Index

Abbott, T. 268
Abramovitz, M. 155, 178
accounting identity
aggregate production function
criticisms see aggregate
production function criticisms,
reasons for ignoring, and
accounting identity implications
aggregate production functions
as see aggregate production
functions, behavioural
relationship or accounting
identity?
and Cobb–Douglas production
function see aggregate
production function,
behavioural relationship or
accounting identity?,
accounting identity and Cobb–
Douglas production function
and cost functions see aggregate
production function,
behavioural relationship or
accounting identity?, cost
functions and accounting
identity
critique, first appearance of 152–4,
155–7
linear 54–6, 58–9
observed and virtual see aggregate
production function,
behavioural relationship or
accounting identity?, accounting
identities, observed and virtual
problems, neoclassical dual-sector
growth model 242–5
problems, see Mankiw–Romer–Weil
(MRW) test of neoclassical
growth model
simulation studies see simulation
studies, aggregate production
function and accounting
identity
Solow and total factor productivity
measurement 205–7
and Solow’s ‘Technical Change
and the Aggregate Production
Function’ paper see Solow’s
‘Technical Change and the
Aggregate Production Function’
paper, and accounting identity
accounting identity for estimation
of degree of market power and
mark-up, problems with 266–83
Bureau of Economic Analysis (BEA)
and high mark-ups in non-
manufacturing industries 270
Caballero and Lyons extension of
Hall’s procedure 279–81
Caballero and Lyons extension of
Hall’s procedure, externality
effect in production 279–80
empirical illustration of Hall’s results
273–6
gross output use 282–3
Hall’s estimation procedure 271–4,
279–80
Hall’s method of estimating mark-
up 267–71, 276–9
literature survey 268–71
marginal cost 266, 267–8, 269, 270,
274, 279
monopoly profits 271, 278–9
nondurable goods industry 276,
277–8
production function use 267–8
Solow residual, increasing returns
to scale, and revenue and cost
shares 276–9
Acemoglu, D. 6
Ackerberg, D. 338
Adams, F. 133
advanced countries, neoclassical dual-
sector growth model, problems
with 240, 246, 247, 248, 249
aggregate production function
defence of 10–12, 14
definition 45–6
problems 4–6, 8–10
simulation studies see simulation
studies, aggregate production
function and accounting
identity
and technical change see Solow’s
‘Technical Change and the
Aggregate Production
Function’ paper, and
accounting identity
as technological relationship 12–14,
15–16
and time-series data 11, 14
aggregate production function,
behavioural relationship or
accounting identity? 45–98
accounting identity using constant-
price value data 51–2
capital theory 47, 78
CES (constant elasticity of
substitution) production
function 59–60, 84–7
Cobb–Douglas production function
49, 50–52, 75, 77, 78
and competition 53, 59, 61, 63–4,
65, 88–9
constant-price measures of output
49, 50, 51–2
constant-price value data, use of 46,
51–2
cross-section production functions,
estimation problems 66–9
equifinality theorem 82
input–output approach 47–51
marginal productivity theory of
factor pricing 50, 53
mark-up pricing policy example 51,
57, 81, 86
micro-production function specified
in physical terms 49–50
neoclassical growth accounting and
the identity 72–3, 78–9
neoclassical growth accounting
and the identity, and rate of
technical progress 73
neoclassical production function
47–52
neoclassical theory of factor pricing
53
simulation studies 56–9
textile industry (Indian) illustration
91–8
aggregate production function,
behavioural relationship or
accounting identity?, accounting
identities, observed and virtual
63–6
economic profits 63, 64–5
National Income and Product
Accounts (NIPA) identity 63–4,
65
neoclassical cost identity 63–6
value-added accounting identity
64–5, 92–4
aggregate production function,
behavioural relationship or
accounting identity?, accounting
identity and Cobb–Douglas
production function 52–63
accounting identity in index form
56–7
Box–Cox transformation 60, 61,
90–91
capital–labour ratio and statistical
fit 55–7
cross-section data 52–60, 61–2,
97–8
factor shares constant 57–8
income identity 53–4
linear accounting identity,
approximation to 54–6, 58–9
time trend, non-linear 63
time-series data 60–63, 81–2,
92–7
