Index

3BL *see* triple bottom line
3M (company) 235

AccountAbility 354
acid rain lake *see* Big Moose Lake
Ackers, P. 112
ACL Bearing Company 81
‘active looking’ 528
Adams, C.A. 319
Adeboye, T. 166
Adediran, J.A. 408, 409
Adler, N. 227
Adler, P. 224, 238
Adriaanse, A. 141, 144
aero-derivative gas turbines 455
Agenda 21 (UNCED, 1992) 142, 175
Aggeri, F. 131
A’Hearn, T. 317
Ahring, B.K. 410
Ahuja, G. 330
Aini, M. 405
Akrich, M. 54
Alauzet, N. 410
Albu, M. 169
Alderman, D.R. 412
Alex Fraser Group 515
Alic, J.A. 120, 131
Allen, D. 29, 30
Allenby, B. 14, 15, 529
Altham, W. 284, 359
Altomare, M. 210
anaerobic digestion 408–10
Anarow, 148
Anastas, P. 27, 28
Anderson, D. 131
Anderson, T. 442
Anderson, T.W. 259
Andrews, S.K.T. 334
Angerer, H. 128
anthroposphere, definitions 477
anti-pollution patents 361–2, 366, 392–5
Antikarov, V. 273
ants, collective behaviour 527
Aral sea 530
Archibugi, D. 390
Arm, M. 413
Arrow, K. 119, 148
Arruda, M.A.Z. 409
Arthur, W.B. 131
Arundel, A. 334, 336
Ashford, N.A. 124, 125, 126, 131, 135, 336, 433
Ashley, R. 406
Asnaes Power Station 22
Athens Olympic Games development programme 411
AtKisson, A. 380
Atlas Drycleaners 83
atmosphere definitions 477
lead in 535
see also carbon dioxide cycle; methane cycle; paintings, showing pollution
Auster, E.R. 321
Austin, A. 234
Austin, D. 344, 345
Australia
forests 510–11
Green Pages presence 368–9
sustainable technology patent trends 366
see also Birdsville, Australia; building and construction (B&C) sector, Australia;
Energy Australia; Ford Australia;
National Strategy for Ecologically Sustainable Development; Newcastle City Council, Australia, green mission
Australian Capital Territory
‘No Waste by 2010’ commitment 507
Australian Country Choice 80
Austria, material efficiency 21
Ausbubel, J.H. 544
automobiles
cradle-to-cradle paradigm 38
LPG 423
more efficient 429
unleaded gasoline 128
voluntary agreement on fuel efficiency 130
see also electric vehicles websites; EU, End of Life Vehicles Directive; regenerative braking
Avery, I. 407
Ayalon, O.A.Y 407, 408, 410, 412
Ayers, I. 344
Ayres, R. 16, 17, 141
backcasting from principles 211–12
Bacon, Francis (1561–1626) 524

