, 267–9
Cressy, R. 71
CREST report (UK) 533, 535
Crotty, J. 472
CSE (continuous and systemic evaluation) 263
Cubils, K. 498
Cumming, D. 467
Czarnitzki, D. 29, 30, 35, 76, 79, 80, 93, 97, 98, 103, 251, 254, 266
Czech Republic 520
Dagenais, M. 26
Danzon, P. M. 471
DARPA (Defense Advanced Research Projects Agency) 409, 410, 416–17
data envelope analysis 183
Davenport, S. 255–6
David, P. A. 74, 96, 516
Davis, J. 408, 411, 412, 417
Davis, L. 408, 411, 412, 417
De Maeseneire, W. 77, 101
dedicated field staff services 167, 168
Dee, N. J. 152, 153
defining/delineating innovation policy 3–4
Delbecq, B. 412, 419–20
Delphi surveys 486, 494, 495, 497
demand pull 324, 326, 327, 336, 337, 433
den Hertog, P. 202
Dendler, L. 341
Denmark
cluster policy 200, 204, 219, 222, 234, 237
collaboration support policies 264
Danish Networks Programme 279, 294, 296–7, 299, 302
Danish Programme for User–driven Innovation 342
direct support to R&D and innovation 58
entrepreneurship policy 141–2
innovation networks 279, 294, 296–7, 299, 302, 304, 306–7
policy mix 521, 525–6, 534
private demand for innovation 336, 342
skill formation policies 114, 120
Deuten, J. 67, 70, 95
developmental procurement 359
Diamond, D. 337
Diederen, P. 331
Dietz, J. S. 55
diffusion
‘diffusion-oriented’ policy 6
policy mix 524, 525, 527, 529–30, 531
private demand for innovation 318, 319–20, 324, 326–7, 328–9, 330, 331–4, 336–41, 343–4, 346–7
regulation 453–4, 464
skill formation policies 108, 109, 111, 122
standardisation and standards on innovation 423, 426, 428, 429, 430, 431, 432, 435, 441, 444, 445–6
direct support to R&D and innovation administration and management 66–9
behavioural additionality 59, 73–4, 81–3, 106–7
‘cooperation paradigm’ 55–6
defining impacts 58–60
duration and operational structures 58
duration of 85
evaluation challenges 59–60
evidence on effectiveness 60–61, 72–83
governance/implementation 59, 65–72
grants 60, 65–8, 70–72, 75–80, 85
impact evidence production 551, 553
input additionality 55, 59, 72, 74–8, 86, 96–101
lessons learned 84–8
loan guarantees 60, 63, 72
market failure 55, 71, 72–3
‘mission paradigm’ 55–6
output additionality 59, 72, 74, 78–81, 102–5
patents 76, 77, 79, 87
policy goals 11, 54, 545, 556
policy mix 513–15, 516, 517, 533–4
programme targets 57
provision of complementary services 69–72
rationales for 55–8, 59, 62–4, 87–8
scope of review 60–61
selection mechanisms 57–8
shift in support scheme objectives 54
SMEs 54, 58, 61, 63, 66, 67, 68, 71, 76, 77, 78, 84
soft loans 60, 69–70
summary of findings 61–83
supply- and demand-side policies 11, 54
uptake 65–6
user characteristics 59
‘dose-response’ analysis 517
Dosi, C. 340
Duguet, E. 26, 37
Duranton, G. 199
Dyerson, R. 472
Ebersberger, B. 80, 103
EC (European Commission)
classification of policy instruments 10
cluster policy 200–201
direct support to R&D and innovation 54
EUREKA initiative 250, 262–4
innovation inducement prizes 403
innovation networks 281
pre-commercial procurement 382, 389, 399
public procurement of innovation 356, 368, 370–72
regulation 450, 476–7
standardisation and standards on innovation 423, 445
economic regulation impacts 454–9, 474
economies of scale 198, 239, 240, 243, 298, 426, 427, 430, 432, 465, 495
Ederer, F. P. 466
Edler, J. 83, 331, 332, 358, 361, 372
Edquist, C. 10, 359, 383, 507, 508, 510
education 108, 120–23, 129, 130, 134, 136, 137–9, 143, 149, 155
see also universities/higher education
EEMS (Exploiting the Electromagnetic Spectrum) project 493
efficient procurement 358
Ehrlich, E. 472
Eichengreen, B. 465
Eickelpasch, A. 296, 302
EIP (Entrepreneurship and Innovation Programme) 132–3, 149
ELVD (End of Life Vehicles Directive) 472
embedded foresight 486, 488–9, 492, 498
EMDA (East Midlands Development Agency) 145–7
employment (collaborative support evaluation metric) 246
employment protection legislation 463, 464, 465–6, 467, 468
energy policy/technologies 319, 334, 335, 336, 338–9, 340, 343, 345–6, 525–30, 531–2
Engel, D. 217
Engineering and Physical Sciences Research Council (UK) 122
Engineering Research Centers programme (US) 239
enhancing innovation demand (policy goal) 11, 12, 544, 547, 559–61
Enright, M. J. 197, 202
Enterprise Initiative (UK) 140–41
‘entrepreneurial turn’ 129
entrepreneurship policy access to finance 135, 136, 148
characteristics of entrepreneurialism 131–2
coaching/mentoring 134, 136, 143–8, 149, 154, 156
education 129, 130, 134, 136, 137–9, 143, 149, 155
entrepreneurial nexus 132
incubators 130, 132, 135, 152–4
information problems 134
information provision schemes 136, 139–48, 155–6
lack of awareness 134
lessons learned 154–6
management support technology space 152
market failure 134, 135, 136, 140, 144, 148, 154, 155, 156
multi-instrument schemes 136, 148–54
policy goals 11, 557
political creed of entrepreneurialism 129
promotion of cultural and behavioural change 136, 137–9, 155
R&D investment 134, 135
rationales for 132, 134–5, 140
scope of 135–6
selection criteria of study 136
SMEs 129, 130–31, 133, 139, 140–41, 144, 149–50, 152
specific/situational advice schemes 144–8, 156
standardised advice schemes 139–44, 155–6
summary of findings 137–54
supply- and demand-side policies 11
systematic approaches 132–3
entry costs 320, 328
environmental regulations 450, 459, 460–62, 463, 469, 471–2
EPA (Environmental Protection Agency) 495–6
equipment supplier dominated networks 285
ERAC (European Research and Innovation Area Committee) 518–19, 520, 521
ERC (Engineering Research Centers) programme 258
ERDF (European Regional Development Fund) 145, 169
Ergas, H. 6
Ernst, E. 75, 97, 454, 465, 466
E-scan Test (Entrepreneur Scan Test) 137–8
ESIF (European Structural and Investment Funds) 356
Etzkowitz, H. 257
EU (European Union)
collaboration support policies 250, 262–4, 265–6
direct support to R&D and innovation 57, 76
entrepreneurship policy 132–3, 145, 149, 150
fiscal incentives for R&D 22, 24
innovation networks 302–3
policy mix 508, 510, 511, 518–21, 522, 523–5, 535, 536
pre-commercial procurement 382, 383–4, 385, 386, 389, 391, 392, 395, 399
private demand for innovation 325, 333, 341–2, 347
public procurement of innovation 356, 363, 368, 370, 372–4, 378
regulation 454, 467, 469, 472
skill formation policies 118
standardisation and standards on innovation 424, 428, 437, 440, 442, 443
technology foresight 483
EUREKA initiative (EU) 250, 262–4
European Cluster Observatory 201
Eurostars (EUREKA instrument) 262
evaluation method challenges 553
evaluation synthesis approach 2
Eveland, D. J. 393
evolutionary economics 5
experimental procurement 358
Expert Help Scheme (UK) 148
Ezell, S. 174
facilitating innovation-oriented dialogue (policy goal) 11, 544, 548, 562–3
Fairlie, R. W. 144
Falck, O. 218, 237
Falk, M. 75, 98
Falk, R. 30, 39–40, 76, 98, 106, 514, 515, 516
Faria, A. P. 454, 468
FCP (forward commitment procurement) initiative 374–5, 377, 378
FDA (Federal Drug Association, USA) 470
FEDIT (Federación Española de Centros Tecnológico) 175
Feldman, D. C. 148
Feldman, M. P. 75–6, 77, 82, 98, 106
Feller, I. 251, 252–3, 254, 257, 259, 260
Fernandez de Arroyabe, J. C. 251, 266
Fernandez-Cornejo, J. 469
Fernández-Ribas, A. 252, 254, 256, 266
Feser, E. 198, 202, 226
FFF (Austrian Industrial Research Promotion Fund) 64, 71, 76, 93, 98, 106
finance and banking regulation 473
Finifter, D. H. 395
Finland
cluster policy 200, 213–14, 223, 234, 237
collaboration support policies 251, 266
direct support to R&D and innovation 58, 62, 68, 78, 80, 95, 100, 103, 105
fiscal incentives for R&D 22
innovation networks 285, 290, 291
pre-commercial procurement 395
public procurement of innovation 357
skill formation policies 120
technology foresight 498–9
FinnSight 2015 programme (Finland) 498–9
fiscal incentives for R&D
administrative and compliance costs 47
advantages/disadvantages of 49–50
compliance costs 24, 35, 42–3, 47, 49
beneficiaries 23–4
country-based review of impacts 33–41
defining eligible R&D operations 21–2, 42
design features 19–25, 41–7, 48
effectiveness of 25–49
generosity of incentives 22–3, 43–5, 50
impact evidence production 549
incentive types 20
incremental-based incentives 20–21, 33–4, 37, 38, 40, 41, 42–3, 47, 48
input additionality 25–9, 49
knowledge spillovers 19, 32, 38, 44, 45, 47
literature review 25–33
methodological limitations 31–3
output additionality 29–31
patents 20, 21, 29–30, 36, 39, 41
permanent versus temporary measures 24–5
policy goals 11, 545, 556
policy mix 514–15, 516, 517, 520, 533–4
popularity and availability of tax incentives 18–19
privileging certain types of R&D activities 46–7
rationales for 18, 19, 42, 47
social contributions 39, 43
SMEs 23–4, 39, 40–41, 45–6
supply- and demand-side policies 11
tax credit consumption rules 24
volume-based incentives 20–21, 33–4, 35, 36–9, 41, 42–3, 46, 47, 48, 50
‘fiscal uncertainty’ 21
Flanagan, K. 358, 507, 508, 509, 510
Flanders 76–7, 150–51, 256
Fleischer, M. 469
Flemish Innovation Network 299, 301–2
Flowers, S. 329–30
follow-up additionality 82
Fontagné, L. 220, 238
Foren Guide (EU) 483
Foresight Programme (UK) 492–3
Forfas programmes (Ireland) 80, 99, 103
Foundation for Finnish Inventions (Finland) 58
France
cluster policy 200, 204, 205, 211, 220–21, 234, 238
direct support to R&D and innovation 58, 63–4, 69–70, 76, 93
fiscal incentives for R&D 21, 22, 23, 26, 27, 37–8, 42, 44, 50
innovation networks 294
policy mix 512, 514, 515, 517, 527–9, 531, 536, 538
public procurement of innovation 371
regulation 461
skill formation policies 118–19, 120, 121–2
standardisation and standards on innovation 435–6
technology and innovation advisory services 174
technology foresight 496–7
FRAND (fair, reasonable and non-discriminatory) conditions 431–2
Frascati Manual (OECD) 21–2, 39, 42
Fraunhofer Institute report (2005) 356
Fraunhofer Institutes (Germany) 168, 169, 174, 175
Freel, M. 115
Freeman, C. 282–3
Frenken, K. 198
Frenz, M. 438
functional innovation policy 4, 346
'functions' of innovation policy 5
FUTUR German Research Dialogue programme (Germany) 497–8
FutuRIS exercise (France) 496–7
Gale, J. 148
Gales, L. M. 305
Gallie, É. 208
GAO (General Accounting Office) 182, 192
García-Marco, T. 264
García-Quevedo, J. 74, 75, 96, 97
Garner, L. 471
Garone, L. F. 221–2, 238
GATE (Growing America through Entrepreneurship) Project 144, 156
Gauch, S. 428–9, 439, 440
Gaughan, M. 251, 254
Gelabert, L. 76–7, 79, 98, 103
Gelsing, L. 302
GEMs (genetically engineered microorganisms) 470
Genome Research Programme (Austria) 301
geographical space (in policy mix) 509–10, 533, 538–9
Gerard, D. 471
Germany
collaboration support policies 251, 266
direct support to R&D and innovation 203, 204, 205, 211, 214–15, 216, 217, 218, 222, 224, 232, 233, 237
direct support to R&D and innovation 67, 70, 76, 77, 79, 80, 87, 95–9, 102, 103, 105
trepreneurship policy 138–9, 153–4
fiscal incentives for R&D 21, 22
innovation networks 288, 297, 300, 302, 303, 308–9
policy mix 521, 522–3, 535, 537, 538
private demand for innovation 324, 338, 339
public procurement of innovation 362, 374
regulation 450, 461, 477
standardisation and standards on innovation 428, 435–6, 439, 440, 445
technology and innovation advisory services 168, 169, 174, 175
technology foresight 497–8
Geroski, P. 455
Ghosh, R. A. 434
Ghosh, S. 459
Gillingham, K. 334
Giraud, O. 119
Giret, J.-F. 122
Girma, S. 103
Global Cluster Initiative Survey (2003) 200
globalisation 49, 55, 471
glover review (2008) 366
Gök, A. 83, 256
Goldberg, P. K. 471
Golec, J. 471
González, X. 74, 99
Gordon, I. 197
Görg, H. 78, 99
Gospel, H. 119
governance space (in policy mix) 509–10, 538–9
governance/implementation (direct support to R&D and innovation) 59, 65–72
Government Procurement Agreement (WTO) 389
Grabowski, K. A. 470
Graevenitz, G. von 138–9
Greece 259
Green Nano Award (proposed) 409, 412, 415
Green Paper on the Modernisation of EU Public Procurement Policy (2011) 356
Green, W. S. 467
Griffith, R. 44–5, 467
Grilli, L. 71, 80, 104, 514–15
Index

