Index

Titles of publications are in *italics*.

Abbreviations used in the index include:
CE (choice experiment)
CV (contingent valuation)
WTP (willingness to pay)

abatement cost approach, externality valuation, electric power sector 150, 159–60
abstraction of water by agriculture 422
accessibility attributes of housing 369–70
and property prices 381
accounting adjustments, agricultural assets 412–13
accounts, environmental, agriculture 409–31
acidification, water, effects of forestry 24–5
Ackerman, F. 3
adjusted net saving rate 410–11
afforestation, see forestry
aggregation
beach improvement benefits 358–9
environmental impacts of agriculture 419–21
eutrophication prevention benefits 333–4
and forestry valuation 29–30, 44–5
of water data to hydrological units 438–41
WTP for water quality improvements, River Thames 306–7
agriculture
environmental accounting 409–31
environmental assets 411–14
land 412–13, 426–8
environmental impact 412–13
on air 424–5
on soil 425–6
on water 421–4
waste 428–9
Agriculture in the United Kingdom 409–10
air pollution, agricultural impacts 424–5
Allott, N. 24
Alvarez-Farizo, B. 184
anthropocentric concerns and biodiversity valuation 58–9
archaeology valuation and forestry, Ireland 28
Asthana, A.N. 277
atmospheric pollution, agricultural impacts 424–5
attribute selection, choice experiments
beaches 346–7
order significance 203–4
sewage overflow reduction 295–6
wind power 188–91
avoided-cost-of-compliance approach, carbon sequestration valuation 21
Barrow, P. 23
baseline, environmental accounting 414, 416
Bateman, I. 42, 46, 79
bathing water improvement
benefits 260
choice experiment 345–59
economic valuation, NL 134–5

449
WTP 139, 310
see also beach quality
beach quality
attributes 346–7
choice experiment 346–59
public attitudes 352–3
see also bathing water improvement
Bell, K. 398, 400
benefit transfer 152–3, 417
and Environmental Agency 270–71, 287
problems 7–8, 287
benefits
EC bathing water quality standards 343–61
eutrophication prevention 321
transmission towers replacement 235–6
see also cost–benefit analysis;
williness to pay
Benefits Assessment Guidance (BAG) 254–5, 287
Benllech, bathing water improvement benefits 260
Bennett, J. 277
Bergland, O. 30, 287
Bergmann, A. 169
Bernow, S. 151
biodiversity
and agriculture 427
concepts 56–9
public understanding of 52, 56, 58
valuation 50–75
farmland 56–74
forests 25–6, 43
studies 52–6
water-related 136–7, 139
birds, farmland, economic value 428
Bockstael, N.E. 398, 400
bottom-up damage cost approach 151, 159
Boyer, J. 89
Brainard, J. 42
Brennan, M. 24
Brouwer, R. 105, 106, 287
Brown, G. 26
Burrell, A. 105
Byrnes, B. 183
Cambridgeshire, biodiversity valuation 59–74
Cannell, M. 42
CARBMOD model, carbon sequestration 22
carbon dioxide emissions, external cost estimates 167
carbon sequestration valuation 21–2, 42–3
Carlsson, F. 204
CBA, see cost–benefit analysis
certainty equivalent discount rate (CER) 80–83, 86–8, 93
Chern, W. 98
Chichilnisky, G. 83–4
choice experiments 184–7
and attribute order 203–4
bathing water quality 345–59
farmland biodiversity valuation 59, 61–3, 64–8
hydropower 171–4
limitations 203–6
wind power 187–206
WTP to reduce sewage overflows 295–313
choice modelling 241–4
urban green space 244–50
choice set construction, WTP to reduce sewage overflows 298–9
choices to be made (CTBM) schemes, water quality 286–90
Chow test and hedonic price functions, property submarkets 386
citizen preferences and economic value 4
Clarkson, R. 42
climate change
policy and declining discount rates 86–9
and water quality 319
Clinch, J.P. 31
Clumber Park SSSI, water quality benefits 258
cluster analysis, property submarkets 385–6
CO₂ emissions, external cost estimates 167
coastal water quality, agricultural impact 421
Coillte 20
Index

Collet, M.E.W. 23
combined sewer overflows (CSOs) 293–4
community stability as benefit of forestry 27–8
