Index

Adamowicz, Wiktor 33, 56, 99, 120, 155, 340, 342, 352, 388, 389
air pollution photo simulation 275
Ajzen, I. 140
Alavalapati, Janaki R. R. 340, 342
Alberini, A. 7, 162, 233, 246, 254, 255
Albert, J.H. 232
Aldy, Joseph E. 102
Allen, Frederick W. 395
altruism see double-counting
Alwin, Duane F. 173
Ames, R.E. 196
Anderson, Elizabeth 124
Anderson, S. 307
Andreoni, James 195
anglers, compensation see Green Bay FCAs study
Angrist, J.D. 55
annual-payment sensitivity 298–9
anomalous bids 133–5
see also laundering of preferences;
unexpected survey
answers/events
anti-social preferences 118, 123–4
see also autonomy v. paternalism
applications of CVM
passive-use benefits 294–5
recreation benefits 293–4
Araña, J. 232, 238
Arellano, M. 55, 57
Arrow, K. 20, 21, 51, 54, 249, 296, 320, 357, 403
Attias, L. 394
automated web pages see CGI
autonomy v. paternalism 125–8
see also laundering of preferences
Babb, Emerson M. 194
Bagnoli, M. 195, 196
Balistreri, E. 53
Banks, Jeffrey S. 199
Baron, Jonathan 121, 122, 403
Bateman, I.J. 7
Bayesian methods 234–5
Beattie, J. 403
Becker, G. 325
Ben-Akiva, M. 55, 157, 173, 388
benefit–cost analysis
CVM advantages 95–102
CVM challenges 102–10
CVM role 92–5, 111–12
examples 296–303
Bentham, Jeremy 136
Berger, J.O. 233
Berger, M. 324
Bergland, O. 237
Bergstrom, John C. 120, 134
Beron, K. 51
Berrens, R.P. 252, 270, 272
Berry, S. 7
Best, N. 238
bias see hypothetical bias; item non-
response bias; selection bias;
temporal bias
bid design 161–2
bidding game framework studies 12
Binka, F. 324
biodiversity 357
Bishop, R.C. 8, 17, 46, 56, 76, 180, 181, 185, 190, 211, 218, 249, 298, 299, 374
Bjornstad, David J. 66, 120, 188, 236
Blackburn, McKinley 189
Blair, Johnny 67
Blinder, A.S. 7
Blomquist, Glenn C. 102, 110, 112, 419
Blumenschein, Karen 103, 104, 190
Boardman, Anthony E. 92
Bockstael, N.E. 38, 56, 57
Bohara, Alok 192
Bohm, Peter 194
booklet construction 83–4
Boxall, P. 56
Boyle, Kevin J. 101, 120, 134, 162, 192, 208, 229, 298, 299
Bradburn, Norman 67
Bradley, M. 388
Breffle, W.S. 385, 388
Bromley, D. 138, 140
Brookshire, David S. 13, 52, 66, 180, 185, 187, 298
Brouwer, W. 324
Brown, Gardner M., Jr. 13, 293, 319, 320, 388, 389
Brown, Kelly 182
Brown, P. 136
brown studies 359, 365–7
Brown, Thomas C. 182, 193
Brussard, P. F. 423
Burtraw, D. 145

Calakmul, Mexico, study 340–52
California oil spill study (COS)
complementary analysis with PARV survey 41–6
CV question used 48–50
Cameron, Trudy Ann 7, 18, 30, 31, 40, 43, 53, 54, 99, 101, 102, 167, 246, 327, 388
see also Global Policy Survey
Carbondale, Illinois see Herrin, Illinois, THM removal study
Casey, James 172
CATT (computer-assisted telephone interview) software 67
CBA (cost–benefit analysis) see benefit–cost analysis
CERCLA (Comprehensive Environmental Response, Compensation and Liability Act, 1980) 295–6, 372
CGI (Common Gateway Interface) 273
Chambers, Catherine M. 112
Champ, Patricia A. 104, 182, 190, 295
Chang, L. 271, 272
Chapman, D.J. 57
cheap talk design 187–8
Chen, H.Z. 374, 388
Chestnut, L. 294
Chewning, Eugene 196
Chib, S. 232
choice experiment design 162
choice modeling (CM)
definitions 340–41
drawing conclusions 351–2
example data 163–5
experiment design/testing 344–5