translog production function 60, 61,
87–90
UK total industry, selected
macroeconomic variables (1990)
57–9
aggregate production function,
behavioural relationship or
accounting identity?, cost
functions and accounting identity
69–72
Cobb–Douglas cost function
example 69–70, 71–2
production function with factor-
augmenting technical change 71–2
translog cost function 71–2
aggregate production function, behavioural relationship or accounting identity? 73–80
accounting identity is dual of production function 75
aggregate production function, estimation and specification problems 76–7
aggregate production function identification 76
equilibrium condition of aggregate production function and linear accounting identity 75
macroeconomic identities and aggregate production function 73–4
production function estimation and significant increasing returns to scale 77
total factor productivity (TFP) estimation tables by US Bureau of Labor Statistics (BLS) and OECD 77–8
aggregate production function criticisms, reasons for ignoring, and accounting identity implications 311–45
accounting identity critique, reasons for overlooking 316–19
accounting identity critique, Shaikh’s Humbug production function and Solow’s response 170–71, 175, 319–22
and Cambridge capital theory 314, 323
constant-price monetary values and accounting identity 315
cross-section data 317, 318, 319
instrumental defence of aggregate production function 314–16
inter-industry estimations of production functions, use of 316–17
time-series data 318, 329, 339
aggregate production function criticisms, reasons for ignoring, and accounting identity implications, Temple’s misunderstandings and misinterpretations of critique 322–43
constant factor shares dependency 325–9, 332
and Diamond–McFadden impossibility theorem 326
econometric solution to implications of critique, lack of 338–9
economic rents and actual and virtual accounting identities 337–8
and elasticity of substitution 330, 333
growth econometrics without production functions 340–41
Lucas on aggregate production function with diminishing returns 341–3
Mankiw–Romer–Weil growth model as misspecified identity 329–33, 340
simulation results confirm importance of critique 339–40
Solow residual is definitionally weighted growth of factor inputs 334–5
total factor productivity (TFP) statistical controls for 326–7, 334–5, 336–7
value data use 323, 330–31, 339–40
value measures of capital (and output), disaggregation of 335–7
aggregate production function, problems with 3, 6, 21–44
aggregation over firms 26–7, 29–30
capital aggregation in production theory 25, 26–7, 29–30
capital–labour ratios 28, 32, 33, 35–9, 41
The aggregate production function

Cobb–Douglas micro-production functions 24–5, 27–8, 29
and competitive markets 28–9
definition and importance of aggregate production function 22–31
economic quantities, problems with 26–7
input–output approach, limitations of 41–2
and investment 26, 30, 43, 44
Leontief’s theorem 24, 25–6, 29–30
logical flaws, accusation of 34–5
marginal products 26, 29–30, 33–4, 40
marginal rates of substitution 25
methodological differences 33–5
micro-production functions 22–8
problematic constructs, reasons for 23–4
aggregate production function, problems with, Cambridge capital theory controversies 3–4, 5–6, 9, 21–2, 31–43, 77
background 32
capital measurement problem 32–4
capital measurement problem, cost of production 33–4
capital measurement problem, net present value 33–4
logical versus historical time 42–3
aggregate production function, problems with, Samuelson’s surrogate production function 35–42
capital reversing 39, 40–41
factor–price frontier or wage–profit rate frontier 35–8
interest rates and reswitching 38–41
one-sector aggregate production function 36–7
aggregate supply–aggregate demand (AS/AD) model 9
Aghion, P. 6, 207, 254
Ahmad, S. 40
AK (linear-in-K) model see capital growth role and externality effect in economic growth, linear-in-K (AK) model
Alexander, W. 236, 237
Allen, R. 40
Andrews, W. 152
Antras, P. 76
Anyadike-Danes, M. 286, 302–6
Arrow, K. 2, 7, 134, 159, 253, 314, 317
Baldone, S. 40
Barro, R. 6, 179, 208, 228–9, 340
Basu, S. 269, 282–3, 335
Bean, E. 303–4, 305
behavioural relationship, aggregate production functions as see aggregate production function, behavioural relationship or accounting identity?