Grossmann, V. 456
Gruber, H. 456
Guceri, I. 26, 40
Guellec, D. 75, 86, 99
Guerzoni, M. 362–3, 516, 531
Gunningham, N. 506
Guy, K. 83
GVA (gross value added) 80–81, 149, 246, 248, 252, 254

Hægeland, T. 26, 31, 35–6, 46
Hagedoorn, J. 240, 243
Hall, B. H. 26, 32, 34, 42
Hall, P. 465, 466
Harradence, Fergus 367–8
Harris, R. 79–80, 104
Hart, M. 76, 77, 78, 100, 141
Hauptman, O. 470
Hausberg, B. 281–2, 289, 290–91
Heaton, G. R. 468–9
Heijs, J. 77, 99
Heimer, T. 522
HEIs (higher education institutions) see universities/higher education
Helper, S. 180, 192
Henson, S. 463
Herrera, L. 79, 80, 99, 104
HEVs (hybrid electric vehicles) 337
Hewitt-Dundas, N. 74, 82, 87, 106
Heye, C. 194
Hicks, D. 253
high adjustment costs (methodological challenge to evaluation of R&D tax incentives) 32
HighTech Strategy (Germany) 428, 445, 450, 477, 498, 521, 522–3, 535, 537, 538
Hiltunen, M. P. 67, 70, 95
Hines, J. R. 26, 44
Hjelt, M. 290
HMPS (HM Prison Service, UK) 375
Hoareau, C. 252, 254, 266
Hobday, M. 303
holistic innovation policy/evaluation 204, 489, 492, 523, 531, 536, 555, 564
Hommen, L. 359
Horbach, J. 324, 461
horizontal joint ventures 258
horizontal networking 281
Howells, J. 242, 249
HRST (human resources in science and technology) 109
Hsinchu Science Park (China) 202
Hsu, F. M. 74, 76, 80, 81, 99, 104, 107
Hsueh and Hsu, C. C. 104
Huergo, E. 95
Huesig, S. 456–7
Hughes, A. 252
Huier, R. 80, 105
Hungary 499–500
Hunt, R. M. 468
Hussinger, K. 76, 80, 99, 105
Hwang, J. 495
Hyytinen, A. 78, 100, 105
IAP Programme (Belgium) 297, 306
‘Iceberg Model’ 263, 264
ICP (Industrial Cluster Policy, Japan) 219, 235, 238, 296, 310
IEC (International Electrotechnical Commission) 424
Ikävalko, S. 395
immigration laws 463, 467, 468
impact evidence production 549–54
improving frameworks for innovation (policy goal) 11, 544, 547–8, 561–2
incentive effect 32, 42, 411, 453, 458, 463, 468
increasing R&D and innovation investment (policy goal) 11, 544, 545, 556
incremental-based R&D incentives 20–21, 33–4, 37, 38, 40, 41, 42–3, 47, 48
incubators 130, 132, 135, 152–4
individual projects (EUREKA instrument) 262
Industrial and Vocational Training Association (Japan) 119
Industrial Assessment Center Programme (US) 340
Industrial Doctorate Centres (UK) 122
Industrial Liaison Program (MIT) 120
Industrial Research Programme (Denmark) 120
Industrial Technology Research Institute (Taiwan) 174
Industry Advisory Boards 123
informal contacts (collaboration support policies) 241
informal relationships 249
information (type of standard) 427
InnoAppraisal database 511, 512
Innobarometer survey 516
INNO-Regio programme (Germany) 204, 297, 300, 302, 303, 308–9
‘innovation bottlenecks’ 283, 343–4, 348, 523
‘innovation catalogues’ (China) 370, 374, 377
‘innovation ecosystems’ 284
innovation inducement prizes
African Agriculture Prize (proposed) 412, 419–20
AXP (AnsarI X Prize 407, 408, 49, 418–19
Big Green Challenge (UK) 403, 405–6, 409, 410, 416
conclusion 413
design issues 410–11
effects 407–13
experimentation and data creation 412–13
Google Lunar X Prize 409, 418–19
growing popularity of 403–4
historical 403
innovation performance effects 407–8
Longitude Prize 403
Medical Innovation Prize Act (2005) 412, 421
motivations of participants 409
NGLLC (Northrop Grumman Lunar Lander Challenge) 408, 409, 418–19
Orteig Prize 403
patents 403, 404, 405–6, 407–8, 412
PIAXP (Progressive Insurance Automotive X Prize) 408, 420–21
policy goals 11, 560–61
prestige and raising awareness 408–9
rationales for 404–7
SERP (Super-Efficient Refrigerator Program) Prize 404–5
supply- and demand-side policies 11, 411–12
X Prize Foundation (US) 403, 408, 412
Innovation Network Denmark programme 304, 306–7
innovation networks
attribution of impacts 291
centres of excellence 285, 287, 290, 294–5, 297, 298–9, 300–301, 304, 305–6, 307–8, 309–11
challenges for evaluating policy 289–91
cost-effectiveness of 309–10
defining networks 280–82
evolution of 279–80
firm-to-firm effects 313
future research 314–15
government support/intervention 288, 289, 312–13
heterogeneous networks 314
identified evaluations 291–2
impact evidence production 551, 553
impact on innovation 306–7
internationalisation 302–3
knowledge transfer 279–80, 282, 283–4, 287–8, 295, 308–9
leading-edge research 305–6
lessons learned 311–15
longer-term outcomes 310–11
major anticipated impacts 289–90
nature and scope of collaboration and networking 300–302
network governance 295–7
network management 297–8
network types 284–7
‘packaged’ solutions 279
participant characteristics 303–4
policy goals 11, 546, 558–9
policy lessons 312–13
process issues 298–300
public/private sector knowledge exchange 279–80
R&D 281, 283, 290, 296, 300, 306–7, 310
rationales for 280, 282–4, 289, 292, 293–5
research training 307
scope of review 291–2
SMEs 281, 284, 288, 294, 299, 309
summary of findings 293–311
supply- and demand-side policies 11
sustainable partnerships 304–5
target groups, governance and practice 284–9
technology transfer 281, 299, 301, 308, 314
trust 302, 308–9, 313, 314
universities/higher education 280, 284–5, 294, 296, 304, 308, 314
‘innovation paradox’ 201
Innovation Voucher Scheme (Scotland) 180, 191
inputs and actions (programme logic model) 171
INRA 2020 exercise (France) 496
installed capacity 336, 525
institutional regulation impacts 463–8
instrument networks (network type) 286
instrumental variables (methodological challenge to evaluation of R&D tax incentives) 31
intermediate business outputs (programme logic model) 171
IP/IPRs (intellectual property/rights) 286
IP/IPRs (intellectual property/rights)
collaboration support policies 241, 242, 261, 262
innovation inducement prizes 405
innovation networks 308, 313, 314
policy mix 520–21
pre-commercial procurement 397
regulation 450, 463, 464–5, 467–8, 469–70
standardisation and standards on innovation 423, 424, 426, 428, 430–32, 434, 441, 444, 445–6
see also patents
IPP (Innovation Procurement Plan, UK) 367–8, 377
IRAP (Industrial Research Assistance Program) 68, 162, 168–9, 174, 176–7, 179, 180, 183, 190
Ireland
direct support to R&D and innovation 78, 80, 82, 87, 94, 99, 100, 103, 106
innovation networks 293–4, 297, 299, 300, 302, 309, 311
Irish Photonics Association 299, 302
ISO (International Organization for Standardization) 424, 436, 438–9
Italy
cluster policy 196, 199
direct support to R&D and innovation 71, 77, 79, 80, 87, 97, 102–4
fiscal incentives for R&D 22, 24, 31, 38
innovation networks 279, 297
policy mix 514–15
ITMB (information technology management for business) degrees 122
Iturrioz, C. 219–20
Iversen, T. 465
IWT programme (Flanders) 256
Jacobsson, S. 335
Jaffe, A. B. 324, 332, 334, 460
Jakobsen, E. W. 237
Japan
cluster policy 200, 219, 235, 238
collaboration support policies 250, 264–5
direct support to R&D and innovation 62–3, 66, 70, 76, 80, 94, 102
fiscal incentives for R&D 23, 27, 40–41
innovation networks 295–6, 310
regulation 461, 469, 471
skill formation policies 118, 119
technology and innovation advisory services 163, 168, 169, 175
technology foresight 486, 494
Jarmin, R. S. 180, 192
Jensen, H. H. 463
Johnson, J. 114
Johnson, L. 458–9
Johnstone, N. 335, 526
Jungmittag, A. 436
Junior Achievement Young Enterprise programme (Netherlands) 137
Kalil, T. 411, 412–13, 417–18
Kang, K. N. 251, 254
Katz, A. 470
Katz, J. S. 253
Kauko, K. 74–5, 96
Kay, L. 403, 407–9, 410, 413, 418–19
Keenan, M. 488
keiretsus industrial structures (Japan) 265
Kelley, M. R. 75–6, 77, 82, 98, 106, 182, 192
Kemp, R. 334, 335, 338, 459
Keuffel, E. L. 471
KIBS (knowledge-intensive business services) 57
King, M. 438
Kingsley, G. 192
Klaassen, G. 336
Klassen, K. J. 27
Klein, H. 192
Kleinknecht, A. 251, 253, 254
Klette, T. J. 75, 96
knowledge exchange projects 245
knowledge networks (network type) 286
knowledge spillovers 19, 32, 38, 44, 45, 47, 197, 198, 206, 221–2, 259, 290
knowledge transfer
collaboration support policies 239, 240, 242, 243, 245, 248, 257–8, 270
innovation networks 279–80, 282, 283–4, 287–8, 295, 308–9
Kobayashi, Y. 27, 40–41
Koch, K. 455, 457
Kohsetsushin technology centres (Japan) 175
Kok report (2004) 356
Kompetenznetze (competence networks, Germany) 288
Konrad, A. 437
Koornneef, E. 473
Korea
collaboration support policies 265
fiscal incentives for R&D 22
private demand for innovation 338
public procurement of innovation 359, 374, 375–6
skill formation policies 118
technology foresight 495
Koutroumpis, P. 456
Kplus programme (Austria) 309
Kraljic, P. 358
Kremer, M. 405, 406
KTN (Knowledge Transfer Networks, UK) 284, 287–8
KTP (Knowledge Transfer Partnerships, UK) 120, 243, 247–8, 252, 257, 258–9
Kunn, S. 143

Index
Laat, B. de 63–4, 69–70, 93
labels/labelling 340–42, 346
Lach, K. R. 409, 410–11, 415, 419
Lam, A. 124
Lambrecht, J. 144–5
Lange, I. 460
Lanjouw, J. O. 461
Lankau, M. J. 148
Laplagne, P. 115
Laranja, M. 6
Law, L. B. 471
LEAD (Leading Enterprise and
Development) programme 182, 191
lead markets
policy mix 521, 523–5, 536
private demand for innovation 326, 330
public procurement of innovation 356, 360,
368, 370, 372–4, 378
regulation 450, 477
standardisation and standards on
innovation 423, 445
lead users 326, 328, 330, 360
Lee, C. Y. 74, 77–8, 100
Lee, J. 471–2
Leech, D. P. 436–7
Leiponen, A. 115
Lember, V. 357, 359–60, 361
Lemola, T. 59, 248, 285, 287
Lenihan, H. 76, 77, 78, 100
Lerner, J. 395–6, 398, 441, 468
lessons for analysts and policy-makers
534–5, 564
levered funding (in cluster policy) 214–15
Levinthal, D. 303
levy schemes 108, 117–19, 546
Lhuillery, S. 27, 37, 514, 515
liability law 463–4, 465
Licht, G. 76, 79, 98, 103
Lieven, J. 59, 248, 285, 287
life cycles (business) 165–6
Linde, C. van der 202
LINK programme (UK) 253, 257–8
Link, A. N. 395, 398
Lipsey, R. G. 183, 190
Lisbon Agenda 200
LMI (Lead Market Initiative) 356, 368, 370,
372–4, 378, 423, 445, 450, 477, 521, 523–5, 536
loan guarantees 60, 63, 72, 94
Local Production Systems (France) 211, 221,
234, 238
Lokshin, B. 27, 32, 43, 46, 47
London Development Agency 213
Lorenz, O. 442–3
LTIs (Leading Technology Institutes) 296
Luger, M. I. 226
Lundvall, B. -A. 284
Luria, D. 179, 193
Luxembourg 20, 438–9
Lyon, T. P. 462
M&A (mergers and acquisitions) 454, 455,
458
McCann, P. 197
Macartney, G. 467
McCutchen, W. M. 27
McKenzie, K. J. 27, 41, 43, 45
Mairesse, J. 27, 37–8, 514, 517
Malta 118
Mamuneas, T. P. 71, 75, 80, 81, 101, 105, 107
management additionality 82
management support technology space 152
Mangelsdorf, A. 437, 439
Mangiarotto, G. 438–9
Manne, G. A. 455
Mannheim Innovation Panel 76
Manso, G. 466
Marcus, A. A. 462
Marie Curie Action programme 121
market entry regulations 456–7, 458
market failure
collaboration support policies 243–4
direct support to R&D and innovation 55,
71, 72–3
entrepreneurship policy 134, 135, 136, 140,
144, 148, 154, 155, 156
innovation inducement prizes 404
pre-commercial procurement 386–7, 397,
400
private demand for innovation 318, 327,
328–30, 334, 335, 345
public procurement of innovation 360
rationales for intervention 4–5
skill formation policies 108, 109, 117
supply-side policies 544, 545
technology and innovation advisory
services 163, 167
technology foresight 485
market introduction 3
market transformation 319, 330–31, 333,
343–4, 348, 532
marketing-oriented networks 285
Markusen, A. 197
Marshall, A. 198, 323
Martin, P. 222
Martin, R. 197, 199
Index