implementation 346–7
model estimation 165–7
pre-information stage 343–4
pre-testing 345–6
results estimation 347–52
survey design 158–63, 191–3
theoretical basis 341–2
using model results 167–70
see also Green Bay FCAs study
choice models 153–4, 156–8
Cicchetti, C.J. 14
Ciriacy-Wantrup, S.V. 50
CJ (conjoint analysis) 31–3, 129, 154–6, 170–72
Clark, J. 135, 147
CM see choice modeling
Collier, Maribeth 196
commensurability 142, 144
Common Gateway Interface (CGI) 273
computer-assisted telephone interview (CATI) software 67
conjoint analysis (CJ) 31–3, 129, 154–6, 170–72
Connelly, N.A. 388
Conservation Research Program (CRP) 204–5
see also Environmental Benefits Index
conservative design (NOAA panel terminology) 211
contingent valuation questions, writing 74–7
contingent valuation scenario, writing 72–4
contractarian liberalism 136–7
contribution mechanism design 193–6
Cooper, J.C. 162, 233
Corso, P.S. 416
COS see California oil spill study
Cosset, S.R. 388
cost–benefit analysis (CBA) see benefit–cost analysis
Costanza, R. 135
Cotterill, R.W. 51
Couper, Mick P. 266, 281
Coursey, D. 187, 199, 320
Covello, Vincent T. 395
cover pages 83
covering letters 84
Crocker, T. 236, 311
Crocker, J. 58
Cropper, Maureen 329, 334, 336, 411, 416
CRP (Conservation Research Program) 204–5
see also Environmental Benefits Index
Culp, Gordon 394
Cuyler, A. 324
CV studies
determinants of study types 365–7
as source of complementary data 39–46
statics 358–63
triggers of demand for 38–9, 363–5
CVM (contingent valuation method)
attitudes toward 7–8
definitions 7, 154
discrete response CV 17–18
early efforts in 12–17
progress of 46–8, 421–3
and stationarity of values 36–8
Czaja, Ronald 67
Daily, G. 143
Dalecki, Michael G. 110
dam removals 301–3
see also hydropower tradeoffs
data collection, as an economic activity 9–11
data imputation 88–9, 134
Davey, Krishnakumar S. 173
Davies, Clarence 395
Davis, Douglas D. 179, 198
Davis, R.K. 12, 180, 293
Dawes, R. 195
Deaton, Angus 158
Desvouges, W.H. 13, 14, 17, 19, 20, 55, 208, 259, 298, 320, 379, 389, 397, 416, 418
Diamond, P.A. 19, 20, 21, 29, 51, 53, 112, 120, 134, 180
dichotomous choice models
and Bayesian methods 232–4, 245–6
modeling with follow up 238–43
previous studies use of Bayes’ rule 235–8
dichotomous choice questions 76–7, 154
Dickie, M. 181
Dillman, Don A. 67, 158, 163, 208, 218, 265
dis-aggregation/re-aggregation of
tenature 141–2
see also T&E (threatened and endangered species), ecosystem studies v. species studies
discrete response CV 17–18
disenfranchisement 120–22
double-bounded questions 76–7
double-counting 138, 140–41
Downing, M. 252
Dragun, A.K. 311
Duff, V.A. 57
Duffield, J. 298, 299, 300, 303
Dunford, R.W. 57
Dunning, Mark 294
duVair, P.H. 416
Ebert, U. 39, 40
EBI (Environmental Benefits Index) 205–7
economic valuation, rationale for 355–8
ecosystem-based management 423
ecosystem service-based management (ESM) 424–5
Edwards, Steven F. 102
effects coding 161
Ehrlich, P. 143
EIA (environmental impact assessment) laws 355
Ekstrand, E. 295, 298, 299
Elrod, Terry 173
embedding effects 133–4
endangered species see T&E
Endicott, D. 373
Englin, J. 30, 101, 102, 327
Environmental Benefits Index (EBI) 205–7
environmental impact assessment (EIA) laws 355