557
Bagautdinov, A.Z. 453
Baily, M.N. 291, 292
Bajsa, O. 409, 413
balance indicators 21
Balkema, A.J. 414
Ballinger, J. 461
Banks, R.D. 136
Barber, L. 113
Barbera, A.J. 294
Bari, Q.H. 409
Bartelmus, P. 141
Barth, J. 405, 408
Bashmakov, I.A. 452
Basic Environment Law 509
Basic Framework Law 509
BASIX (Building Sustainability Index) 385–6
Baumgärtner, S. 545
Bayliss, V. 110, 111
BC Sprawl Report: Economic Vitality and Livable Communities 383–4
Beavis, P. 406, 414
Beccali, G. 405, 406
Beck, U. 223, 235, 238, 258
Becker, B.E. 113
Beckmann, S. 256
Behrendt, S. 15
Benitez, E. 409
Bennett, J. 277
Bennett, M. 308, 313
Benson, D. 378
Benveniste, J. 105
Benyus, J. 24
Benyus, J.M. 97, 531
Berry, T. 525
best-of-sector screening 342–4
Beumer, L. 127
Bevan, S. 113
Beyer, D. 385
Biegelbauer, P. 378
Big Moose Lake 538–9
Bindlish, V. 501
bio-diesel 427, 446
biogas cookers, website 445
biological ecology 14
biological nutrient materials 36–8
biomass 425, 427
biomass consumption 536
biomimicry
 definitions 24–7, 31, 97, 531
 see also zero waste
biosphere, definitions 477
Bird, H. 59, 60
Bird, K. 260, 261
Birdsville, Australia 427
Blackmores 254
Blair, J. 386
Blassino, M. 412
Blazejczak, J. 135
Bleichwitz, R. 509
Bollerslev, T. 395
Bonnen, J.T. 497
Boons, F. 23
Borghesi, S. 358
Borrás, S. 378
Bortoň, H. 528
Boussama, F. 397
BP (British Petroleum) 99
Bradbury, J. 381
Bradken 81
Bradshaw, J. 405
Brand, K. 263
Braungart, M. 33
Brazil, ISO 14001 uptake 370–71
Bressers, H.T.A. 123
brick waste 413
Bringezu, S. 19, 20, 21, 141, 144
British Columbia, BC Sprawl Report 383–4
British Petroleum (BP) 96–7
Brix, H. 416
Brown, M.B. 52
Brown, M.T. 410
Browne, A.W. 261
Bruce, W.A. 456
Brunnermeier, S.B. 332
BSR (Business for Social Responsibility) website 441
building and construction (B&C) sector, Australia
environmental significance 461
initiative funding capacity 466–7
innovation capacities required 462–3
knowledge building capacity 465–6
opportunities 473–5
product coordination capacity 470
regulatory capacity 472–3
skill development capacity 470–72
technology diffusion capacity 469–70
technology export capacity 472
technology generation capacity 463–5
technology incorporation capacity 470
technology production capacity 467–9
Building Sustainability Index (BASIX) 385–6
buildings related websites 445, 446
Bulgaa, G. 159
Buranakarn, V. 410
Bureau of Labor Statistics, productivity measures 292–3
Burritt, R.L. 20, 271, 310, 311, 318, 320, 321
Burtraw, D. 126, 131
Business for Social Responsibility (BSR)
 website 441
Butter, M. 133
butterfly effect 527