Martin, T. 293–4, 297, 298, 299, 300, 302, 309, 311
Martínez-Ros, E. 39, 514
Marx, C. 148
MAS (Manufacturing Advisory Service) 167, 168, 176–7, 178, 179, 180–81, 183
Masters, W. A. 412, 419–20
matched pair analysis 142, 150, 154
Mazzoleni, R. 55
Medicon Valley cluster (Denmark/Sweden) 204
Meerveld, H. 375
Meissner, D. 501
mentoring/coaching 134, 136, 143–8, 149, 154, 156
MEP (Manufacturing Extension Partnership) 167, 168, 176–7, 179, 180–82, 183, 184, 192–5
Mercer, D. 251
meta-analysis 2, 130, 192, 202
Meuleman, M. 77, 101
Meurer, M. J. 468
Michel, C. 439
Miles, I. 331
Miller, R. 116–17
minimum quality and safety (type of standard) 427
Miotti, L. 251, 254, 266
Mises, Ludwig von 131
‘mission paradigm’ 55–6
‘mission-oriented’ policy 5–6, 346
MIT (Massachusetts Institute of Technology) 120
moderating uncertainty effect 411
Mody, A. 461
Meen, J. 26, 31, 35–6, 46
Mohnen, P. 24, 27, 29, 32, 43, 46, 47, 71, 79, 102, 252, 254, 266, 514, 515
Mole, K. 141, 179, 191
Montoro-Sanchez, C. A. 79, 105
Montyond Fund 403
Moore, M. J. 464, 465
Moretto, M. 340
Mothe, C. 251, 262–3
Mowery, D. 319
Mulkay, B. 27, 37–8, 514, 517
Mundell, Robert 506
Murray, F. 408, 410, 420–21
Murtinu, S. 71, 104, 514–15
Nadiri, M. I. 71, 75, 81, 101, 107
NAECA (National Appliance Energy Conservation Act, 1987) 462
Nameroff, T. J. 461
NANO Initiative (Austria) 298, 301
National Academies review (2013) 174
National Academy of Engineering (US) 405, 412
National Advanced Technology Foundation (Denmark) 58
National Network for Manufacturing Innovation Institutes (US) 161
nature of policy instruments 7–9
Nauwelaers, C. 196, 205
NCE programme (Canada) 294–5, 297, 298–9, 300–301, 304, 305–6, 307–8, 309–10, 311
NCE programme (Norway) 213, 216, 218–19, 223
NCPs (national coordination points) 262, 263
NEDO scheme (Japan) 80
negative incentive effect 411
Nelson, R. 4, 55
Nemet, G. 338
Nesta (UK) 1, 145–7, 152, 326, 357, 403, 405–6, 409–10, 416, 451, 554
Netherlands
cluster policy 200
entrepreneurship policy 137–8, 149
fiscal incentives for R&D 20, 22, 23, 27, 28, 32, 36–7, 43, 46, 48
innovation networks 285, 296
pre-commercial procurement 389, 395
private demand for innovation 335
public procurement of innovation 368–70, 373, 377
skill formation policies 119
standardisation and standards on innovation 439–40
network additionality 82, 255
network clusters (network type) 286
New Technology Products programme (Korea) 359, 375–6
New Zealand 138
Newell, R. G. 324, 340, 341, 462
Nielsen, K. 302
NIH (National Institutes of Health) 396
Nill, J. 338
Niosi, J. 180, 190
NIS (national innovation system) 241
Nishimura, J. 219, 238, 295–6, 310
NIST (National Institute of Standards and Technology) 436–7, 440
NISTEP (National Institute of Science and Technology Policy) 494
‘no policy’ policy 359, 360
non-parametric matching approach 516
Norberg-Bohm, V. 462
Norman, C. 142–3
North East Entrepreneurs Forum (UK) 149–50
North Jutland Entrepreneurial Network (Denmark) 141–2
Northern Ireland 82, 87
Norway
direct support to R&D and innovation 77, 93, 97
fiscal incentives for R&D 23, 26, 29, 30, 31, 35–6, 46–7
innovation networks 285
policy mix 525–6
public procurement of innovation 363
NRC (National Research Council, Canada) 204, 214, 215, 224, 233, 235, 238
NRDPMWA (National Research & Development Programme for Medical & Welfare Apparatus, Japan) 62–3, 66, 70, 76, 79, 94
NSI (national systems of innovation) 148
NTBFs (new technology-based firms) 71, 514–15
NUTEK/STEM (Swedish energy agency) 527, 529–30, 531–2, 536, 538
Oakey, R. P. 70
Oberschachtsiek, D. 143–4
OECD (Organisation for Economic Co-operation and Development)
cluster policy 200, 201, 206
collaboration support policies 266, 267–8
direct support to R&D and innovation 56, 57, 76, 82, 85–6
tenurepreneurship policy 132, 155
fiscal incentives for R&D 18, 19, 21–2, 34, 41, 42, 44–5
innovation networks 280, 284–5
policy mix 506, 507, 511, 517, 518–19, 520–21, 535
private demand for innovation 318, 319, 333
private procurement of innovation 356–7, 361, 362, 363
regulation 452–3, 459, 467
skill formation policies 108, 109
Okamuro, H. 219, 238, 295–6, 310
O’Kane, M. 241, 244, 255, 269
Oldsman, E. 193, 194
Ollinger, M. 469
OLS (ordinary least squares) data 37, 138, 139, 141
One North East Programme (UK) 149–50
Oosterbeek, H. 137–8, 139
operation and management (collaborative support evaluation metric) 247
operational complementarity 513
OPREX initiative (Canada) 139–40
organisational competencies 111, 112
Orphan drug regulation 471
Oslo Manual (OECD) 21, 42, 76, 266, 361
O’Sullivan, E. 440
O’Toole, L. J. 506–7, 509
Özçelik, E. 78, 101, 107
‘packaged’ solutions 279
Palmer, K. 460
Palriwala, A. 412, 413, 422
Park, H. 251, 254
Parsons, M. 35
Partnership for Regional Innovation Services to Manufacturers (US) 180
Pasteur, Louis 403
Patent Boxes 20
patents
cluster policy 217, 219
collaboration support policies 248, 249, 251–2, 254, 266, 270
direct support to R&D and innovation 76, 77, 79, 87
fiscal incentives for R&D 20, 21, 29–30, 36, 39, 41
innovation inducement prizes 403, 404, 405–6, 407–8, 412
innovation networks 289, 308, 315
policy mix 526–7
private demand for innovation 324, 333, 335–6, 338, 348
public procurement of innovation 372–3
regulation 450, 453, 455, 456, 459, 460–61, 464, 468, 469–72
standardisation and standards on innovation 424, 425, 426, 428–9, 430–32, 434, 437, 441–2, 446
see also IP/IPRs
path dependencies 112, 201, 203, 225, 328, 491, 508, 520, 532, 535
Paunov, C. 78, 101
PAVE (Programme for the Development of Industrial Research, Greece) 259
Pavel, C. A. 473
Pazó, C. 74, 99
PCP (pre-commercial procurement)
alternatives to 385–6
data availability and collection 393–4
defining 383–6
economic impacts 396–8
evaluation lessons 392–5
firm impacts 395–6
government benefits 398–9

Jakob Edler, Paul Cunningham, Abdullah Gök and Philip Shapira - 9781784711856
Downloaded from Elgar Online at 12/26/2018 08:58:54AM
via free access
implementation of 388–91
lessons learned 399–40
market failure 386–7, 397, 400
policy goals 11, 547, 560
private demand for innovation 322–3, 331, 345
public procurement of innovation 359, 365, 370, 377, 383–4
R&D 382, 388, 384, 386–7, 389, 393, 395, 397
rationales for 382, 386–8
summary of findings 392–9
supply- and demand-side policies 11, 383, 385
technical and design issues 394–5
PennTAP (Pennsylvania Technical Assistance Program) 169
Pentikäinen, T. 237
performance (collaborative support evaluation metric) 247
Peris-Ortiz, M. 65–6
‘perlocation model’ 339
Peters, M. 336, 337
PFIs (Private Finance Initiatives) 371
pharmaceutical and biotechnology industry regulation 470–71
Phillips, N. 35
PIANOo initiative (Netherlands) 368–70, 377
Pilkington, A. 472
Pirnay, F. 144–5
Poblenou cluster (Spain) 217–18
Poland 150
Pôles de compétitivité initiative (France) 200, 204, 205, 211, 220–21, 234, 238
policy goals
access to expertise 11, 544, 545, 557–8
classification of policy instruments 10–12
cluster policy 11, 546, 558
collaboration support policies 11, 546–7, 558
direct support to R&D and innovation 11, 54, 545, 556
effectiveness of policy instruments 544, 545–9, 556–63
enhancing innovation demand 11, 12, 544, 547, 559–61
entrepreneurship policy 11, 557
facilitating innovation-oriented dialogue 11, 544, 548, 562–3
fiscal incentives for R&D 11, 545, 556
improving frameworks for innovation 11, 544, 547–8, 561–2
increasing R&D and innovation investment 11, 544, 545, 556
innovation inducement prizes 11, 560–61
innovation networks 11, 546, 558–9
policy mix 505, 507–10, 512, 521, 522, 536, 538, 548–9
pre-commercial procurement 11, 547, 560
private demand for innovation 11, 547, 559
public procurement of innovation 11, 547, 559
regulation 11, 547, 561–2
skill formation policies 11, 546, 556–7
skills augmentation 11, 12, 544, 546, 556–7
standardisation and standards on innovation 547–8, 561
strengthening systemic capabilities and complementarities 11, 544, 546–7, 558–9
technology and innovation advisory services 11, 546, 557–8
technology foresight 11, 548, 562–3
policy instruments/interventions/measures 1–2
‘classical’ approach 7
classification of 9–12, 544
collective governance 8
defining innovation policy 3–4, 544, 551
effectiveness of 543–55, 564
increase in 8
nature of 7–9
rationales for see rationales for policy instruments
sociological view 7–8
‘traditional functionalist’ perspectives 7, 9
see also under specific policy instruments
deliberate mixes and agency portfolios 520, 521–30, 535–7
designed versus emergent mixes 508–9
development of concept 506–11
diffusion 524, 525, 527, 529–30, 531
dimensions 509
direct support to R&D and innovation 513–15, 516, 517, 533–4
design energy policy 525–30, 531–2, 534, 536, 538
EU Lead Market Initiative 521, 523–5, 536
evaluation of policy interaction 505
evaluation practice and challenges 530–32