environmental v. non-environmental studies 360–61
environmental valuation 1–2
Eom, Y.S. 31
Epstein, R. 309
Eshed–Levy, D. 195
ESM (ecosystem service-based management) 424–5
ex ante design 187–9
ex post calibration 189–91
experiment design 160–61
experimental method 177–80
experiments, definitions 178
extra-welfarist perspectives 324
Exxon Valdez oil spill 1, 19, 296
Farber, S. 342, 424
FCAs (fish consumption advisories) 372–3
see also Green Bay FCAs study
Feather, N.T. 173
Feather, P. 207, 211, 225
federal agencies funding CVM 299
relying on CVM 295–6
Federal Energy Regulatory Commission (FERC), Kootenai Falls case 300–301
Feldman, M. 300
FERC (Federal Energy Regulatory Commission), Kootenai Falls case 300–301
Fernández, C. 232, 238
Fetherstonhaugh, D. 403
financial incentives, in surveys 11–12
Fiore, B.J. 388
Fischhoff, Baruch 403
fish consumption advisories (FCAs) 372–3
see also Green Bay FCAs study
Fisher, Ann 395
Fisher, Anthony C. 120
Flacco, Paul R. 102
flexibility, of CVM 97–9
Flores, N.E. 53
focus groups 78–9, 158–60
Folke, C. 135
Forsythe, Robert 198
Fox, John 189
Frechette, Kristin Shrader– 124
Freeman, A. Myrick 117, 336, 411
Freeman, R. 145
Gamerman, D. 241
Ghebreyesus, T. 327
Gibbard, Allan 198
Glen Canyon Dam 299–300
Global Policy Survey 269–70
Goeree, Jacob K. 195
Goldberger, A.A. 409
Gomes, M. 336
graded-pair comparison 155
Graham, J.D. 403, 414, 416
graphics, use of 266–9
see also air pollution photo simulation
grassland bird population study conclusions 226–8
data collection 218–20
design 207–17
modeling framework 217–18
and NOAA guidelines 208–11
overview 204–5
results 220–26
scenario design 211–16
tests of scope 216–17
Green, Colin 129
Green Bay FCAs study angler profile 378
combined revealed and stated preference model 384–6
see also joint estimation conclusion 387
damage to anglers 373–5
damages estimate 386–7
data collection 375–8
question design 378–84
scenario 372–3
green studies 359, 365–7
Greene, Joshu 403
Greenley, Douglas A. 100
Griner, Brian, Lower Allegheny watershed water quality survey 268–9
Grossman, M. 325
Groves, T. 193, 401
Grumbine, R.E. 423
Guzman, Rolando M. 108
Haab, T.C. 27, 103
Habermas, J. 146
Hammack, Judd 13, 293
Hammer, J. 336
Hammitt, J.K. 403, 414, 416
Hanley, N. 134, 144, 320
Hansen, LeRoy 205
Hansen, William 294
Harberger, A.C. 38
Harrington, W. 324
Harris Interactive (HI) 271–2
Harrison, G.W. 22, 34, 51, 189, 260
Hastings, W.K. 243
Hauber, A.B. 388
Hausman, A. 120
Hausman, J.A. 7, 20, 37, 51, 56, 57, 112, 134, 180
Heberlein, T.A. 8, 17, 46, 56, 76, 180, 181, 185, 249
Heckman, J.J. 51
Hensher, D.A. 340, 388
Herriges, J. 15, 233, 236, 237, 242, 246, 388
Herrin, Illinois, THM removal study
 conclusion 415–17
 construct validity 407–11
 discussion 413–15
 empirical results 404–7
 preliminary risk communication research 395–8
 scenario 394
 survey administration 404
 survey instrument structure 398–403
 value of a statistical life 411–13
 WTP sensitivity 403–4
Heyde, F. 138
HI (Harris Interactive) 271–2
Hines, J.R., Jr 56
Hoban, T.J. 252
Hoehn, John P. 104, 106, 107, 111, 320, 401
Holland, Alan 116, 120, 121, 122, 126
Holmes, Thomas P. 340, 342, 352
Holt, Charles A. 179, 195, 198
homegrown values 34–6