Bernanke, B. 8
Birner, J. 5, 32, 40
Biswas, B. 236, 237
Blaug, M. 138, 312, 315–16
Blinder, A. 162
Bliss, C. 32
Bodkin, R. 174
Box–Cox transformation, accounting identity and Cobb–Douglas production function 60, 61, 90–91
Bresnahan, T. 268
Briscoe, G. 188
Brock, W. 221
Bronfenbrenner, M. 76, 136, 151, 152, 316, 338
Brown, M. 3, 4, 9, 22, 26, 148
Burmeister, E. 3–4, 9, 40
Caballero, R. 279–81
Cambridge capital theory controversies accounting identity implications 314, 323
and aggregate production function problems see aggregate production function, problems with, Cambridge capital theory controversies
capital aggregation in production theory 25, 26–7, 29–30
measurement problem, Cambridge capital theory controversies 32–4
productivity, simulation studies 104, 106, 107–8
rental price of capital 63–5, 290–92, 298, 300
reversing, Samuelson’s surrogate production function 39, 40–41
share, simulation studies 102, 103, 109, 110–17, 122, 124–8, 129
stock and labour force quality, links between 147–8
theory 47, 78
capital growth role and externality effect in economic growth 252–65
capital accumulation 253
capital–labour ratio 253
Oulton and O’Mahony’s two tests, capital’s contribution to output growth, UK manufacturing 259–65
output elasticity 253–4, 258, 260, 263
capital growth role and externality effect in economic growth, linear-in-K (AK) model 252, 253
and output growth 256
and productivity growth 254–6
and Solow’s growth model 254
Valdés’s test of 253, 254–6
capital growth role and externality effect in economic growth, Romer’s models 257–9
and accounting identity 258–9
and Cobb–Douglas production functions 257–8
production functions with elasticity of capital of unity 257–8
capital–labour ratio and accounting identity 162–4, 172, 178
aggregate production function, problems with 28, 32, 33, 35–9, 41
and statistical fit 55–7
capital–output ratio
Solow and total factor productivity measurement 207, 332
and steady-rate growth 222–4, 227, 230–31
Carr, J. 236
Carter, S. 14, 313, 315
CES (constant elasticity of substitution) and aggregate production function criticisms, 330, 333
production function 59–60, 84–7
simulation experiments 116–19
Christensen, L. 159
Clark, J. 137–8, 143, 146–7, 154
Clark, K. 290, 291, 292, 294, 298, 299
Cobb–Douglas production function 1–2, 10–11, 12, 13–15, 49, 50–52
and accounting identity see aggregate production function, behavioural relationship or accounting identity?, accounting identity and Cobb–Douglas production function actual and steady-state levels of productivity, relationship between 197–8
and aggregate production function criticisms, reasons for ignoring, and accounting identity implications, Temple’s misunderstandings and misinterpretations of critique 323–4, 325–7, 328–30, 331–2, 335, 339–40
aggregate production functions, behavioural relationship or accounting identity? 49, 50–52, 75, 77, 78
cost function example 69–70, 71–2
labour demand functions as statistical artefacts 285, 287–8, 289
micro-production function 24–5, 27–8, 29
and non-linear Goodwin model see simulation studies, aggregate production function and accounting identity, non-linear Goodwin model and Cobb–
The aggregate production function

Douglas production function (Shaikh (2005))
reasons for success of see simulation studies, aggregate production function and accounting identity, Cobb–Douglas production function, reasons for success of (Felipe and Holz (2001))
simulation experiments 111–16, 118, 130–31
technical change and accounting identity see under Solow’s ‘Technical Change and the Aggregate Production Function’ paper, and accounting identity
Cobb–Douglas production function, history of 133–59
accounting identity critique, first appearance of 152–4, 155–7
adding-up problem 138–9
aggregate production function, initial development and estimation 136–9
American Economic Association 133, 134, 137
capital stock and labour force quality, links between 147–8
constant returns to scale 142, 145, 152, 154
cross-section studies 150–52, 152–4, 155
cross-section studies, capital–labour ratio variation, lack of 151–2
early criticism of 135
Euler’s theorem 137
factor inputs 134, 147, 157
first reactions 139–42
Frisch–Waugh theorem 149
laws of production, understanding of 134, 138, 149
manufacturing industry data 144–5, 146, 150
 multicollinearity problem 143–5, 150
and neoclassical marginal productivity theory of distribution 137
production function for Australia 151
quantification justification 140–41
Samuelson review 154–6
statistical specifications as exact relationships, problems with 144