Jakob Edler, Paul Cunningham, Abdullah Gök and Philip Shapira - 9781784711856
Downloaded from Elgar Online at 12/26/2018 08:58:54AM via free access
fiscal incentives for R&D 514–15, 516, 517, 520, 533–4
framework 510–11
gerographical space 509–10, 533, 538–9
German HighTech Strategy 521, 522–3, 535, 537, 538
governance space 509–10, 538–9
impact evidence production 549–50
input additionality 514, 516–18
instrument selection 508–9
interplay of individual instruments 12, 511, 512–18, 530–32, 533–4, 537
multi-dimensional nature of mixes 532–3
output additionality 514, 515, 516–18
policy domains and sub-systems 507–8, 510, 513, 519, 532, 537
policy goals and objectives 505, 507–10, 512, 521, 522, 536, 538, 548–9
policy space 508, 509–10, 538–9
public procurement of innovation 516, 518, 523–5
rationales for policy instruments 505, 507–10, 512, 524, 530, 535–6, 538
scope and method of review 511
SMEs 513, 514, 522
supply- and demand-side policies 515, 516, 518, 520, 524–7, 533–4, 537
target groups 512, 524, 530, 533–6, 538
time 508–10, 525–7, 531–2, 534–6, 538, 539
trade-offs 506, 508, 538–9
‘policy problems’ in innovation systems 5
policy space (in policy mix) 508, 509–10, 538–9
Pontoglio, S. 334
Poot, T. 28
Popp, D. 460, 461
Porter, M. 197, 202–3, 210, 281, 450, 459, 460, 469, 470, 474
Portugal 22
positive parallel paths effect 411
Pott, B. 77, 79, 97, 102
Powell, B. C. 258, 270
PPI (public procurement of innovation) 356–63
classification of interventions 363–4, 365–6
competitive dialogue procedure 370–72
cost context 356–7
evaluation of 376–8
forward commitment procurement 374–5
framework conditions 364, 365, 378
identification, specification and signalling of needs 365, 370
incentivising innovative solutions 366, 374–6
justifications for 360
lead markets 356, 360, 368, 370, 372–4, 378
lessons and conclusions 378
limitations of existing evaluations 360–63
patents 372–3, 397, 399
policy delineation and definitions 358–60
policy goals 11, 547, 559
policy mix 516, 518, 523–5
pre-commercial procurement 356, 359, 365, 370, 377, 383–4
procurement types 358–9
R&D 357, 358, 359–60, 361, 362–3, 370
renewed interest in 355, 356–7, 358, 360
return of demand-side policies 355, 356–7, 360
scope of 360–63
SMEs 364–7, 374, 375–6, 377
specific policies and strategies 367–70
standardisation and standards on innovation 432–5, 442–4, 445–6
study findings 363–76
supply- and demand-side policies 11, 355, 356–7, 360
PPPs (public private partnerships) 267, 313, 371
PQQs (pre-qualification questionnaires) 367
price regulation 457, 458, 471
Prieler, J. E. 454–5, 472
Primo, D. M. 467
private demand for innovation
conceptual framework 323–31
co-producing innovation 318, 320, 326–7, 345
defining/delineating demand-side policies 319–20
demand as barrier to eco-innovation 325
demand pull 324, 326, 327, 336, 337
demand-side intervention logics 327–31
economic growth 327, 330
energy-efficient technologies 334, 335, 336, 338–9, 340, 343, 345–6
evaluation challenges 331–3, 346–7
importance of demand for innovation 323–5
influence on supply of innovation 320, 325–7, 345
information asymmetries 320, 329, 339–40, 341
labels 340–42, 346
lessons and conclusions 344–8
Index

market and system failures 318, 327, 328–30, 334, 335, 345, 348
market transformation 319, 330–31, 333, 343–4, 348
methodology of study 331–3
patents 324, 333, 335–6, 338, 348
policy goals 11, 547, 559
R&D 323, 324, 331, 335–7, 343
rationales for 319, 320, 324, 327–31, 339, 340, 345
return of demand-side policies 318–19, 345
scope of study 333
societal goals 327, 328, 330–31, 332, 335, 342, 343–4, 345, 347
subsidies and taxes 321, 333–9, 346
summary of finding 333–4