Cadbury Schweppes, Ringwood Confectionary Plant 78–9
CAFE (corporate automobile fuel economy)
 standards 131
Canada
 BC Sprawl Report 383–4
 Green Pages presence 368–9
 ISO 14001 uptake 371
 sustainable technology patent trends 366
Cann, M. 29
Canter, L. 477
Caon, M. 82
Capra, F. 526
carbon dioxide cycle 535–6
carbon dioxide emissions
 EU 449
 Russia 448, 449–51
 USA 449
carbon dioxide mitigation, Russia 453–6
carbon sequestering 529–30
Carlaw, K. 122
CarLovers 255
Carlton & United Breweries 229
carpet tiles
 cradle-to-cradle design 38, 41
 leasing 548
cars see automobiles
Cascade Brewing Company 79–80
case studies
 business cases 84–5
 food industry 77–80
 metal products industry 80–83
 Qwaqwa district technology adoption
 495–503
 service sector 83–4
catastrophic system collapses 537–9
CCA (chromated copper arsenate) wood 412
CCGT (combined cycle gas turbine)
 technologies, carbon dioxide mitigation, Russia 454–6
CD waste see construction/demolition (CD) waste
Celis, R. 495
CFB (circulating fluidized bed) systems 454
CFCs 428
Chadwick, P. 336
Chambers, N. 21
Chan, F. 391
Chang, C.C. 407, 411
Chang, N.B. 412
chaotic systems 527–8
Chaplin, G. 81
Charter, M. 61
Chavchavidze, E.K. 454
chemical industry
 productivity measures 304
 waste reduction 511–12
 see also Dow Chemical; green chemistry; Responsible Care programme
Chennelle, J. 436
Chertow, M. 22
China
 call for a circular economy 33
 Green Pages presence 368–9
 ISO 14001 uptake 369–71
 resources use 4
 S&T policy 168
 Yangtze basin flooding 95
CHP (combined heat and power) systems 127, 450, 455
Christainsen, G.B. 294
Christensen, C. 131
circular economy 33
circulating fluidized bed systems 454
Cities as Sustainable Ecosystems 382
Cities for Climate Protection 384
Clark, G. 197
Clarke, I. 259
Clarke, M.J. 405, 406
Clarke, R. 159
Clarke, S.F. 336
Clarke, W.P. 407
Clauson-Kaas, J. 414
Clayton, A. 131
clean(er) technology 50, 77
 see also integrated environmental technologies
Clean Air Act 126–7, 292, 298
 see also electric utility sector, environmental protection costs
Clean Technology Development Programme 128
Clean Water Act 292
cleaner coal technologies, carbon dioxide mitigation, Russia 454
cleaner production
 concept evolution 68–70
 and eco-efficiency 67, 74–7
 methods 86–9
 options for industry 71
 see also case studies; eco-efficiency
climate change, financial impacts 95–6
Climatex LifecycleÆ 36
Co-operative Bank 251, 254–5
coal-fired power stations, waste produced 295, 302–4
coal, low sulphur 293–4
coal mines
 methane emissions 452–3
 methane mitigation 457
Cohen, J.E. 537
Cohen, M.A. 332
Colleveccio Declaration 347
complexity theory 527
composting 408–10, 412
see also organic recycling
Comprehensive Environmental Response, Compensation and Liability Act 317
computers, recycling 508
Connelly, M. 29
Connolly, J. 251, 258
Conrad, K. 294
constructed wetlands 416, 531
collection/demolition (CD) waste
 integrated waste management (IWM) 410–13
 recycling 515–17
constructive technology assessment (CTA) 63
consumption indicators 21
Convoy funding scheme (Öko-Audit im Konvoi) 243
Coombs, R. 334
Cooper, C. 110
Cooperband, L.R. 409
Copeland, T. 273
copper recovery 544
see also cyclic copper
corporate automobile fuel economy (CAFE) standards 131
corporate managers, demands from SRI 347–8
corporate responsibility 102
corporate sustainability
 achieving compliance 225–6
 beyond compliance 226–9
 distinction from corporate environmentalism 222–3
 drivers of change 223–5
 efficiency phase 229–30
 human/ecological sustainability tensions 237–8
 incremental and transformational change 234–6
 leadership styles 236–7
 strategic phase 230–33
 sustainable organizations 234
Costi, P. 406
Cowell, R. 378, 379
Cozzens, S. 158, 172
cradle-to-cradle design
 aims 35
 financial concerns 44–5
 fractal triangle 45–6
 future 47–8
 integration into product development 42–3
 intelligent materials pooling (IMP) 43–4
 paradigm 35–8
 practice 39–41
 profitable example 46–7
 rising interest in 33–5
 cradle-to-grave approach 405
see also lifecycle assessment (LCA)
Craig-Lees, M. 262, 264
Cramton, P. 344
Crandall, R.W. 294
Crane, A. 251, 259
Crane, D. 423
criticality 527
Crognale, G. 485, 486
Crude, B.J. 251
CTA (constructive technology assessment) 63
Cui, Y. 529
Cunningham, W.H. 259
Cushman, R.M. 207
cyclic copper 548
see also copper recovery
Dabkowski, S. 110
Daily, B.F. 222
Daily, G. 422
Daly, H.E. 531
Davidson, A. 140
Davis, E. 114
Davis, J.J. 251
de Geus, A. 228
de Hoo, S. 70, 86, 124
De Lacy, A. 104
de Leeuw, B. 197
de Swaan Arons, J. 545
Dearing, A. 58
Delany, K. 105, 106, 107
Delgado, C.L. 492, 495
dematerialization 19–20, 542–3
Denison, E.F. 294
denmark see Clean Technology Development Programme
Dennison, F. 405, 414
depleted uranium munitions 544
Dernbach, J. 388