Horowitz, J.K. 182, 185, 237, 416
household production framework 157
Houthakker, H.S. 47
Hovis, J. 199
HTML editing 273
Huang, J.C. 18, 100
human dimensions research 249–50
Hutchinson, R. 388
hydropower tradeoffs 299–301
hypothetical bias 103–4, 181–4
 see also ex ante design; ex post calibration
hypothetical preferences
 definitions 116–17
 problems with 119–22
Imbens, G.W. 56, 57
implicit prices, calculation of 168–70
imputation see data imputation
in-person surveys 67–8
incomplete case analysis 88–9
induced–value experimental design 179
 see also experimental method
 internal consistency 184–7
internet access 265–6
internet based surveys
 Rain Forest Valuation Survey 275–80
 recent 266–72
internet data collection
 attractions of 265–6
 for CVM and conjoint analysis 280–83
 sampling 265–6, 271–2
 see also web page creation
Isaac, R. Mark 199
item non-response bias 88–9
ITNs (insecticide-treated bednets)
 study
 empirical analysis 330–35
 model/methodology 325–7
 policy implications 334–5
 prior studies 327
 scenario 324–5
 study site/research design 327–9
 WTP 333–4
Jakobsson, K.M. 311
Jakus, P.M. 327, 388
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johannesson, Magnus</td>
<td>190, 191</td>
<td></td>
</tr>
<tr>
<td>Johansson, Per-Olov</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Johnson, Bruce</td>
<td>90, 112</td>
<td></td>
</tr>
<tr>
<td>Johnson, F.R.</td>
<td>55, 56, 342, 343, 379, 389</td>
<td></td>
</tr>
<tr>
<td>joint estimation</td>
<td>29–31</td>
<td>see also Green Bay FCAs study, combined revealed and stated preference model</td>
</tr>
<tr>
<td>Jones–Lee, Michael W.</td>
<td>407</td>
<td></td>
</tr>
<tr>
<td>Jorgensen, B.</td>
<td>134, 135, 147</td>
<td></td>
</tr>
<tr>
<td>Just, R.</td>
<td>311</td>
<td></td>
</tr>
<tr>
<td>Kadane, J.B.</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>Kaeding, L.</td>
<td>307</td>
<td></td>
</tr>
<tr>
<td>Kagel, J.</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>Kahn, James R.</td>
<td>66, 116, 120</td>
<td></td>
</tr>
<tr>
<td>Kahn, M.</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Kahn, M.J.</td>
<td>329</td>
<td></td>
</tr>
<tr>
<td>Kahneman, Daniel</td>
<td>54, 105, 107, 134, 144, 185, 320, 403, 418</td>
<td></td>
</tr>
<tr>
<td>Kahn, J.F.</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Kalish, Shlomo</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>Kanninen, B.</td>
<td>7, 53, 134, 162, 254</td>
<td></td>
</tr>
<tr>
<td>Kant, I.</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Keeney, R.</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>Kerkvliet, J.</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Kim, Oliver</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>King, David A.</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>Kling, Catherine L.</td>
<td>58, 102, 388</td>
<td></td>
</tr>
<tr>
<td>KN (Knowledge Networks)</td>
<td>271–2</td>
<td></td>
</tr>
<tr>
<td>Knetsch, Jack L.</td>
<td>105, 134, 180, 185, 320, 403</td>
<td></td>
</tr>
<tr>
<td>Knowledge Networks (KN)</td>
<td>271–2</td>
<td></td>
</tr>
<tr>
<td>Knuth, B.</td>
<td>388</td>
<td></td>
</tr>
<tr>
<td>Kolstad, Charles D.</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Konradsen, F.</td>