compliance costs, eutrophication prevention 320
construct validity 309
contaminated sediment clean-up economic evaluation 136–7
WTP 139
content validity; benefit estimates, Thames Tideway study 307, 309
contingent valuation eutrophication prevention 322–34
farmland biodiversity 59, 63–4, 68–71
measuring visual disamenity of HVTLs 213–33
WTP for sewage clean-up 311
convergent validity, Thames Tideway study 309–11
COROP areas, NL, hydro-economic data 440
cost attribute, wind power choice experiment 190–91
cost–benefit analysis alternatives 3–6
eutrophication prevention 317–35
forestry policy
Ireland 17–33
UK 45–6
Thames sewage overflow improvements 314
transmission tower replacement 234–6, 237–8
water quality improvements 262–71
cost–effectiveness analysis costs
agricultural air pollution 424–5
agricultural soil erosion 425–6
EC bathing water quality standards 343
eutrophication prevention 320–21
of public funds, afforestation, Ireland 28–9
replacing transmission towers 234–5
see also cost–benefit analysis

Crabtree, J.R. 40, 41
Craig, S. 41, 54
CTBM (choices to be made) water quality 286–90
customer preferences, service level changes, Yorkshire Water 278–86
damage-avoided approach, carbon sequestration valuation 21
damage cost approach, externality valuation, power sector 150–51
Dasgupta, P. 78
declining discount rates (DDRs) 77–92
and climate change policy 86–9
and sustainability 83–6
and uncertainty 79–83
DEFRA, environmental accounting 409–10
Desvousges, W.H. 140
devolution, UK forestry policy 36–7
Dewar, R.C. 42
Deyes, K. 42
dichotomous choice methods for WTP elicitation 323–4
differentiated goods, housing 364–5
direct costs, eutrophication prevention 321
direct valuation of externalities 151–2
discounting 77–92
impact on social cost of carbon 88–9
problems with 78
and UK climate change policy 56–9
distance-decay effects, BAG 287
distance from pylons and WTP for underground HVTL 230–33, 237
downscaling, environmental and economic data, water accounts 438–41
drinking water treatment, costs of agricultural emissions 423
Dublin, urban green space, choice modelling 244–50
Duff, E. 54
economic appraisal techniques, water quality 253–4
economic valuation, see valuation
economic value 1–7
criticisms of 2–7
water use in river basins, NL 441–3
ecosystem benefits of water quality 257–9
ecosystem valuation 54–5, 73–4
eftec 310, 421, 422
Ek, K. 169
electric power, environmental externalities 148–53
and energy policy-making 163–76
studies 153–62
emissions, airborne, from agriculture 424–5
emissions accounts, NAMWARiB 436–7, 442–3
energy policy making, externality valuation 163–76
England Forestry Strategy 37
Environment Agency
and water quality benefit assessment 252–71, 286–90
environmental accounts, agriculture 409–31
environmental assets, agriculture 411–14
environmental attributes of housing 372–4
environmental choices to be made (CBTM) schemes, water quality 286–90
environmental externalities in electric power sector 148–53
and energy policy-making 163–75
studies 153–62
hydropower, Sweden 171–4
environmental impacts
agriculture 412–13, 421–6
eutrophication 318–20
wind power, Sweden, 181–207
Environmental Land Features (ELF) model 426
environmental policy determination and externalities, energy sector 174–5
environmental tax policy and externalities 164–7
equilibrium hedonic price schedule, property markets 365–6
EU
Urban Waste Water Treatment Directive (UWWT) 320
Water Framework Directive, see Water Framework Directive
European Bathing Water Directive, valuations of revisions 343–61
eutrophication 317–35
cost–benefit analysis 321–35
freshwater ecology problems 318–20
prevention costs 320–21
public awareness 327–8
WTP 328–34
Evans, E. 425
expectations-based validity, water quality improvements 311–13
externalities, see environmental externalities
ExternE project 159, 175
greenhouse gas cost estimates 164
factor analysis of neighbourhood attributes 374–8