technical change 141–2, 143, 147, 149, 155–6
technical progress, absence of 146–9
technical progress, absence of, time trend as solution 148–9
time-series data, criticism of initial 142–9
time-series results 135–6, 155–8
Wicksteed contribution 138
Collier, P. 341
competition and aggregate production function 53, 59, 61, 63–4, 65, 88–9
competitive markets, and aggregate production function, problems with 28–9
perfect competition, simulation studies 111
constant-price measures 12–13, 46, 49, 50, 51–2
Cornwall, J. 251
cost functions and accounting identity see aggregate production function, behavioural relationship or accounting identity?, cost functions and accounting identity
Cotis, J. 308
Crafts, N. 264
Cramer, J. 14, 152
Cripps, T. 246
cross-country data, accounting identity problem 243–4
variation in income per capita 218
cross-firm estimation of the production function, simulation studies 102, 103–6
cross-section data accounting identity and Cobb–Douglas production function 52–60, 61–2, 97–8
accounting identity implications 317, 318, 319
Cobb–Douglas production function, history of 150–52, 152–4, 155
production functions, estimation problems 66–9
Cyert, R. 27
Daly, P. 136
Davidson, P. 285
De Boer, W. 210
De Marchi, N. 140
Denison, E. J. 159, 178–9, 210
Diamond, P. 326
Domowitz, I. 269, 270–71
Douglas, P. see Cobb–Douglas production function
Dow, S. 32
Dowrick, S. 287
dual-sector growth model see neoclassical dual-sector growth model, problems with
Durand, D. 142
Durlauf, S. 119, 192, 221
Easterly, W. 191, 195, 219
economic growth, externality effect and capital growth role see capital growth role and externality effect in economic growth
economic profits, accounting identities, observed and virtual 63, 64–5
economic quantities, problems with 26–7
Eden, B. 268
education measurement, Solow and total factor productivity measurement 195–6
elasticity of employment, labour demand functions as statistical artefacts 286, 287–8, 289, 300
of substitution see CES (constant elasticity of substitution)
JED or wage–profit rate frontier 35–8
elasticiy of substitution see CES (constant elasticity of substitution)
employment rate
labour demand functions as statistical artefacts 284, 285, 286, 287, 288, 289, 300, 302, 303, 305, 309
simulation studies 127–8
see also labour
endogenous growth theory 3, 7–8, 11, 48
and accounting identity 160, 162
equifinality theorem, aggregate production function 82
Estrin, S. 21
Euler’s theorem 12, 49, 65, 81, 114, 137, 202, 337
evolutionary growth model, simulation studies see simulation studies, aggregate production function and accounting identity, evolutionary growth model of Nelson and Winter (1982)
exports sector and GDP growth, relationship between 234–5, 236–41
and government output 247–50
see also manufacturing industry
Fabricant, S. 178
factor–price frontier or wage–profit rate frontier 35–8
Fagerberg, J. 203, 233
Feder, G. 234–5, 236–42, 245
Ferguson, C. 11, 40, 47, 48, 313
Fernald, J. 282–3, 335
Fisher, F. 4, 5, 6, 9, 10, 12, 21, 22, 23, 27, 29–31, 45, 46, 78, 79, 99, 100, 135, 224, 311, 312, 314, 315, 318, 319, 323, 336, 340
simulation studies see simulation studies, aggregate production function and accounting identity, Fisher’s (1971b) simulation experiments
Flux, A. 138
Frankel, M. 7
Freeman, R. 290, 291, 292, 294, 298, 299
Friedman, M. 11, 48, 314
Gallaway, L. 40
Gandolfo, G. 41–2, 43
Garegnani, P. 40, 41
GDP
government expenditure growth, impact on GDP growth 235–6, 240, 241
growth and exports, relationship between 234–5, 236–41
The aggregate production function

Giffen good in consumer theory
Gilbert, C. 140
Godley, W. 286, 302–6
Gomulka, S. 203
Goodwin, R. 126–8
Gorman, W. 26
Griliches, Z. 7, 74, 162, 268, 290, 291, 337, 338
Grossman, P. 236
Growth
capital growth role see capital growth role and externality effect in economic growth
dual-sector growth model see neoclassical dual-sector growth model, problems with econometrics without production functions 340–41
Hahn, F. 7
Hall, R. 76, 192, 266, 267–79
Hamermesh, D. 76, 284–5, 287
Han, Z. 41, 42
Handsaker, M. 136
Hansen, L. 100, 129–30
Harcourt, G. 3, 5–6, 22, 32, 33–4, 37, 40, 42–3, 135
Hartley, J. 100, 129–30
Heathfield, D. 131, 171
Heston, A. 8, 221, 241
Hildebrand, G. 11, 153, 317
Hogan, W. 166, 167–9, 171
Holz, C. 119–22, 126
Hong, K. 210
Hooover, K. 2, 314–15
Houthakker, H. 100, 130–31
Howitt, P. 6, 207, 254
Hsieh, C.-T. 75, 76–7, 179, 290–91
Hsing, M. 167
Hulten, C. 9
human capital
Solow and total factor productivity measurement 195–6, 202, 207, 210–12
Humbug production function (Shaikh) 170–71, 319–22