<td>329</td>
<td></td>
</tr>
<tr>
<td>Koop, G.</td>
<td>232, 240</td>
<td></td>
</tr>
<tr>
<td>Koopmanschap, M.</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td>Kootenai Falls case</td>
<td>300–301</td>
<td></td>
</tr>
<tr>
<td>Kopp, Raymond J.</td>
<td>101, 125, 126</td>
<td></td>
</tr>
<tr>
<td>Kraft, M.</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Kragt, Alphons van de</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>Kramer, Randall A.</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td>Kriström, B.</td>
<td>315, 316, 319</td>
<td></td>
</tr>
<tr>
<td>Krosnick, J.A.</td>
<td>23, 173, 271, 272</td>
<td></td>
</tr>
<tr>
<td>Krueger, A.B.</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Krupnick, A.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Krutilla, J.</td>
<td>145, 294, 310</td>
<td></td>
</tr>
<tr>
<td>Kuffeld, Warren F.</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>LaFrance, J.T.</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Lancaster, Kelvin J.</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>Lancaster, T.</td>
<td>56, 57</td>
<td></td>
</tr>
<tr>
<td>Langford, I.H.</td>
<td>311</td>
<td></td>
</tr>
<tr>
<td>Larson, D.M.</td>
<td>30, 57, 102, 297, 298</td>
<td>see also Loomis and Larson, gray whale study</td>
</tr>
<tr>
<td>Lauber, Bruce</td>
<td>205, 212</td>
<td></td>
</tr>
<tr>
<td>laundering of preferences</td>
<td>118, 123–4</td>
<td>see also autonomy v. paternalism; protest bids</td>
</tr>
<tr>
<td>Laury, Susan K.</td>
<td>195, 196</td>
<td></td>
</tr>
<tr>
<td>Layton, D.F.</td>
<td>32, 388, 389</td>
<td></td>
</tr>
<tr>
<td>learning design</td>
<td>188–9</td>
<td></td>
</tr>
<tr>
<td>Ledyard, J.</td>
<td>193, 194, 195</td>
<td></td>
</tr>
<tr>
<td>Lee, S.T.</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Leeeworthy, V.R.</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Leik, Robert K.</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>León, C.J.</td>
<td>232, 237, 238, 247</td>
<td></td>
</tr>
<tr>
<td>Leon, J.</td>
<td>327</td>
<td></td>
</tr>
<tr>
<td>León, R.</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>Leonard, G.</td>
<td>246</td>
<td></td>
</tr>
<tr>
<td>Lerman, S.R.</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>Lesley, J.C.</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>Levy, D. Eshed–</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>List, J.</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>Locke, John</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Lockwood, M.</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>Loomis and Larson, gray whale study</td>
<td>297–8</td>
<td></td>
</tr>
<tr>
<td>low-budget surveys</td>
<td>89–90</td>
<td></td>
</tr>
<tr>
<td>low-level risks, communication of</td>
<td>395</td>
<td></td>
</tr>
<tr>
<td>see also Herrin, Illinois, THM removal study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Allegheny watershed water quality survey</td>
<td>268–9</td>
<td></td>
</tr>
<tr>
<td>Lower Fox River see Green Bay FCAs study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucking–Reilly, David</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>Lutz, J.</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Lyke, A.J.</td>