farmland
birds, economic value 428
as environmental asset 412–13, 426–8
woodlands, valuation 427–8
fish restocking costs of agricultural water pollution 423
Fisher, A.C. 78
flooding risks and agriculture 423–4
flow level improvements, public WTP 277, 288
Foresight, Future Flooding 423–4
forest policy
cost–benefit analysis
Ireland 17–33
UK 45–6
and government subsidies 30–31
Ireland 15–33
UK 36–47
forestry
and biodiversity conservation 43
and community stability 27–8
and EU Water Framework Directive 46–7
and landscape valuation 41–2
and water supplies 23–5, 44
Forestry Commission 36
Foster, V. 428
<table>
<thead>
<tr>
<th>Index</th>
<th>453</th>
</tr>
</thead>
<tbody>
<tr>
<td>Framework for Environmental Accounts for Agriculture, A</td>
<td>429</td>
</tr>
<tr>
<td>Franks, J.R.</td>
<td>53</td>
</tr>
<tr>
<td>freshwater eutrophication, see eutrophication</td>
<td></td>
</tr>
<tr>
<td>Frisian Lake District</td>
<td></td>
</tr>
<tr>
<td>economic valuation of ecological improvement</td>
<td>133–4</td>
</tr>
<tr>
<td>WTP for ecological rehabilitation</td>
<td>140</td>
</tr>
<tr>
<td>Garrod, G.D.</td>
<td>41, 43, 53, 55, 152, 267, 277</td>
</tr>
<tr>
<td>generalized moments (GM) estimator</td>
<td>398, 400</td>
</tr>
<tr>
<td>property markets, Glasgow</td>
<td>400–403</td>
</tr>
<tr>
<td>genetic diversity valuation studies</td>
<td>53</td>
</tr>
<tr>
<td>genetically modified food, valuation of perceived risk</td>
<td>97–123</td>
</tr>
<tr>
<td>genuine net saving rate</td>
<td>410–11</td>
</tr>
<tr>
<td>Georgiou, S.</td>
<td>267, 421</td>
</tr>
<tr>
<td>GIS</td>
<td></td>
</tr>
<tr>
<td>and property data compilation</td>
<td>368–74</td>
</tr>
<tr>
<td>and road traffic noise estimation</td>
<td>372–3</td>
</tr>
<tr>
<td>Glasgow, property submarkets</td>
<td>378, 381–96</td>
</tr>
<tr>
<td>global climate change</td>
<td></td>
</tr>
<tr>
<td>declining discount rate</td>
<td>83</td>
</tr>
<tr>
<td>effect on water quality</td>
<td>319</td>
</tr>
<tr>
<td>Goldman, C.R.</td>
<td>319</td>
</tr>
<tr>
<td>Gollier, C.</td>
<td>79, 81, 83</td>
</tr>
<tr>
<td>Gordon, J.</td>
<td>277</td>
</tr>
<tr>
<td>government subsidies, afforestation</td>
<td>28–9, 30–31</td>
</tr>
<tr>
<td>green accounting, agriculture</td>
<td>409–31</td>
</tr>
<tr>
<td>green power, see renewable energy</td>
<td></td>
</tr>
<tr>
<td>green space, urban, choice modelling</td>
<td></td>
</tr>
<tr>
<td>valuation</td>
<td>244–50</td>
</tr>
<tr>
<td>greenhouse gas emission, agriculture</td>
<td>425</td>
</tr>
<tr>
<td>Greenspace study</td>
<td>245–50</td>
</tr>
<tr>
<td>Groom, B.</td>
<td>83</td>
</tr>
<tr>
<td>groundwater benefits of water quality</td>
<td>261</td>
</tr>
<tr>
<td>grouping attribute, wind power choice experiment</td>
<td>190</td>
</tr>
<tr>
<td>habitat valuation</td>
<td>53–4, 73</td>
</tr>
<tr>
<td>Haider, W.</td>
<td>277</td>
</tr>
<tr>
<td>Hammack, J.</td>
<td>26</td>
</tr>
<tr>
<td>Handbook on Integrated Environmental and Economic Water Accounting</td>
<td>435</td>
</tr>
<tr>
<td>Hanemann, W.M.</td>
<td>26</td>
</tr>
<tr>
<td>Hanley, N.</td>
<td>41, 43, 54, 143, 184, 288</td>
</tr>
<tr>
<td>Hartridge, O.</td>
<td>424</td>
</tr>
<tr>
<td>Harvey, D.</td>
<td>39</td>
</tr>
<tr>
<td>health benefits, afforestation</td>
<td>44–5</td>
</tr>
<tr>
<td>health risks, bathing water</td>
<td>353–4, 359</td>
</tr>
<tr>
<td>WTP for improvements</td>
<td>360</td>
</tr>
<tr>
<td>hedonic price function, property</td>
<td>363, 365–404</td>
</tr>
<tr>
<td>and road traffic noise</td>
<td>372, 395, 402–3</td>
</tr>
<tr>
<td>spatial regression</td>
<td>396–403</td>
</tr>
<tr>
<td>hedonic price theory</td>
<td>364–6</td>
</tr>
<tr>
<td>height attribute, wind power choice experiment</td>
<td>189–90</td>
</tr>
<tr>
<td>Heinzerling, L.</td>
<td>3</td>
</tr>
<tr>
<td>Henderson, N.</td>
<td>79</td>
</tr>
<tr>
<td>Hensher, D.</td>
<td>277</td>
</tr>
<tr>