income, per capita 191–3, 194, 196, 199, 201, 203, 204
India, textile industry illustration 91–8 innovation process 123, 207 input–output approach 47–51 limitations of 41–2 interest rates and reswitching 38–41 Intriligator, M. 14, 54, 152, 317
Islam, N. 192, 214, 216, 219, 227
Johnson, P. 192
Jones, C. 6, 191, 192, 195, 196, 197–205
Jones, H. 6, 38
Jorgenson, D. 7, 60, 64, 74, 192, 217, 219, 290, 291, 337
Kaldor, N. 6, 7, 8, 13, 33–4, 57, 156, 180, 207, 222, 224, 251, 330
Kang, H. 119–20, 121
Kennedy, C. 7
Kenny, C. 191, 232, 341
Keynes, J. 140
Index 381

Kincaid, H. 78–9, 314
Klein, L. 24–5, 174
Klenow, P. 76–7, 214
knowledge measurement, Steedman’s critique of 207–8
Knowles, S. 226
Kohli, I. 236
Krugman, P. 161
Kuhn, T. 2, 7, 20, 196, 314–15

labour
capital–labour ratios 28, 32, 33, 35–9, 41
productivity and capital–labour ratio relationship 162–4
productivity, simulation studies 107–8, 127–8
share, simulation studies 102, 107, 115, 120
share in value added estimate 137, 147–8
see also employment rate; unemployment rate
labour demand functions as statistical artefacts 9, 284–310
Anyadike-Danes and Godley critique 302–6
Cobb–Douglas production function 285, 287–8, 289
elasticity of employment 286, 287–8, 289, 300
employment rate 284, 285, 286, 287, 288, 289, 300, 302, 303, 305, 309
estimation and accounting identity 292–5
marginal profit rate 286, 290–92, 295, 298, 305
NAIRU model 308–10
neoclassical theory of demand for labour 287–9
neoclassical theory of demand for labour, holding capital stock constant 289, 294, 300
neoclassical theory of demand for labour, holding output constant 287–8
real wage rate 284, 285, 286, 288, 289, 295, 300, 302, 303, 305, 308
and rental price of capital 290–92, 298, 300
revenue product curve 301–2
unemployment rate 284, 285, 308–9, 310
wage elasticity and error-correction methods 301–2
labour demand functions as statistical artefacts, empirical results 295–300
labour demand function for US manufacturing 295–9, 305
lags, effects of introduction of 299–300
OLS long-run estimates 297–8
time trend 296–7, 298–300
wage rate trend 295, 303, 305, 308–10
Laidler, D. 21
Landau, D. 235
Landes, D. 20
Lavoie, M. 284, 286, 308–10
Lawson, T. 20
Layard, R. 286, 289, 308
Lazzarini, A. 32, 38
Lee, F. 13
Lee, J.-W. 210
Leibenstein, H. 4, 22, 27, 47–8
Leontief, W. 24, 25–6, 29–30
Leser, C. 149
less developed countries (LDCs), neoclassical dual-sector growth model, problems with 235, 237, 239, 240, 241, 242
Levhari, D. 39–40
Levine, H. 167
Levine, R. 219, 341
Levinsohn, J. 338
Levy, F. 14, 54, 135, 152, 170, 317, 329
Lewis, P. 285, 287, 288, 292, 300, 301–2
linear-in-K (AK) model see capital growth role and externality effect in economic growth, linear-in-K (AK) model
Liu, T. 11, 153, 317
Lucas, R. 62, 174, 196, 341–3
Lutz, F. 34
Lyons, R. 279–81
MacDonald, G. 285, 287, 288, 292, 300, 301–2
macroeconomic identities and
aggregate production function 73–4
Maddison, A. 5, 6, 222, 258
Mainwaring, L. 40
Mairesse, J. 338
Cobb–Douglas production function and constant shares 224–5
common technology across countries, relaxing assumption of, and total factor productivity (TFP) 219–21
constant shares assumption 223, 224–6, 227
convergence regression and speed of convergence 228–31, 232–3
cross-country variation in income per capita 218
developing and developed countries sharing common production function 217
endogenous and semi-endogenous growth models 214
and human capital 218, 226–7
income accounting identity approximation 226
observational equivalence problems 225
steady-state growth rates 217, 220–21, 223, 224–5, 228–9
technology gap 233
Solow’s growth model and MRW specification 215–19, 227–8, 231–2
total factor productivity (TFP) growth 217
manufacturing industry capital’s contribution to output growth, UK 259–65
data, and Cobb–Douglas production function, history of 144–5, 146, 150
data, Solow’s ‘Technical Change and the Aggregate Production Function’ paper, and accounting identity 174
neoclassical dual-sector growth model, problems with 237, 245, 246
textile industry (Indian) illustration 91–8
US labour demand function 295–9, 305
US manufacturing industry production functions 263–5, 280–81
see also export sector
March, J. 27
mark-up
estimation see accounting identity for estimation of degree of market power and mark-up, problems with pricing policy example 51, 57, 81, 86
market power estimation see accounting identity for estimation of degree of market power and mark-up, problems with Marshak, J. 152
Massell, B. 167
Matthews, R. 7, 162
May, K. 24, 311
Meier, G. 192
Mendershausen, H. 135, 141, 142, 143–4, 145, 146, 148