taxation 321, 333–9, 346

timing of measures 336, 346–7
typology of demand-side policies 320–23, 345
user–producer interaction 322, 326–7, 329, 342, 347–8
product and consumer safety 460, 462–3
‘programmatisation’ 361
programme logic model (technology and innovation advisory services) 170–72, 173, 178–82
project additionality 82
property-led initiatives (collaboration support policies) 241
Public Industrial Technology Research Institutes (Japan) 168, 169
public utility regulation 457–9
‘public’ goods 56
purchasing portfolio models 358
PV (photovoltaic) technologies 336, 337, 338
Quelin, B. V. 251, 262–3
R&D (research and development)
cluster policy 199, 200, 201, 205–6, 208, 211, 213, 216, 217–20, 222
direct support see direct support to R&D and innovation
entrepreneurship policy 134, 135
fiscal incentives see fiscal incentives for R&D
impact evidence production 549, 551
increasing R&D and innovation investment (policy goal) 11, 544, 545, 556
innovation inducement prizes 408, 410
innovation networks 281, 283, 290, 296, 300, 306–7, 310
pre-commercial procurement 382, 384, 386–7, 389, 393, 395, 397
private demand for innovation 323, 324, 331, 335–7, 343
public procurement of innovation 357, 358, 359–60, 361, 362–3, 370
regulation 450, 453, 455, 456–8, 460–61, 465–72, 475, 476
skill formation policies 108, 109, 111, 120, 123
standardisation and standards on innovation 428–30, 431, 436, 439, 441
technology and innovation advisory services 166, 169, 179, 180
technology foresight 490, 495, 498, 499
Raco, M. 148
Radic, D. 80, 105
RAE (Research Assessment Exercise) 521
Raiteri, E. 362–3, 516, 531
Raivio, T. 62, 69, 95
Rammer, C. 461, 522, 523
RASE (Royal Agricultural Society of England) 407, 416
Raskind, L. J. 464
rate-of-return regulation 457, 472
rationales for policy instruments 4–6
cluster policy 196, 201–3, 210, 216–17, 223, 224–6
collaboration support policies 239–40, 241–4, 271, 273
direct support to R&D and innovation 55–8, 59, 62–4, 87–8
entrepreneurship policy 132, 134–5, 140
fiscal incentives for R&D 18, 19, 42, 47
innovation inducement prizes 404–7
innovation networks 280, 282–4, 289, 292, 293–5
policy mix 505, 507–10, 512, 520, 532, 537
pre-commercial procurement 382, 386–8
private demand for innovation 319, 320, 324, 327–31, 339, 340, 345
technology and innovation advisory services 162, 163, 166–7
technology foresight 486–8, 489, 492
RDAs (Regional Development Agencies) 145, 150
RDI (research, development and innovation) funding 287
regional and national networks (network type) 286
regulation
antitrust regulation 454, 455, 458
bankruptcy laws 463, 464, 467, 468
chemical industry regulation 468–70
command and control regulations 334–5, 346, 460, 463, 547
competition policies 454–6, 458
competition regulation 454–6, 458
compliance costs 453, 457, 458, 460–61, 463, 466, 468, 470
defining 452–3
economic regulation impacts 454–9, 474
employment protection legislation 463, 464, 465–6, 467, 468
electrical regulations 450, 459, 460–62, 463, 465, 471–2
factors affecting impacts 451
immigration laws 463, 467, 468
incentive effect 453, 458, 463, 468
information asymmetries 455, 456, 457, 463, 470, 474
institutional regulation impacts 463–8
IPR 450, 463, 464–5, 467–8, 469–70
lessons learned 474–7
liability law 463–4, 465
market entry regulations 456–7, 458
mergers and acquisitions 454, 455, 458
patent 450, 453, 455, 456, 459, 460–61, 464, 468, 469–72
policy goals 11, 547, 561–2
price regulations 457, 458, 471
product and consumer safety 460, 462–3
proposals for innovation-friendly policies 475–7
public utility regulation 457–9
R&D 450, 453, 455, 456–8, 460–61, 465–72, 475, 476
rate-of-return regulation 457, 472
research gaps 475
sector-specific regulations 468–74
’smart’ regulation 453
social regulation impacts 459–63, 474
supply- and demand-side policies 11
theoretical model 453–4
types of 450, 451, 452, 474
uncertainty 460, 462, 469, 470–71, 472, 473, 474
workers’ health and safety protection 460, 462–3
relabelling of expenditure (methodological challenge to evaluation of R&D tax incentives) 32
Rennings, K. 341, 461
Rephann, T. 179–80, 194
Requate, T. 334
RES (Regional Economic Strategy) 149
responsive demand 326, 327
RIEPs (regional improvement and efficiency partnerships) 368
Rigby, J. 129
Riillo, C. A. F. 438–9
Roberts, E. B. 470
Robinson, C. 79–80, 104
Roeland, T. 202
Roessner, D. 257
Rolfstam, M. 358
Rompja, H. 114
Rongping, M. 493
Roper, S. 74, 82, 87, 106, 141, 180
Rosenberg, N. 319
Rossi, M. 462
Rotger, G. P. 141–2
Rothwell, R. 324
Rotnes, R. 237
Royal Academy of Science (Paris) 403
Rubenstein, A. H. 82, 107
Rubim de Pinho Accioli Doria, M. 469–70
Ruegg, R. 251, 252–3, 254, 257, 259, 260
Rychen, F. 294
Rysman, M. 441
S&T Basic Plans (Japan) 494
S&T Framework Plan (Korea) 495
Sachwald, F. 251, 254, 266
Sáez, C. B. 251, 254
Saint-Paul, G. 466
Sakakibara, D. 251, 254, 264–5
Salamon, L. M. 8
Sanyal, P. 459
Sapra, H. 456
SBA (Small Business Administration) 144
SBIR (Small Business Innovation Research programme, US) 166, 359, 383, 384, 386–8, 389–400
SBRI (Small Business Research Initiative, UK) 388, 389, 391, 398–9
scale and scope additionality 82
Schmidt, T. 76, 96
Schmiedeberg, C. 209–10
Schneider, C. 79, 105
Schrank, A. 183, 194
Schumpeter, J. 129, 131
Schwartz, M. 153–4
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>science–industry networks (network type)</td>
<td>286–7</td>
</tr>
<tr>
<td>Scotiach, P.</td>
<td>143–4</td>