<td>101, 374, 388</td>
<td></td>
</tr>
</tbody>
</table>
Index

McClelland, W. 320
McConnell, K.E. 27, 38, 53, 55, 56, 57, 182, 185, 250, 252, 341
McCue, Kenneth F. 199
McDaniels, T. 146
McFadden, D. 106, 157, 165, 246, 340, 341, 388
McIsaac, M.J. 401, 414
Mack, R.P. 50
McKee, M. 195, 198
Mackenzie, Farmland Survey 266–7
McLeod, D.M. 237
MacNair, D. 56
Magat, W.A. 388, 389
mail surveys 67–8
Maisel, Richard 67
malaria 327–8, 329
Mäler, K.G. 56
Mangione, Thomas W. 67
Mannesto, Greg 294
Mansfield, Carol 7, 35, 51, 103, 182, 198
Marion, Illinois see Herrin, Illinois, THM removal study
market extent 108–10
Markov Chain Monte Carlo (MCMC) methods 238
Marwell, G. 196
Mathews, K.E. 155, 388, 389
MCL (Maximum Contaminant Level), for THMs 394
MCMC (Markov Chain Monte Carlo) methods 238
Meghir, C. 55, 57
Mercer, D. E. 283, 343
Messonnier, Mark L. 110
Metropolis, N. 243
Meyers, S. 50
Milgrom, P. 141
Mill, J.S. 136
Miller, P. 419
Milliman, S.R. 374
Mills, A. 336, 337
Mitchell, R.C. 8, 52, 66, 106, 110, 133, 134, 192, 193, 194, 403, 418
MNL (multinomial logit) choice models 341–2
Mono Lake, California, ecosystem survey 292–3
Montgomery, M. 388
Montrose study/Southern California Bight 23–9, 371
Mooney, H. 143
Moore, Don A. 404
Morey, R. E.R. 371, 379, 388, 389
Morikawa, T. 29, 55, 379, 388
Moser, David 294
Moulin, Hervé 183
multi-part policies 105–7
Mysker, M. 195

Natural Resource Damage Assessments (NRDAs) 371–2
see also Green Bay FCAs study, Montrose study/Southern California Bight
Needelman, M. 388
Neill, H. 181, 187
Neilson, W. 186
Nelson, Paul 173
Nelson, Robert H. 101
Nevel, Paul van 395
Newton, M.A. 244
Niklitschek, M. 327
NOAA (National Oceanic and Atmospheric Administration) Panel 7, 20, 22–3, 296
NOAA guidelines 20–22, 207–11, 357–8
see also Montrose study/Southern California Bight
non-response bias 86–8
non-use values 99–101
Norgaard, R. 138, 139, 146
Norton, Bryan 124
NRDAs (Natural Resource Damage Assessments) 371–2
see also Green Bay FCAs study; Montrose study/Southern California Bight
objective substitutability 143
Olsen, D. 294, 298
one-time-payment sensitivity 298–9
Opaluch, James 171, 340, 343, 352
open ended v. closed ended questions 74–7
Osborn, T. 205
Osborne, L. 22
Ozuna, T. 252
O’Connor, M. 147
O’Hara, S. 146
Pagiola, S. 355, 357
Palfrey, Thomas R. 195
Parsons, G.R. 388
PARVS (Public Area Recreation Visitors Survey) 41–6
Pattanayak, S.K. 55
Pavlova, Maria 395
Payne, J. 146
PCBs see Green Bay FCAs study
Pearce, D. 121
Perrings, Charles 124
Persell, Caroline Hodges 67
PHAs (Public Hunting Areas) 252–3
see also Tennessee Public Hunting Areas study
pictures, use of 266–9
see also air pollution photo simulation
pilot surveys 162–3
see also pre-tests
Pliskin, J.S. 414
Plott, Charles R. 199
Poe, G.L. 18, 53, 190, 193, 211
Poirier, D.J. 232, 240
policy influences from CVM studies
dam removals 301–3
Mono Lake, California, water levels 292–3
wolf reintroduction to Yellowstone National Park 299
Porter, David P. 199
Portney, P.R. 51, 145, 324, 416
posterior distribution simulation 243–5
PPM (provision point mechanism) 195–6
Prato, T. 146, 340
pre-NOAA damage assessments 19–20
see also NRDAs
pre-tests 79–80