Metcalfe, J. 208
Michl, T. 285
micro-production functions 22–8, 49–50
mining sector, neoclassical dual-sector growth model, problems with 244, 246
Morgan, M. 140, 144
Moroney, J. 11, 153
multicollinearity problem, Cobb–Douglas production function, history of 143–5, 150
simulation studies 102, 106, 120
Nadiri, I. 6
NAIRU model, labour demand functions as statistical artefacts 308–10
Nataf, A. 24, 311
National Income and Product
Accounts (NIPA) identity 63–4, 65
Neiman, B. 335
Nelson, C. 119–20, 121
Nelson, R. 100, 122–6, 180, 340
neoclassical
cost identity 63–6
growth accounting 72–3, 78–9
growth model, Solow and
total productivity measurement, actual
and steady-state levels of productivity, relationship
between 196–7, 199
growth theory 2–3, 6–7, 8
marginal productivity theory of
distribution 137
production function 47–52
theory of demand for labour 287–9
theory of factor pricing 53
total costs 70–71
neoclassical dual-sector growth model,
problems with 234–51
accounting identity problem 242–5
accounting identity problem, using
cross-country data 243–4
advanced countries 240, 246, 247,
248, 249
agriculture sector 244, 245, 246
balance-of-payments constraint 234
commerce sector 245, 246
export sector 234–5, 236–41
GDP growth and exports,
relationship between 234–5,
236–41
government expenditure growth,
impact on GDP 235–6, 240,
241
less developed countries (LDCs) 235,
237, 239, 240, 241, 242
manufacturing sector 237, 245, 246
mining sector 244, 246
non-export sector 235, 238, 241
government output and exports
247–50
three-sector model 247–50
two-sector model 237, 245–6
neoclassical dual-sector growth model,
problems with, Feder’s model
236–42, 245
capital input growth measurement
problems 239–41
data quality problems 239
externality elasticity 238
marginal productivities differential
238
reduced-form equation 237–8
two-sector model 237, 245–6
NIPA (National Income and Product
Accounts) identity 63–4,
65
Nonneman, W. 226–7
Norrbin, S. 269, 270–71
O’Connell, S. 341
OECD
total factor productivity (TFP)
estimation tables 77–8
Oi, W. 187
Olley, S. 338
O’Mahony, M. 19, 210, 252, 253–4,
259–65
Oulton, N. 19, 252, 253–4, 259–65
Owen, P. 226
Pakes, A. 338
Parente, S. 192, 209, 217, 219
Pasinetti, L. 8, 42
Pertz, K. 40
Pesaran, M. 301
Petri, F. 41
Petrin, A. 338
Phelps Brown, E. 11, 12, 14, 52–3, 60,
76, 77, 135, 146, 149, 152, 153,
158–9, 161, 170, 174, 315–16, 317,
319
Phillips, P. 119
Pigou, A. 137
Prescott, E. 191, 192, 193, 194, 196,
209, 217, 219
Pritchett, L. 192
production function
and accounting identity for
estimation of degree of market
power and mark-up 267–8
The aggregate production function
and accounting identity, growth accounting 179–80, 181–4
with factor-augmenting technical change 71–2
perfect fit, obtaining 186–9
and real business-cycle model 129–30
production laws, understanding of 134, 138, 149
productivity
and capital–output ratio, relationship between 193–4
growth, and accounting identity 162, 187
profit rate 128, 286, 290–92, 295, 298, 305
R&D sector 123, 207
Ram, R. 235–6, 237, 239, 240, 241–2, 245
Rao, V. 236, 239, 240, 241–2
Rashid, S. 232
Rebelo, S. 254
Reeder, M. 152
Renelt, D. 341
rental price of capital 63–5, 290–92, 298, 300
reswitching and interest rates 38–41
Ricardo, D. 32
Robinson, J. 6, 8, 11, 21, 23, 32–4, 133, 311
Rodriguez-Clare, A. 214
Romer, P. 7–8, 59, 193, 194–5, 253, 254, 256, 329–33
capital growth role see capital growth role and externality effect in economic growth, Romer’s models
neoclassical growth model see Mankiw–Romer–Weil (MRW) test of neoclassical growth model
Rowthorn, R. 287, 289
Sala-i-Martin, X. 6, 208, 228–9
Salter, W. 262
Salvadori, N. 40
Samuelson, P. 35–42, 135, 137, 138, 139, 141–2, 143, 154–6, 314, 345
surrogate production function see aggregate production function, problems with, Samuelson’s surrogate production function
Sandelin, B. 138
Sargent, T. 100, 129–30
Sato, K. 40
savings (investment) ratios, disparities in 192–5
Scagzzi, R. 32
Schefold, B. 41, 42
Schumpeter, J. 143, 254
Scott, M. 239–40
Sen, A. 34
Shaikh, A. 11, 14, 18, 60, 63, 100, 111, 113, 126–8, 135, 159, 161, 175–6, 181–3, 285, 316, 318, 340
Humbug production function 170–71, 175, 319–22
Sheehy, E. 234, 239, 245
Shukla, V. 40
Simon, H. 14, 54, 55–6, 59, 60, 135, 152, 161, 170, 315, 317, 318, 327, 329, 332
Simon, J. 207
simulation studies, aggregate production function and accounting identity 99–132
capital productivity 104, 106, 107–8
capital’s share of output 102, 103, 109, 110–17, 122, 124–8, 129