</tr>
<tr>
<td>Scotland</td>
<td>148, 180, 191</td>
</tr>
<tr>
<td>Scott, J. T.</td>
<td>398, 436–7</td>
</tr>
<tr>
<td>secondary analyses 2</td>
<td>2</td>
</tr>
<tr>
<td>Segarra-Blasco, A.</td>
<td>251, 254, 266</td>
</tr>
<tr>
<td>Sekkat, K.</td>
<td>96</td>
</tr>
<tr>
<td>‘selectivity of entrepreneurship’</td>
<td>129–30</td>
</tr>
<tr>
<td>Sershun, N.</td>
<td>27, 41, 43, 45</td>
</tr>
<tr>
<td>SFLG (Small Firms Loan Guarantee) scheme</td>
<td>63, 70, 80, 512</td>
</tr>
<tr>
<td>Shane, S.</td>
<td>131</td>
</tr>
<tr>
<td>Shapira, P.</td>
<td>179–80, 183, 194, 195, 256, 266</td>
</tr>
<tr>
<td>Shapiro, C.</td>
<td>441</td>
</tr>
<tr>
<td>Shortell, S. M.</td>
<td>473</td>
</tr>
<tr>
<td>SIC (Swedish Innovation Centre)</td>
<td>142–3, 156</td>
</tr>
<tr>
<td>Sickles, R. C.</td>
<td>462</td>
</tr>
<tr>
<td>Siegel, D. S.</td>
<td>75, 96</td>
</tr>
<tr>
<td>Silber, W. L.</td>
<td>473</td>
</tr>
<tr>
<td>Silicon Valley</td>
<td>196, 202, 303–4</td>
</tr>
<tr>
<td>Silverberg, G.</td>
<td>338–9</td>
</tr>
<tr>
<td>Simcoe, T. S.</td>
<td>441</td>
</tr>
<tr>
<td>Sinclair, D.</td>
<td>506</td>
</tr>
<tr>
<td>Singapore</td>
<td>119</td>
</tr>
<tr>
<td>SkatteFUNN (Norwegian tax incentive scheme)</td>
<td>31, 35, 36</td>
</tr>
<tr>
<td>skill formation policies</td>
<td></td>
</tr>
<tr>
<td>access to knowledge</td>
<td>110–11</td>
</tr>
<tr>
<td>conceptual links between skill formation and innovation</td>
<td>110–12</td>
</tr>
<tr>
<td>empirical evidence on impacts</td>
<td>113–15</td>
</tr>
<tr>
<td>forms of training</td>
<td>110, 111–12</td>
</tr>
<tr>
<td>impact evidence production</td>
<td>550</td>
</tr>
<tr>
<td>lessons for policy design</td>
<td>124–5</td>
</tr>
<tr>
<td>levy schemes</td>
<td>108, 117–19, 546</td>
</tr>
<tr>
<td>markets</td>
<td>116–19</td>
</tr>
<tr>
<td>organisational competencies</td>
<td>111, 112</td>
</tr>
<tr>
<td>policy goals</td>
<td>11, 546, 556–7</td>
</tr>
<tr>
<td>policy issues</td>
<td>109–10</td>
</tr>
<tr>
<td>R&D</td>
<td>108, 109, 111, 120, 123</td>
</tr>
<tr>
<td>SMEs</td>
<td>113, 115, 118, 119, 123</td>
</tr>
<tr>
<td>supply- and demand-side policies</td>
<td>11</td>
</tr>
<tr>
<td>university/higher education links</td>
<td>108, 120–23, 124</td>
</tr>
<tr>
<td>valuation of innovative potential of skills</td>
<td>116–17</td>
</tr>
<tr>
<td>skills augmentation (policy goal)</td>
<td>11, 12, 544, 546, 556–7</td>
</tr>
<tr>
<td>Slavtchev, V.</td>
<td>138</td>
</tr>
<tr>
<td>Sloth, M.</td>
<td>389</td>
</tr>
<tr>
<td>Small Business Act (1978)</td>
<td>364</td>
</tr>
<tr>
<td>Smart scheme (UK)</td>
<td>63, 65, 66, 69, 76, 79–80, 83, 93, 95, 104, 514</td>
</tr>
<tr>
<td>‘smart’ regulation</td>
<td>453</td>
</tr>
<tr>
<td>SMBA (Small and Medium Business Administration, Korea)</td>
<td>375–6</td>
</tr>
<tr>
<td>SMC (Student Mini-company) scheme</td>
<td>137–8</td>
</tr>
<tr>
<td>SMEs (small and medium-sized enterprises)</td>
<td></td>
</tr>
<tr>
<td>cluster policy</td>
<td>200, 201, 203, 206, 219, 220, 221, 225</td>
</tr>
<tr>
<td>collaboration support policies</td>
<td>245, 259, 262</td>
</tr>
<tr>
<td>direct support to R&D and innovation</td>
<td>54, 58, 61, 63, 66, 67, 71, 76, 77, 78, 84</td>
</tr>
<tr>
<td>entrepreneurship policy</td>
<td>129, 130–31, 133, 139, 140–41, 144, 149–50, 152</td>
</tr>
<tr>
<td>fiscal incentives for R&D</td>
<td>23–4, 39, 40–41, 45–6</td>
</tr>
<tr>
<td>innovation networks</td>
<td>281, 284, 288, 294, 299, 309</td>
</tr>
<tr>
<td>policy mix</td>
<td>513, 514, 522</td>
</tr>
<tr>
<td>private demand for innovation</td>
<td>339</td>
</tr>
<tr>
<td>public procurement of innovation</td>
<td>364–7, 374, 375–6, 377</td>
</tr>
<tr>
<td>skill formation policies</td>
<td>113, 115, 118, 119, 123</td>
</tr>
<tr>
<td>technology and innovation advisory</td>
<td>161–3, 165, 166–70, 174–5, 176–7, 180, 182, 183–4, 185–6</td>
</tr>
<tr>
<td>Smith, Adam</td>
<td>323</td>
</tr>
<tr>
<td>Smith, J. E.</td>
<td>496, 501</td>
</tr>
<tr>
<td>Smith, M.</td>
<td>472</td>
</tr>
<tr>
<td>SNA (social network analysis)</td>
<td>210, 301–2</td>
</tr>
<tr>
<td>social regulation impacts</td>
<td>459–63, 474</td>
</tr>
<tr>
<td>societal missions</td>
<td>5–6</td>
</tr>
<tr>
<td>sociological view of policy instruments</td>
<td>7–8</td>
</tr>
<tr>
<td>Sofka, W.</td>
<td>362, 518</td>
</tr>
<tr>
<td>soft loans</td>
<td>60, 69–70</td>
</tr>
<tr>
<td>Solomon, B. D.</td>
<td>340</td>
</tr>
<tr>
<td>Solow growth model</td>
<td>453</td>
</tr>
<tr>
<td>Sölvell, O.</td>
<td>206–7</td>
</tr>
<tr>
<td>Soriano, D. R.</td>
<td>65–6</td>
</tr>
<tr>
<td>Soskice, D.</td>
<td>453, 465, 466</td>
</tr>
<tr>
<td>South Korea</td>
<td>see Korea</td>
</tr>
<tr>
<td>Spain</td>
<td></td>
</tr>
<tr>
<td>cluster policy</td>
<td>205, 211, 217–18, 219–20, 232, 237</td>
</tr>
<tr>
<td>collaboration support policies</td>
<td>256, 266</td>
</tr>
<tr>
<td>direct support to R&D and innovation</td>
<td>65–6, 74, 76–7, 79, 82, 86, 97, 98, 99, 102–6</td>
</tr>
<tr>
<td>entrepreneurship policy</td>
<td>153</td>
</tr>
<tr>
<td>fiscal incentives for R&D</td>
<td>20, 22, 29, 38–9</td>
</tr>
<tr>
<td>policy mix</td>
<td>514</td>
</tr>
<tr>
<td>technology and innovation advisory</td>
<td></td>
</tr>
<tr>
<td>services</td>
<td>175</td>
</tr>
<tr>
<td>special R&D allowances/exemptions</td>
<td>20</td>
</tr>
<tr>
<td>Spencer, G. M.</td>
<td>198</td>
</tr>
<tr>
<td>Spithoven, A.</td>
<td>256</td>
</tr>
</tbody>
</table>
Handbook of innovation policy impact