DESA (Department of Economic and Social Affairs) website 438–9

Descartes, René (1596–1650) 524
design for environment 77

Design Tex 44

DeSimone, L. 72, 73, 86, 89, 220
detoxification 19
Deville, A. 161
Diab, R.D. 490
Dialogue for a City 379
Dialogue for the Pilbara 382
Dickson, D. 171
Dieleman, H. 124
direct material input (DMI) 21
dispersion 68
dissipation 543–4
diversity 17, 19
Dixit, A.K. 273
DMC (domestic material consumption) 21
DMI (direct material input) 21
Doherty, P. 238
Dolan, P. 251
dolphin-free tuna, Starkist 253–4
domestic material consumption (DMC) 21
domestic processed output (DPO) 21
Donkin, R. 110
Dow Chemical 96
Downing, P.B. 122
Doyle, D.J. 336
DPO (domestic processed output) 21
Drake, E.M. 529
Drumwright, M.E. 252, 254
dry-cleaning, alternative to halogenated solvents 29
drywall 516–17
Dryzek, J. 222
Dunford, R. 228, 235
Dunn, S. 390
DuPont 97, 99
durability 73–4
durability model 36, 38
During, R.-A. 408
Dürr, G. 55
e-waste 507–8
Earth Day Resources 251
Earth Summit see UN Conference on Environment and Development
Earth Systems Engineering 529–30
Eastman, B.R. 409
Easy Access Environmental Management project 246