Cobb–Douglas production function, compatibility with fixed coefficients micro-production function (Houthakker (1955–56)) 100, 130–31
Hansen–Sargent model 100, 129–30
Labour’s share of output 102, 107, 115, 120
Pareto distribution 130–31
production function and real business-cycle model (Hartley (2000)) 129–30
simulation studies, aggregate production function and accounting identity, accounting identity problems 101–11
cross-firm estimation of the production function 102, 103–6
increasing returns to scale 103, 108–9
increasing returns to scale and total factor productivity growth 108–9
labour productivity 107–8
multicollinearity 102, 106
physical data use 101, 102, 103, 104, 105, 106–9, 110–11
technical progress rate and growth of total factor productivity 102, 111
technological progress rate and total factor productivity growth 106–8, 110–11
Temple’s (2010) misunderstanding 109–10
total factor productivity growth and increasing returns to scale 108–9
value data, problems with use of 103
simulation studies, aggregate production function and accounting identity, Cobb–Douglas production function, reasons for success of (Felipe and Holz (2001)) 119–22, 126
difference stationary processes 119, 121
Monte Carlo simulations 120–21
poor statistical results, occasions for 122
spuriousness to explain fit 119–21
spuriousness to explain fit, Durbin–Watson statistic 121
spuriousness to explain fit, independent random walks 120, 121
spuriousness to explain fit, trend stationary processes 121
trend stationary processes 119, 121
Cobb–Douglas regressions with time trend 125–6
compatibility with historical records 122–3, 124–5
fixed-coefficient techniques 123–4
innovation process 123
wage rate 124
simulation studies, aggregate production function and accounting identity, Fisher’s (1971b) simulation experiments 111–19
capital index 114
CES simulation experiments 116–19
Cobb–Douglas production function, simulating aggregate 111–16, 118
non-linear least squares 117
perfect competition 111
wages prediction 113–16, 118
simulation studies, aggregate production function and accounting identity, non-linear Goodwin model and Cobb–Douglas production function (Shaikh (2005)) 126–8
employment ratio 127–8
labour productivity 127–8
profit rate growth 128
wage rate growth, real 127–8
Singh, N. 236
Solow, R. 2–15 passim, 18, 24, 25–6, 29–30, 45, 51, 52, 72, 73, 74, 79, 80, 99, 100, 116, 122–30 passim, 141, 146, 155–6, 159, 213, 214, 253, 254, 294, 311–22 passim, 332
Solow residual 276–9, 334–5
Solow and total factor productivity measurement 191–212
accounting identity 205–7
capital–output ratio 207, 332
education measurement 195–6
human capital effect 195–6, 207, 210–12
income gap 203, 204
knowledge measurement, Steedman’s critique of 207–8
per capita income 191–3, 194, 196, 199, 201, 204
physical capital 195, 207
population growth 199
productivity and capital–output ratio, relationship between 193–4
R&D sector 207
savings (investment) ratios, disparities in 192–5
skilled workers 210, 211
total factor productivity theory, argument for 208–9
unskilled workers 210, 211, 212
Solow and total factor productivity measurement, actual and steady-state levels of productivity, relationship between 196–205, 207
and Cobb–Douglas function 197–8
human capital effect 202
neoclassical growth model 196–7, 199
technical progress rate, varying 202–5
technical progress rate, varying, and Cobb–Douglas production function 202
technical progress rate, varying, and Euler’s theorem 202
technical progress rate, varying, and income gap 204
technology differences 196–8
technology differs between countries 200–202
technology level assumed to be constant across countries 199–200
Solow’s growth model, see Mankiw–Romer–Weil (MRW) test of neoclassical growth model, Solow’s growth model and MRW specification
Solow’s ‘Technical Change and the Aggregate Production Function’ paper, and accounting identity 160–90
capacity utilisation 168, 172, 187–9
capital stock figures example 168–9
capital–labour ratio 162–4, 172, 178
Cobb–Douglas production function and variation in factor shares 176–8
and endogenous growth theory 160, 162
growth theory, second thoughts on (1987) 181–4
Hicks-neutral technical change 162–3
Hogan’s critique (1958) and Solow’s tautology 167–9, 171
labour productivity and capital–labour ratio relationship 162–4
output and capital, physical and value measures 184–6
output and capital, physical and value measures, physical output data and constant-price value data, difference between 185–6
production function perfect fit, obtaining 186–9
productivity growth 162, 187
and real business-cycle model 160, 187