<td>hierarchical methods, cluster analysis</td>
<td>385–6</td>
</tr>
<tr>
<td>high-voltage transmission lines, valuation of visual disamenity</td>
<td>213–38</td>
</tr>
<tr>
<td>design preferences</td>
<td>215–19</td>
</tr>
<tr>
<td>Hohmeyer, O.</td>
<td>168</td>
</tr>
<tr>
<td>Honohan, P.</td>
<td>19</td>
</tr>
<tr>
<td>Horne, A.J.</td>
<td>319</td>
</tr>
<tr>
<td>hydro-economic accounting system, NL</td>
<td>435–46</td>
</tr>
<tr>
<td>hydropower, Sweden, environmental externalities</td>
<td>171–4</td>
</tr>
<tr>
<td>illness through bathing</td>
<td>353–4</td>
</tr>
<tr>
<td>implicit price function, property</td>
<td>365–6</td>
</tr>
<tr>
<td>traffic noise</td>
<td>395</td>
</tr>
<tr>
<td>independent valuation summation (IVS)</td>
<td>29</td>
</tr>
<tr>
<td>and CTBM schemes</td>
<td>287–8</td>
</tr>
<tr>
<td>indirect valuation of externalities</td>
<td>152</td>
</tr>
<tr>
<td>Integrated Environmental and Economic Water Accounting, Handbook on</td>
<td>435</td>
</tr>
<tr>
<td>integrated water accounting</td>
<td>435–46</td>
</tr>
<tr>
<td>intergenerational equity and declining discount rate</td>
<td>83–4</td>
</tr>
</tbody>
</table>
intrinsic value, environmental assets 4–5
Ireland
 forest policy valuation 15–33
 urban green space, choice modelling 244–50
irreplaceability, environmental assets 5–6
IVS, see independent valuation summation
Joskow, P.L. 159
journey time and urban green space valuation 248–9
Kelejian, H.H. 400
Krewitt, W. 162, 167, 175
Krutilla, J. 78
labour, shadow pricing 19, 39
Laird, S. 53
Lancaster, K.J. 241, 275
land
 agricultural, see farmland
 as environmental asset 426–8
 shadow pricing 18–19, 39
landscape benefits of forestry 41–2
Lee, R. 168
lexicographic behaviour in choice experiments 204, 206
Li, C.Z. 84, 85–6
location attribute, wind power choice experiment 189
Löfgren, K.-G. 84, 85–6
Loomis, J.B. 55
Louviere, J. 64, 241
Lovett, A. 42
MacDonald, D.H. 278
Machado, F. 347
Macmillan, D.C. 45, 53, 54, 55
mains sewer connection, WTP 310
market data, environmental impacts 417
market segmentation, property 378, 381–95
Martinsson, P. 204
McFadden, D. 242
McMahon, P. 310
meta-analysis 8
stated preference studies, GM foods 97–123
Michaels, R.G. 392
Milner, N.J. 23
Mimram River, WTP for flow improvement 288
monetization
 environmental accounts for agriculture 409–10
 externalities 151–3
 mortality impacts 165–6
mortality impacts, valuation 165–6
Mourato, S. 347
multi-variate analysis, WTP and GM food 117–22, 123
NAMWARiB (National Accounting Matrix including Water Accounts for River Basins) 435–46
analysis of water content 443
analysis of water use 442
structure 436–8
National Environment Programme 253
negative WTP, electricity transmission lines tower designs 227–30, 237
neighbourhood attributes of housing 370–72
 factor analysis 374–8
nested logit estimation, bathing water quality 354–6
Netherlands
 integrated water accounting 435–46
 river basin districts, hydroeconomic data 438–41
valuing water quality changes 132–46
Newell, R. 83, 86–8, 89
NIMBY phenomenon, wind power 183–4
nitrates, removal costs from water 423
noise
 aircraft 373
 traffic, hedonic price analysis 372, 395, 402–3
noise attribute, wind power choice experiment 190
non-market environmental benefits, sewage overflow improvements 314
Index

non-market values of environmental impacts 417
non-monetized benefits of water quality improvements 261–2
Nordhaus, W.D. 89
Northumberland, biodiversity valuation 59–74
Nunes, P.A.L.D. 53
nutrient enrichment, freshwater, see eutrophication
offset approach, carbon sequestration valuation 21
OFWAT, water assessment policy 252–3
one-and-one-half bound (OOHB) method, WTP elicitation 323–4
open ended (OE) WTP elicitation method 140
Park, A. 15
partitioning methods, cluster analysis 385
Pearce, D.W. 15, 38, 39, 42, 47, 51, 150, 163, 424
peat soils, sequestration effect of forests 22
perfect substitution of environmental assets 6