584

SPUR (Support for Projects under Review) 65, 69, 79–80, 104
SR&ED tax credit programme (Canada) 34–5
Staeher, R. 237
Stahl-Rolf, S. 281–2, 289, 290–91
standardisation and standards on innovation defining 424
diffusion 423, 426, 428, 429, 430, 431, 432, 435, 441, 444, 445–6
economies of scale 426, 427, 430, 432
empirical evidence 435–44
functions of 427–35
general economic impacts 435–7
impact of standards on innovation 437–40, 444
IPR 423, 424, 426, 428, 430–32, 434, 441, 444, 445–6
patents 424, 425, 426, 428–9, 430–32, 434, 437, 441–2, 446
policy goals 547–8, 561
public procurement 432–5, 442–4, 445–6
R&D 428, 431, 436, 439, 441
research and standardisation 428–30, 440, 444
summary and outlook 444–6
technology transfer 423, 428–9
transaction costs 426, 427, 431, 435
types of standards 425–7, 446
start-up subsidy programme (Germany) 143
State/Industry–University Cooperative Research Centers Program (US) 257
STEPPIN project (EU) 442
Sternberg, R. 203, 209
Steurs, G. 93
Stewart, L. A. 453, 473
STI (science, technology and innovation) policies 232–6, 330–31, 487, 495, 511, 523, 548
Stie, E. 341
Stock, J. 251
Stoneman, P. 331
Storey, D. J. 140–41, 155
Strandbakken, P. 341
strategic complementarity 513
strategic networks (network type) 287
Streitwieser, M. L. 462
strengthening systemic capabilities and complementarities (policy goal) 11, 544, 546–7, 558–9
Strobl, E. 78, 99
Subramanian, V. 464
Sunley, P. 197, 199
supply- and demand-side policies classification of policy instruments 10–11, 444
cluster policy 11
collaboration support policies 11
direct support to R&D and innovation 11, 54
effectiveness of policy instruments 544–5
entrepreneurship policy 11
fiscal incentives for R&D 11
innovation inducement prizes 11, 411–12
innovation networks 11
policy mix 515, 516, 518, 520, 524–7, 529–30, 533, 534
pre-commercial procurement 11, 383, 385
public procurement of innovation 11, 355, 356–7, 360, 361–2, 377
regulation 11
skill formation policies 11
technology and innovation advisory services 11
technology foresight 11
supply chain networks (network type) 287
sustainable construction 524–5
Svensson, R. 105
Swann, G. M. P. 425–6, 437–8
Swann, P. 198–9, 454
Sweden
cluster policy 204, 213, 214, 215, 218, 236, 238
direct support to R&D and innovation 79, 94, 105
entrepreneurship policy 142–3, 150, 156
innovation networks 285
policy mix 527, 529–30, 531–2, 536, 538
private demand for innovation 344
public procurement of innovation 359
technology foresight 499
Switzerland 22, 148–9, 363
system failures
fiscal incentives for R&D 46
innovation networks 282–3
private demand for innovation 318, 327, 328–30, 335, 345, 348
public procurement of innovation 360
supply-side policies 544
technology foresight 485, 486, 492, 496, 501
Taiwan 76, 80, 81, 99, 104, 107, 174
Tamasy, C. 153
target groups
classification of policy instruments 10
effectiveness of policy instruments 545, 549, 552, 555
generating innovation 3
innovation networks 288
policy mix 512, 524, 530, 535–6, 538
public procurement of innovation 361–2
sociological view of policy instruments 7–8
Tavoletti, E. 153
tax competition (methodological challenge to
evaluation of R&D tax incentives) 33
tax incentives/credits see fiscal incentives
for R&D
Taylor, M.R. 460–61
Taylor, M.Z. 466
Taymaz, E. 78, 101, 107
Tazelaar, K. 370
technological procurement 358
technology and innovation advisory services
anticipated impacts 170–72
applied technology centre services 168, 169, 174
business life cycles 165–6
dedicated field staff services 167, 168
defining 163–6
evaluations of 174–84
lessons and conclusions 184–6
measurement challenges 172–3
overview 162–7
performance measurement 172–3
policy goals 11, 546, 557–8
private consultants 164, 166–9, 177, 178, 181, 184–5
programme-level findings 182–3
programme logic model 170–72, 173, 178–82
rationales for 162, 163, 166–7
scope of literature 174–5
SMEs 161–3, 165, 166–70, 174–5, 176–7, 180, 182, 183–4, 185–6
supply- and demand-side policies 11
system-level findings 183–4
technology-oriented business services 167–9, 174
technology transfer 164, 167, 169
types of programmes 167–70
Technology Delphi foresight (Austria) 497
technology foresight
changing evaluation criteria 488–9
conceptual background 483–91
embedded foresight 488–9, 492, 498
follow-up activity 500
‘foresight as a policy instrument’ 484–5, 490
foresight definitions and motivations
483–6
‘foresight for/in policy’ 484–5, 490
generations framework 486–8
immediate, intermediate and ultimate impacts 501, 502
impact expectations 490–91
impacts on innovation policy 500–501
instrumental role of foresight 500
learning curve of 500
main findings and conclusion 501–3
national experiences and evaluations 491–500
policy goals 11, 548, 562–3
R&D 490, 495, 498, 499
rationales for 486–8, 489, 492
supply- and demand-side policies 11
systemic failure 485, 486, 492, 496, 501
‘Technology Foresight towards 2020’ (China) 493
technology lock-in 328–9
technology push 326, 327, 433, 525
Technology Strategy Board (UK) 389
technology transfer
collaboration support policies 240
innovation networks 281, 299, 301, 308, 314
standardisation and standards on
innovation 423, 428–9
technology and innovation advisory
services 164, 167, 169
technology-oriented business services 167–9, 174
Teirlinck, P. 256
Tekes (Finnish innovation agency) 62, 68, 80, 103, 498–9
telecommunications regulation 472
TEP (Hungarian Technology Foresight
Programme) 499–500
TFP (total factor productivity) 38, 80, 87, 221
Thompson, C. 195
Thune, T. 121
Thuriaux, B. 201
Tian, X. 455, 456
time (in policy mix) 508–10, 525–7, 531–2, 534–6, 538, 539
Tirole, J. 441
TLOs (technology licensing offices) 166
Toivanen, O. 78, 100, 105
TopCoder software contest 411, 415–16
trade-offs (in policy mix) 506, 508, 538–9
‘traditional functionalist’ perspectives on
policy instruments 7, 9
transaction costs 240, 265, 426, 427, 431, 435
TRLs (technology readiness levels) 21–2
trust 163, 216, 242, 258, 261, 265, 272, 299, 302, 308–9, 312, 313, 314
Tsagdis, D. 202, 203
TTGV Loan Programme (Turkey) 78, 82, 107
Tuerpitz, K. 341
Turkey 78, 82, 101, 107
Turok, I. 148
UI (university–industry) collaborations
120–23, 124

UK (United Kingdom)
cluster policy 198–9, 200, 213, 214, 215–16, 222, 223, 233, 236, 238
collaboration support policies 240, 242, 243–4, 246–8, 250, 252–3, 257–9, 260–61, 266
direct support to R&D and innovation 63, 65, 66–7, 69, 70, 76, 79–80, 82–3, 93, 94, 95, 104
entrepreneurship policy 129–30, 140–41, 145–8, 149–50, 152, 154, 156
fiscal incentives for R&D 23, 26, 40
innovation inducement prizes 403, 405, 407–10
innovation networks 284, 285, 286–8, 295, 304–5, 309
policy mix 512–13, 514, 520, 521, 533, 535
pre-commercial procurement 388, 389, 391, 398–9
regulation 454, 455, 465
skill formation policies 114, 115, 119, 120, 122
standardisation and standards on innovation 424, 435–6, 437–8, 439
technology and innovation advisory services 161, 162, 167, 168, 169–70, 174, 176–7, 178, 179–82, 183, 191–2
technology foresight 492–3
umbrellas (EUREKA instrument) 262
Un, A. 79, 105
UNDP (United Nations Development Programme) 403
United Nations 200