Eaton, D. 407, 408
ECCE (European Council of Civil Engineers) 516
Eckstein, B. 381, 382
eco-design 77
eco-efficiency
and cleaner production 67, 74–7
concept evolution 70–72
dimensions 72–3
elements 74
see also case studies; cleaner production
eco-efficiency elements 88–91
eco-efficiency innovations, categories of 6
eco-industrial park promotion framework 23
eco-industrial parks 541
eco-labelling, tourism sector 279–83
Eco Manufacturing Centre 231–3
ecological footprints
Western Australia 144
world 536–7
ecological sustainability 222
Economic Vitality Index 383
Edquist, C. 55, 62
education 556
see also online learning websites
EEA (external environmental accounting) 308–9, 315–20
efficiency indicators 21
Ehrenfeld, J.R. 22, 200, 224, 229, 238, 326, 336
Ehrenreich, B. 225
Ehrlich, A.H. 152
Ehrlich, P.R. 152
EIA (environmental impact assessment)
in conjunction with EMS 486–7
cost–benefit analysis 479, 482
definitions 477–8
distinction from lifecycle impact assessment 198
environmental systems modelling 479
for evaluating environmental quality 283
and GIS 487, 490
and lifecycle assessment 487
methodology and scope 478–9
risk assessment 483–5
Eiderstrom, E. 284
Einstein, A. 523
electric utility sector
carbon dioxide emissions, Russia 448, 449–51
environmental protection costs 293–5
see also coal-fired power stations, waste produced; productivity measurements
electric vehicles websites 445
electrical waste (e-waste) 507–8
Eliasson, B. 453
Elie, L. 397
Elkington, J. 105, 238, 256, 259, 344
EMA (environmental management accounting) 308–15
EMAS (Eco-Management and Audit Scheme) definitions 241–2
role in tourism sector 283–6
uptake 369, 371
EMAS 283
emissions allowances trading accounting for 318–20
and innovation 125–6
Emissions Trading Scheme (EUETS) 459
EMS (Environmental Management Systems) barriers 242
in conjunction with EIA 486–7
forms of 241–2
horizontal networks 243–5
light versions 242, 249
multi-stakeholder networks 246–7
network approaches 242–3, 247–9
vertical networks 245–6
see also EMAS; ISO 14001 EMS Standard
EMS (Environmental Management Systems) popularity of 369–71
EMS Standard see ISO 14001 EMS Standard
End of Life Vehicles Directive 547
end-of-pipe technologies 50
Energy Australia 223
energy efficiency approach limitations 549
energy-efficient buildings poor design and air quality 33, 35
websites 445
Energy Intelligent Europe Initiative 98
energy intensity 73–4
engineering method for cleaner production 86
engineers, and industrial ecology 15–16
England, medieval population collapse 539
Engle, R.F. 395
entropy 547
environmental accounting 308–10, 320–21
see also EEA; EMA
environmental innovation definitions 50–51, 325
drivers 57–9, 329
indicators 324–5, 327–36
typology 325–7
environmental innovation policies implications 131–2
innovation waivers 126–7
investment subsidies 127–8
niche policies 132
overview 130–31
policy types 122–4
pollution taxes and emission trading 125–6
R&D subsidies 128–9
rationale 119
standards and regulations 124–5
system innovation 132–3, 133–5
transition management 133
voluntary agreements/covenants 129–30
environmental lawyers 94
environmental liabilities 317–18
environmental management 3
environmental patents 362–3, 366
environmental protection measures, and productivity measurements 293–5
environmental sciences, and industrial ecology 14–15
environmental sociology, and industrial ecology 15
environmental technology 3
environmental technology management (ETM) 3
environmentally conscious design 29
see also green chemistry
EPA (Environmental Protection Agency), recommendations for 304–5
EPR (Extended Producer Responsibility) 509
Eprida 549–50
Epstein, P.R. 487, 488
Epstein, S. 512
Eremin, L.V. 450
ERFA (environmentally related financial accounting) 271
Erkman, S. 30
Ernst, H. 390
ESD (ecologically sustainable development), classifying research for 160–65
Esperanza, M. 413
ESTs (environmentally sound technologies) see also technology transfer
ESTs (environmentally sound tecnologies), Agenda 21 definition 175
ethanol, as fuel 423, 427
ethical consumers 260–62
see also green consumers
ethical investing see SRI
ethical investment 341–2
Ethical Purchasing Index 251
ethics 529
Etzioni, A. 262
EU carbon dioxide emissions 449
End of Life Vehicles Directive 547
Factor 4 gain in resource productivity 97
legislation on recycling 507–8
REACH legislation 512
voluntary agreement on fuel efficiency 130

see also Energy Intelligent Europe Initiative

EU Emissions Trading Scheme (EUETS) 459

Evans, D. 198, 199, 207, 208

Everson, R. 501

expert teams 465–6

exponential growth 538

Extended Producer Responsibility (EPR) 509

external environmental accounting (EEA) 308–9, 315–20

fair trade 260–61

see also green consumers

Fane, S.A. 414, 416

Fare, R. 294, 295, 299

fate of materials 27

Fatta, D. 411

Favorita Banana Company 486

Felder, M.A. 407

Féreyes, T.I. 494, 495, 500

Fineeman, S. 50

Fiorino, D. 236, 237

First Macrolotto, Prato, Italy 244–5

Fischer, C. 122, 123

Fischer, K. 336

Fischer, S. 291

Fitchett, J.A. 251

Fleay, B. 422

Fleming, G. 411

food industry case studies 77–80

Foran, B. 423

Ford, J. 114

Ford Australia 82–3

Ford Motor Company, Rouge River plant 46–7

forests 510

Forster, C.F. 410

Foster, C. 57, 58, 135

Fowlere, L. 509

Foxall, G.R. 64

Foxon, T.J. 120, 131, 132, 135

Fowxwell, H.S. 141

fractal triangle 45–6

France

Green Pages presence 368–9

ISO 14001 uptake 371

sustainable technology patent trends 366

Franke, N. 55

Franklin, W.F. 195

free market, v active choice 4

Freeman, C. 49, 120

Freeman, M.A., III 301

Freeman, R.E. 270

Freund, P. 456

Friedman, M. 262

Frosh, R. 13

Frymier, P.D. 413

Fuji Xerox, Eco Manufacturing Centre 231–3, 234, 236, 238

funding see building and construction (B&C) sector, Australia, initiative funding capacity; Convoy funding scheme