pesticides, removal costs from water 423
phosphates, removal costs from water 423
phosphorous concentration, freshwater 318–19
WTP for removal 330–33
Pigou, A. 78
Pizer, W. 83, 86–8, 89
policy, energy, and externality valuation 163–76
pollution data, NAMWARiB 445
pollution, water
agricultural 421, 422–3
costs, forestry 25
population growth, effect on water quality 319–20
Pouta, E. 55
PR04 (4th Periodic Review of the water industry) 253
environmental benefits 256–71
predicted rate of illness through bathing 353
Pretty, J.N. 320–21, 423, 425
Price, C. 22
pricing, carbon sequestration of forests 42–3
Prins, R. 15
property prices and afforestation 41
hedonic price analysis 363–404
protest bidders 141, 143
proximity to pylons and WTP for underground HVTL 230–33, 237
Prucha, I.R. 400
public attitudes to afforestation, Ireland 26–7
to green electricity 183–4
to wind power 183–4
public awareness of biodiversity 52, 56, 58
eutrophication 327–8
of green power, role of externality assessment 169–74
of Thames river quality 302–3
public forestry estates, cost–benefit analysis 45–6
public funds, see subsidies
public willingness to pay, see willingness to pay
quasi option value 6
Randall, A. 29
random utility model (RUM) 242
and water service evaluation 274–86
rarity and biodiversity valuation 58–9, 72–3
Rasbash, J. 117
Rasid, H. 277
recreation benefits forests 25–7, 40–41
of water quality improvements 259–60
regeneration benefits of water quality improvements 261
regional economic accounts and water flow data, NL 439–41
renewable energy promotion, role of externalities 167–9
public attitudes to 183–4
residents, benefits from water quality improvements 260
residual maximum likelihood (REML) multi-variate analysis, GM food WTP 117–22
resource depletion as externality 168
resource function of environmental assets 411, 412
revealed preference and stated preference methods 243–4, 249–50
Rickertsen, K. 98
river basins
 economic and water flow data, NL 438–41
 indicators 441–3
rivers
 agricultural impact 422–3
 flow level improvements, WTP 277, 288
road traffic noise, effect on property prices 372, 395–403
Roper, C. 15
Rosen, S. 275
Sagoff, M. 4
sample self-selection, CV survey, eutrophication prevention 325–6, 334
scaling in integrated water accounting 438–41
Scarpa, R. 40
Schleisner, L. 166
Scotland, timber production valuation 39–40
Scottish Forestry Strategy 37
SDR (Social Discount Rate) 77
sediment clean-up economic valuation 136–7
WTP 139
self-assessed rate of sickness through bathing 353–4
self-selection bias, CV survey, eutrophication prevention 325–6, 334
service function of environmental assets 412
service level changes, customer preferences, Yorkshire Water 278–86
service performance evaluation, water companies 277–8
sewage problem, Thames Tideway 293–4
stated preferences study 294–315
WTP for litter elimination 310–11
shadow pricing
 labour 19, 39
 land 18–19, 39
sickness through bathing 353–4
sink function of environmental assets 411, 412
Smith, V.K. 392
social cost of carbon, effect of discounting 88–9
Social Discount Rate (SDR) 77
socio-economic characteristics and customer preferences, water quality 284
soil erosion, agricultural impacts 425–6
Spain, public preferences, environmental impacts of wind power 184
Spash, C.L. 143
spatial error dependence model 397–8
spatial hedonic regression 396–403
species diversity valuation studies 53
SSSIs, economic value 427
state-space model 86–8
stated choice analysis, water services 282–4
stated choice theory 275–6
 and water supply 276–8
stated preference studies
 bathing water quality 344–61
 GM food 97–123
 river water quality improvement 310
 urban green space 244–50
see also choice experiments
stated preference valuation 51–2
validity of 141–4
water quality 132–46
Stretton, C. 23
strong sustainability 6
structural attributes of housing 368–9
 and property prices 381