Universities/higher education
cluster policy 207, 216, 219
collaboration support policies 239, 241, 242, 245, 249, 252–3, 257, 266, 267, 268, 270–71
entrepreneurship policy 129, 137–9, 152–3, 155
innovation networks 280, 284–5, 294, 296, 304, 308, 314
policy mix 521
private demand for innovation 340
skill formation policies 108, 120–23, 124, 124
technology and innovation advisory services 165, 166–7, 170, 180, 184
Unneverh, L. J. 463
Urasima, K. 494
USA (United States of America)
cluster policy 198, 203, 204
collaboration support policies 239, 240, 251, 252–3, 257, 258, 259, 260, 264–5
direct support to R&D and innovation 77, 79, 80, 81, 82, 87, 98, 101, 102, 105–7
entrepreneurship policy 129, 144, 154, 156
fiscal incentives for R&D 26, 27, 33–4, 42, 44–5, 50
innovation inducement prizes 403, 405, 407–10, 412
‘mission-oriented’ policy 5–6
pre-commercial procurement 383, 384, 386–8, 389–400
private demand for innovation 337, 338, 340
public procurement of innovation 359, 364
regulation 454–6, 457–9, 461, 464, 465–8, 469–70, 471–2
standardisation and standards on innovation 440
technology and innovation advisory services 161, 162, 163, 165–6, 167, 168–70, 175, 176–7, 179, 180–82, 183, 184, 192–5
technology foresight 495–6
user characteristics (direct support to R&D and innovation) 59
user–producer interaction 322, 326–7, 329, 342, 347–8
Uyarra, E. 358

van der Linde, C. 460, 469
vand Pottelsberge de la Potterie, B. 75, 86, 99
van Reenen, J. 42
variety reduction (type of standard) 427
VC (venture capital) support 392, 395–6
Veen, G. van der 296
Venkataraman, S. 131
‘venture companies for tomorrow’ initiative (Switzerland) 148–9
Vermeulen, W. 335
Vernon, J. A. 470, 471
Vernon, J. M. 470
vertical joint ventures 258
vertical networking 281
Veugelers, R. 79, 105
Viladecans-Marsal, E. 217–18, 237
Vinnväxt programme (Sweden) 204, 213, 214, 215, 218, 236, 238
Vissoci, K. W. 464, 465
VLSI (very large-scale integrated circuit) project 264–5
Vollebergh, H. 334
volume-based R&D incentives 20–21, 33–4, 35, 36–9, 41, 42–3, 46, 47, 48, 50
<table>
<thead>
<tr>
<th>Index</th>
<th>587</th>
</tr>
</thead>
<tbody>
<tr>
<td>wage effect (methodological challenge to evaluation of R&D tax incentives)</td>
<td>32</td>
</tr>
<tr>
<td>Wallsten, S. J. 397–8</td>
<td></td>
</tr>
<tr>
<td>Walshe, K. 473</td>
<td></td>
</tr>
<tr>
<td>Walz, R. 324, 462</td>
<td></td>
</tr>
<tr>
<td>Warren, E. 473</td>
<td></td>
</tr>
<tr>
<td>Watanabe, C. 251</td>
<td></td>
</tr>
<tr>
<td>WBSO (Dutch tax incentive scheme) 20, 29, 36, 46, 48</td>
<td></td>
</tr>
<tr>
<td>Weber, M. 131</td>
<td></td>
</tr>
<tr>
<td>Wei, M. 412, 421</td>
<td></td>
</tr>
<tr>
<td>Well-being cluster (Finland) 214</td>
<td></td>
</tr>
<tr>
<td>West Midlands clusters (UK) 215–16, 222, 236, 238</td>
<td></td>
</tr>
<tr>
<td>Westmore, B. 28, 29, 30, 41, 514</td>
<td></td>
</tr>
<tr>
<td>‘What Works?’ centres (UK) 2</td>
<td></td>
</tr>
<tr>
<td>Whitford, J. 183, 194</td>
<td></td>
</tr>
<tr>
<td>Wial, H. 180, 192</td>
<td></td>
</tr>
<tr>
<td>Williams, H. 404–5, 406, 412, 421</td>
<td></td>
</tr>
<tr>
<td>Wilson, D. J. 33, 44</td>
<td></td>
</tr>
<tr>
<td>Wilson, P. 412, 413, 422</td>
<td></td>
</tr>
<tr>
<td>Wilson, T. 242, 258–9</td>
<td></td>
</tr>
<tr>
<td>Wintjes, R. 196, 205</td>
<td></td>
</tr>
<tr>
<td>Wood Wisdom cluster (Finland) 214</td>
<td></td>
</tr>
<tr>
<td>workers’ health and safety protection 460, 462–3</td>
<td></td>
</tr>
<tr>
<td>World Bank 200</td>
<td></td>
</tr>
<tr>
<td>World Business Environment Survey 118</td>
<td></td>
</tr>
<tr>
<td>Wren, C. 140–41</td>
<td></td>
</tr>
<tr>
<td>Wright, B. D. 406</td>
<td></td>
</tr>
<tr>
<td>Wright, J. D. 455</td>
<td></td>
</tr>
<tr>
<td>Wrubel, R. P. 470</td>
<td></td>
</tr>
<tr>
<td>WTO (World Trade Organization) 389</td>
<td></td>
</tr>
<tr>
<td>Yorkshire clusters (UK) 214, 215, 216, 222, 223, 236, 238</td>
<td></td>
</tr>
<tr>
<td>Youtie, J. 179, 183, 194, 195</td>
<td></td>
</tr>
<tr>
<td>Zabala-Iturriagagoitia, J. M. 383</td>
<td></td>
</tr>
<tr>
<td>Zhu, P. 71, 75, 101, 514</td>
<td></td>
</tr>
<tr>
<td>Zi, A. 429</td>
<td></td>
</tr>
<tr>
<td>Zients, J. D. 406</td>
<td></td>
</tr>
<tr>
<td>ZIM Programme (Germany) 67, 70, 95</td>
<td></td>
</tr>
<tr>
<td>Zimmermann, J. –B. 294</td>
<td></td>
</tr>
<tr>
<td>Zloczysti, P. 437</td>
<td></td>
</tr>
</tbody>
</table>
‘This is a highly important and timely Handbook. Innovation is of growing importance for future growth and wellbeing, as the foundation for new businesses, jobs and productivity growth, to help address climate change and other global challenges, and as a way to improving public services. But we still know too little about what drives innovation, and which policies can make innovation work. This Handbook is an important effort to fill this gap. It provides a systematic analysis of the evidence on a wide range of innovation policy instruments, ranging from fiscal incentives to R&D, to cluster policies, to pre-commercial procurement. It also explores the various policy rationales that underpin innovation policies and provides practical examples of a wide range of policies. The Handbook will be a highly valuable reference for academics and policy makers alike, in OECD countries and beyond. It will certainly be a key source for the work of the OECD on innovation and innovation policy, and will hopefully be the start of further work to strengthen the evidence base for innovation policies.’

Dirk Pilat, OECD Directorate for Science, Technology & Industry

‘Much more than a “handbook”, this volume reviews what we have learned over 30 years of innovation policy and synthesizes the lessons into action. The timing could not be more crucial: academics, policy makers, politicians, stakeholders and evaluators increasingly ask the question of “what works?” when it comes to innovation policy. The demand for innovation policy to deliver more growth, better competitiveness, and improved public services is growing. This Handbook sets the standard for learning in innovation policy, as it brings together and analyses the existing evidence on the full range of innovation policy measures. Analysis is at the core of the approach taken by the authors and editors, reporting on the breadth and quality of the underlying evidence. Its major merit lies in conceptualizing innovation policy in ways that appeal to many stakeholders. The Handbook is not just cheerleading for innovation – it takes a critical stance on the meaning of context, the shortcomings of some existing evidence and methods, and the conditions and limits of policy interventions. It is a breakthrough in the literature on impact of innovation policy, of highest possible value to academics, evaluators, and policy makers who are making the tough decisions about the future of competitiveness and innovation.’

Caroline S. Wagner, The Ohio State University, USA and Editor of Science and Public Policy

‘Business, media and policy makers all increasingly emphasise innovation as a source of economic development and as a mean to tackle social challenges that arise. As a consequence the question of how public policy can stimulate innovation has received more attention, and a number of different policy instruments – and combinations of these – have emerged and also tried out in practice. This book, written by a highly qualified team of experts from the Manchester Institute of Innovation Research and a number of leading scholars from other organisations, addresses the question of what is known about the effects of innovation policy, i.e., what works under which circumstances and why. For this purpose fifteen different types of innovation policy, ranging from, for example, R&D subsidies via public procurement to regulation and technology foresight, are distinguished and almost 600 previous evaluations of various aspects of innovation policy consulted. The interaction of different policies, e.g., the policy mix, is also considered. The highly authoritative volume offers a unique overview and synthesis of the available knowledge on innovation policy impacts. It will be indispensable reading for scholars as well as policy makers interested in this relatively new and rapidly growing field of public policy.’

Jan Fagerberg, University of Oslo, Norway