Furima Iron Foundry 486

Gaia 540–41

Gajdos, R. 408, 410

Gale, J. 456

Galileo Galilei 524, 533

Gallopoulos, N. 13

Gardner, G. 140, 141

Garrison, D.R. 442

Garrod, B. 336

gas pipelines, methane mitigation, Russia 456

gas prices, Russian 457–8

Gath, S. 408

Gazprom, gas distribution emissions 456

Georg, S. 128

geothermal energy 425

see also Birdsville, Australia

Germany

energy efficient buildings and allergies 35

EPR (Extended Producer Responsibility) 509

Green Pages presence 368–9

ISO 14001 uptake 371

material efficiency 21

sustainable technology patent trends 366

Gertler, N. 22

Getzner, M. 334

Gibbons, P. 510

Gibson, R.B. 375

Giddens, A. 257, 258

Gifford, B. 253

Gillespie, G. 53, 506

GIS (geographical information systems), in EIA 487, 490

Global Change and the Earth System, A Planet Under Pressure 424

global climate change 424–5

Global Compact see UN Global Compact initiative website

global overstretch 140

Global Reporting Initiative (GRI) 319, 355

Globo sapiens 430–31

Glosten, L. 396

Godin, B. 336

Goethe, Johann Wolfgang von (1749–1832) 528

Gollan, P. 104, 105, 106, 111, 114, 229

Gollop, F.M. 294, 298
good housekeeping 70–71
Goodman, D. 261
Goodman, M. 261
Goodman, S.B. 343
Goodwin, B. 525, 527
Gorder, C. 256
Gordon, R.J. 291, 292
Gordon, R.J. 291, 292
Gordon, R.J. 291, 292
Gordon, R.J. 291, 292
Gorgon gas development 375
Gough, S. 378
gradual change 17
Graedel, T.E. 13, 14, 15, 77
Graham-Bryce, I.J. 454
grandfathering 318
Gray, R. 308
Gray, W.B. 294, 295, 306
Great Dying 539
Great Ocean conveyor 95
green business 367–9
green chemistry 27–30, 31
green consumers 256–60
see also ethical consumers
green engineering 29–30, 31
Green Games see Sydney 2000 Olympic Games
Green, K. 57, 58, 60, 61, 135, 327, 332, 334
Green Lead (metal) 549
green marketing
levels of 255–6
overview 251–2, 264
rationale 252–5
Green Pages 367–9
green procurement 61–2
GreenBiz website 440–41
GreenBlue 48
Greene, D.L. 126
Greenville Tube Company 254
greenwash 251
GRI (Global Reporting Initiative) 319, 355
Griffiths, A. 106, 107, 108
Griliches, Z. 360, 366, 390
Groenewegen, P. 336
Gross, R. 131
Grubb, M. 449, 457, 458, 459
Guerin, T. 284
Guinée, J.B. 20, 206
Günter, A. 197
Gutiérrez, M. 413
Gutowski, T. 336
Gyproc Wallboard plant, Kalundborg 22
Habermeier, K.F. 54
Hackefors model 243–4, 245
Hacking, T. 485
Hahn, D.W. 412
Haines, J. 256, 259
Hajer, M. 222, 233
Halkier, B. 258
Hamilton, C. 141
Hammad, M. 410
Hammes, F. 416
Hammond, A. 141
Hansen, O.E. 131
Harasim, 442
Harbing, S.P. 532
Hargreaves, R. 159
Hargrove, K. 145, 508, 512
Harmon, S.W. 442
Harper, G.C. 260
Hart, S. 330
Hartmann, H. 410
Hatfield-Dodds, 148, 149
 Haveman, R.H. 294
Hawken, P. 96, 145, 511, 516
Hay, J.E. 176, 182, 185
Hays, S.J. 432
Heaton, G.R. 136
Heijungs, R. 206
Heintze, M.R. 432
Heinze, K. 497
Heisenberg, W. 527
Heiskanen, E. 61