see also pilot surveys
Prisbrey, Jeffrey E. 195
probability of choice 170
probability sample 81
property rights 107–8
protected values 121–2
protest bids 120–21, 134–5
see also laundering of preferences
provision point mechanism (PPM) 195–6
Public Area Recreation Visitors Survey (PARVS) 41–6
Public Hunting Areas (PHAs) 252–3
see also Tennessee Public Hunting Areas study
PVNB (present value of net benefits) 92
questionnaire booklet construction 83–4
questionnaire design 68–70
feedback on 77–80
questions and economic data 9–12
writing 70–72
Quiggin, J. 246
Quigley, J.M. 51
Raftery, A.E. 244
Rain Forest Valuation Survey 275–80
Randall, Alan 8, 12, 13, 52, 104, 106, 107, 111, 137, 293, 401
random digit dialing (RDD) 271–2
see also Tennessee Public Hunting Areas study, survey design
random utility models (RUM) 157–8, 341
Rapoport, A. 195
rare species see T&E
ratings format 155
Rawls, John 118, 128
RDD (random digit dialing) 271–2
see also Tennessee Public Hunting Areas study, survey design
Ready, R. 140
Reaves, D.W. 53
Reiling, S.D. 252
report formats 86–9
response rates 86, 110–11
revealed preference (RP) techniques 372
see also joint estimation
Rhode, Gregory L. 265
Ribaudo, M. 205, 207
Rimer, Barbara 395
Index 435

risks, communication of see Herrin, Illinois, THM removal study
Ritov, I. 54
Roach, B. 211
Roe, B. 32, 157, 173, 389
Roessler, C. 146
Rolfe, John 341, 342
Rollins, Kimberly 101
Rondeau, Daniel 195, 196
Rose, S. 195
Rosenthal, Daniel H. 101
Rossmann, K.G. 388, 389
Roth, A.E. 198
Roughgarden, J. 309
RP (revealed preference) techniques 372
Ruby, M.C. 388, 389
RUM (random utility models) see random utility models
Sagoff, M. 121, 129–31, 130, 138, 140, 146
sample types 81–2
Samples, K.C. 374
Samuelson, P.A. 47
Sandman, P.M. 419
Satterthwaite, Mark 198
Sauer, J.R. 204
Sauerborn, R. 329
Scanlon, Thomas 125
Scherr, Bruce A. 194
Schkade, D. 146
Schläpfer, F. 53
Scholz, A. 139
Schullery, P. 307, 308
Schulze, W.D. 35, 52, 66, 199
scope sensitivity 298
search engines 274
SEAs (strategic environmental assessments) 355
selection bias 86–8
Sen, Amartya 124, 136, 140
Shapiro, Robert 265
Shepard, D.S. 414
Shogren, Jason F. 108, 179, 185, 186, 197, 233, 236, 237, 242, 246, 319, 320
Shrader–Frechette, Kristin 124
Shrestha, Ram K. 340, 342
Sieg, H. 51
Silva, P. 355, 357
Silverman, W.M. 388
Sinden, J.A. 185
Sloan, F.A. 55, 57
Slovic, Paul 389, 418
Smith, Tom W. 272
Smith, V. Kerry 7, 14, 18, 20, 22, 30, 31, 35, 43, 51, 54, 55, 56, 93, 103, 108, 182, 198, 319, 320, 397, 416, 418
Smith, Vernon L. 179, 193, 194, 198
social utility model
definitions 117–18
problems with 118–24
social welfare model 123–4
SP (stated preference) models 154–7
Spash, C. 134, 144, 147, 320
specific populations, studies on 13–14
Spooler, T. 265
stated-choice questions, and Natural Resource Damage Assessments 371–2
stated preference (SP) models 154–7
Stevens, T.H. 105, 134, 144, 157, 298, 299, 340, 389
Stewart, Steven 171
Stoll, John R. 107
strategic bids 133
strategic environmental assessments (SEAs) 355
Stumborg, Basil E. 105
subjective substitutability 143–4
substitutability of capital 142–5
Sudman, Seymour 67
Sugden, Robert 119
Sullivan, J. 372
Sunstein, Cass R. 119
survey design/production