Shaikh’s critique 170–71, 175–6, 181–3
Shaikh’s critique, Humbug dataset, artificial 170–71, 175
Solow residual 160–61, 162, 179, 189
Solow’s (1974) rejoinder to Shaikh 171
testing aggregate production function with real data 172–5
time-series data criticism (Shaikh) 170
wage rates 174–5, 187
Solow’s ‘Technical Change and the Aggregate Production Function’ paper, and accounting identity, growth accounting 178–84
and accounting identity 179
economic growth accounting sources quantification 178
and production function 179–80, 181–4
and technical change 180–84
Sraffa, P. 10, 33, 34
Srinivasan, T. 221
steady-state growth rates 217, 220–21, 223, 224–5, 228–9
Steedman, I. 40, 207–8
Stiglitz, J. 33, 34, 313
Summers, R. 8, 221, 241
Swan, T. 18, 160, 162
Sylos Labini, P. 5, 62
Index 387

Tarling, R. 246
Tatom, J. 174, 187
technical change
and accounting identity, growth accounting 180–84
and aggregate production function
see Solow’s ‘Technical Change and the Aggregate Production Function’ paper, and accounting identity
Cobb–Douglas production function 141–2, 143, 147, 149, 155–6
substitution and labour levels 25
technical progress
absence of, Cobb–Douglas production function 146–9
and growth of total factor productivity, simulation studies 102, 111
Hall’s estimation procedure 272, 275
rate, varying, actual and steady-state levels of productivity, relationship between 202–5
technology gap
actual and steady-state levels of productivity, relationship between 196–200
technology growth and exponential growth rates 165, 167
aggregate production function criticisms see aggregate production function criticisms, reasons for ignoring, and accounting identity implications, Temple’s misunderstandings and misinterpretations of critique
textile industry (Indian) illustration 91–8
Thirlwall, A. 7, 213, 234, 251, 285
Thomas, R. 66–7, 76
time factors, logical versus historical time 42–3
time trend
labour demand functions as statistical artefacts 296–7, 298–300
non-linear 63
time-series data
accounting identity and Cobb–Douglas production function 60–63, 81–2, 92–7
accounting identity implications 318, 329, 339
aggregate production function criticisms, reasons for ignoring, and accounting identity implications 318, 329, 339
criticism of initial, Cobb–Douglas production function 142–9
results, Cobb–Douglas production function, history of 135–6, 155–8
time-series data criticism (Shaikh), Solow’s ‘Technical Change and the Aggregate Production Function’ paper, and accounting identity 170
Timbergen, J. 140, 148
Toniolo, G. 264
total factor productivity (TFP) control, and accounting identity implications 326–7, 334–5, 336–7
estimation tables by US Bureau of Labor Statistics (BLS) and OECD 77–8
growth and increasing returns to scale 108–9
measurement, and Solow see Solow and total factor productivity measurement theory, argument for 208–9
translog cost function 71–2
translog production function 1, 2, 60, 61, 87–90
UK
manufacturing, capital’s contribution to output growth 259–65
total industry, selected macroeconomic variables (1990) 57–9
unemployment rate 284, 285, 308–9, 310
see also labour
The aggregate production function

US
American Economic Association 133, 134, 137
Bureau of Labor Statistics (BLS),
total factor productivity (TFP) 
estimation tables 77–8
manufacturing, labour demand
function 295–9, 305
Solow and total factor productivity
measurement 195, 200–202, 204–7

Valdés, B. 7, 225, 253, 254–6
value-added accounting identity 64–5, 92–4
Vanhoudt, P. 226–7
Verdoorn law 10–11
Von Thünen, J. 137–8
Von Weizsacker, C. 33

wage rates
elasticity and error-correction
methods 301–2
factor–price frontier or wage–profit
rate frontier 35–8
prediction, simulation studies
113–16, 118
real wage rate, labour demand
functions as statistical artefacts
284, 285, 286, 288, 289, 295, 300, 302, 303, 305, 308
simulation studies 113–16, 118, 124, 127–8

Solow’s ‘Technical Change and the
Aggregate Production Function’
paper, and accounting identity
174–5, 187
trend, labour demand functions as
statistical artefacts 295, 303, 305, 308–10
variation, accounting identity
implications 330–31
Waldman, R. 269, 270
Wall, B. 149
Wallis, K. 14, 66, 317–18
Walters, A. 9, 24, 311–12, 316–17
Wan, H. 6, 11, 314
Weil, D. 6, 59, 329–33
neoclassical growth model see
Mankiw–Romer–Weil (MRW)
test of neoclassical growth model
Wells, G. 287
Whiteman, J. 71–2
Wibe, S. 12, 131, 171
Wicksell, K. 32, 41, 138–9
Wicksteed, P. 138
Wilcox, S. 139
Williams, D. 191, 232, 341
Wilson, D. 29–30
Winter, S. 100, 122–6, 340
Wößmann, L. 335
Young, A. 160, 279
Zambelli, S. 40
Zellner, A. 144