submarkets, property, Glasgow 381–96
Index

subsidies and environmental accounts 414
forestry, Ireland 28–9, 30–31
substitutes, environmental assets 5–6
Sundqvist, T. 159, 162, 169
sustainability in agriculture 410–11
and declining discount rate 83–4
Swales, C. 44
Sweden environmental externalities of hydropower 171–4
wind power, public preferences 181–2, 187–207
task complexity and choice experiments 203–4
tax policy, environmental, and externalities 164–7
taxation and biodiversity valuation 63
ten Kate, K. 53
Thames Tideway, sewage problem 293–4
stated preference study 294–315
Tiao–Goldberger test 392–5
Tideway Strategy study 294–315
timber value of forestry 20–21, 38–40
top-down damage cost approach 151, 160–61
total economic value, Irish Forestry Plan 17–29
trade-offs and economic values 2–3
transferability of biodiversity CE results 74
UK Climate Change Programme 42
climate change policy and declining discount rate 86–9
forestry policy 36–47
power transmission lines, visual disamenity valuation 213–38
water quality benefit assessment 252–71
uncertainty and DDRs 79–83
undergrounding electricity transmission lines, WTP 219–20, 222–3, 227, 230–33
upscaling, environmental and economic data, water accounts 438–41
urban green space, choice modelling 244–50
Urban Waste Water Treatment Directive (UWWT) 320
validity testing, benefit estimates, Thames Tideway study 307, 309–13
valuation biodiversity, see biodiversity valuation
carbon sequestration 21–2
eutrophication prevention 328–33
forestry plan, Ireland 17–29
land 426–8
mortality impacts 165–6
SSSIs 427
water quality, NL 132–46
see also cost–benefit analysis;
willfulness to pay
value of a statistical life (VOSL) 165–6
value transfer problems 7–8
van den Bergh, J.C.M. 53
Varallo, P. 23
visual attraction of woodlands, public preferences 41–2
visual disamenity valuation, high-voltage transmission lines 213–38
VOSL (value of a statistical life) 165–6
Wald test, hedonic price functions, property submarkets 389
waste, agricultural 428–9
wastewater analysis, NAMWARiB 442–3
water accounting 435–46
water availability, agricultural impact 422, 423–4
water companies, service performance evaluation 277–8
Yorkshire Water customer preferences 278–86
water flow accounts, NAMWARiB 437
Water Framework Directive (WFD) 320
and forestry 46–7
and water quality valuation 135–6
water pollution
agriculture 421, 422–3
forestry 25
Index

water quality
 benefit assessment 252–71
 impact of agriculture 421, 422–3
 impact of forestry 24–5, 44
 stated preference valuation 132–46
 and Water Framework Directive 135–6
 WTP 137, 139–41
water services, see water companies
water stocks accounts, NAMWARiB 437–8
water supply
 impact of forestry 23–5, 44
 and stated choice theory 276–8
water use
 accounts, NAMWARiB 437
 in river basins, NL, economic significance 442–3
weak sustainability 6
Weitzman, M. 78, 79–83
Wensum River, water quality benefits 258–9
WFD, see Water Framework Directive 320
White, P.C.L. 53, 55
Whiteman, A. 23, 25
Wibe, S. 15
willingness to accept compensation,
 afforestation, Ireland 26–7
willingness to pay (WTP)
 access to woodlands 40–41
 afforestation, Ireland 26–7
 bathing water quality improvement 139, 310, 360
 beach attributes 310–11, 357–8
 biodiversity conservation 68–71, 139
 contaminated sediment clean-up 139
 eutrophication prevention 328–34
 Frisian lakes’ ecological rehabilitation 140
 and GM foods 98–123
 mains sewer connection 310
 sewage litter elimination 310–11
 transmission line tower alternatives 219–36
 water quality improvement
 NL 137–41
 River Thames 305–6, 313
 woodland view 41–2
Willis, K.G. 15, 40, 41, 42, 43, 44, 53, 55, 152, 267, 277, 427
Willis, R. 22
wind power, public attitudes to 181–4
 Sweden 181–2, 187–207
Wolsink, M. 183
Woodworth, G. 241
WTP, see willingness to pay
Years of Life Lost (YOLL) 165–6
Yorkshire Water, service level changes,
 customer preferences 278–86