to address specific policy applications 207–17
CM surveys 158–63, 191–3
CVM surveys 81–6
see also contribution mechanism
design; ex ante design; ex post calibration
survey mode, choosing 67–8
survey titles 83
SVL see value of a statistical life

Anna Alberini and James R. Kahn - 9781845427917
Downloaded from Elgar Online at 04/23/2019 01:33:17PM
via free access
Swait, J. 55, 388, 389
Swallow, Stephen K. 171, 340, 343
Swanson, C. 298
Syme, G. 135, 147

T&E (threatened and endangered species)
ecosystem studies v. species studies 310–13
see also dis-aggregation/re-aggregation of nature
elements of policy and benefit–cost analysis 296–9
problems valuing 307–10
see also grassland bird population study; Yellowstone Lake wildlife survey
Takeuchi, K. 22
Taylor, Laura O. 104, 156, 182, 183, 184, 187, 191, 198

TCM (Travel Cost Method) 294
Teisel, M.F. 252
telephone surveys 67–8
temporal bias 10, 104–5
temporal reliability definitions 251–2
of Tennessee PHA study 258–9
and the WTP function 250–51
Tennessee Public Hunting Areas study conclusions 259–60
contingency analysis 254–5
double-bounded responses, using covariates 255–9
survey design 252–4
Tennessee Wildlife Resources Agency (TWARA) 250, 252–3, 260

THMs (trihalomethanes) 394
see also Herrin, Illinois, THM removal study
threatened species see T&E
Thurstone, Louis 157
Tierney, L. 241
Tigray, Ethiopia 327
titles, survey 83
Trainor, S. 139

Travel Cost Method (TCM) 294
trihalomethanes (THMs) 394
see also Herrin, Illinois, THM removal study
Tschirhart, J. 311

Tunstall, Sylvia 129
Turner, R. 141
Tversky, Amos 185, 418
TWARA (Tennessee Wildlife Resources Agency) 250, 252–3, 260

Ueta, K. 22
uncertainty 101–2
unexpected survey answers/events 85–6
see also anomalous bids
US legislation, requiring benefit–cost analysis 93
utilitarianism 136–7

validity, of CMV 180–87
valuation, problems of 137–42
valuation questions, writing 74–7
valuation scenario, writing 72–4
value of a statistical life (SVL) 411–13
value, theory of 95–6
van de Kragt, Alphons 195
van Nevel, Paul 395
Varian, H.R. 48
Varley, J. 307, 308
Vatn, A. 138, 140
Vázquez–Polo, F.J. 237
Veblen, T. 308
Velleux, M. 373
Vena, J.E. 388
Viscusi, W. Kip 102, 233, 237, 388, 389
Von Haefen, R.H. 57
Vossler, C.A. 18, 35
VSL see value of a statistical life
Walker, J.M. 194
Walker, Mark 199
Walsh, Richard G. 100, 294, 311
Ward, K. 303
warm glow effect 134, 145–7, 211
Watts- Reaves, D. 312
Waugh, F.V. 50
Weaver, Thomas F. 171
web page creation 272–5
WebTV 271–2
Weinstein, M.C. 414
Weinstein, N.D. 419
welfare measures 167–8
welfarist perspectives 324
Welsh, Michael P. 211, 218
Werner, M. 418
West, P.C. 388
White, D.S. 311, 319
Whitehead, North Carolina water quality survey 267–8
Whitehead, John C. 90, 101, 106, 109, 110, 112, 252
wildlife see T&E
Wiley, P.C. 57
Williams, A. 324
Williams, B. 136
Willig, R.D. 56, 185, 327
Woodworth, G. 340, 344
World Bank Regions, definitions 369–70
WTP, and uncertainty 295

WTP v. behavioral intentions 74
WTP v. WTA 184–7
Yaffee, Steven L. 423
Yellowstone Lake wildlife survey background 307–8, 313
demographic 317–18
perception 313–15
results 318–20
valuation 315–17
Yellowstone National Park, wolf reintroduction 299
Zellner, A. 232
Zhang, X. 14, 31