Hellstrom, D. 414
Hemmadi, M. 495
Hemmelskamp, J. 329
Henderson, C. 411
Herbertson, J. 214
Herman Miller (furniture company) 42–3
Herrington, J. 434
Herstatt, C. 56
Herzog, H.J. 529
Hewitt, T. 169
Hewlett-Packard 230–31, 235
Higgins, M. 262
Hilhorst, T. 407, 408
Hill, C. 262, 264
Hill, M.R. 448, 450, 451, 454, 455, 456
Hill, S. 166
Hillman, R. 242
Hinterberger, F. 146
Hiramsato, Y. 412
Hirschhorn, J. 91
Hirschowitz, R. 496, 500
Hjeresen, D. 27, 29
Ho, G. 414, 416
Hoffman, A. 226, 230
Holden, A. 278
holistic science 525–9
holistic thinking, and ETM 529–32
Holland, K. 128
Holliday, C. 77
Hommen, L. 55
Honda 253
Hoogma, R. 62, 63, 132
Hope for the Future strategy
 hopes and visions 147
 overview 143–5, 155
 physical economy model 148–9
 political challenge 149–52
 solutions 147–8
 sustainability assessment approach 374–8
 targets and indicators framework 152–4
 workshop approach 145–7, 148
hospitals see Native American Reservation
 health centre example; St John of God Health Care
Houghton, J. 536
Houghton, J.T. 140
houses from the Earth websites 445
housing see Building Sustainability Index
HRSG (heat recovery steam generators) 455–6
Hruska, J.P . 406
Hsiao, T.Y . 410, 411, 412
Hu Jintao 33
Huang, G. 405, 406, 408
Huang, S. 222
Huang, W.L. 411, 413
Hubert, M. King 422
Huber, J. 15, 335, 336
Hughes, D.R. 260, 261
Hughes, J.C. 408, 409
Huitema, D. 123
human economy
 growth 537–9
 size compared to nature 535–7
human resource sustainability
 current situation 109–10
 definitions 106–8
 institutions 110–12
 need for 104–5
 profitability 112–14
 way forward 114–17
 see also corporate sustainability,
 human/ecological sustainability
 tensions
human sustainability 222
hunger elimination websites 445
Hunt, C.B. 321
Hunt, J.W. 116
Hunt, R.G. 195
Huselid, M.A. 113, 114
Huybers, T. 277
Hwang, Y. 411, 412
hydro-electricity 425–6, 445–6
hydrogen, as transport fuel 424, 428–9
hydrogen-electric economy 544–5
hydrosphere, definitions 477
IBM 254
Ibuprofen production 27, 29
ICI Ltd see Orica Ltd
IGCC (integrated gasification combined cycle) systems 454
IISD (International Institute for Sustainable Development) website 436–7
Imai, M. 76
IMP (intelligent materials pooling) 43–4
impact assessment in lifecycle development 40
incineration
 in Japan 509
 of PVC 41
 of sewage sludge 414
 of wood 412, 417
 see also New York City recycling case study
INCO Pty Ltd. 227–8, 236–7, 238
India
 Green Pages presence 368–9
 ISO 14001 uptake 370–71
 S&T policy 167–71
Indian Health Center see Native American Reservation health centre example
indicators, and sustainability assessment 380–82
indirect R&D 465
Indonesia, S&T policies 167–8
industrial ecology
 definitions 13
 outlook 30–31
 perspectives 13–16
 product and process applications 24–30
 system applications 16–24
industrial ecosystem promotion framework 23
industrial metabolism 16–19
industrial symbiosis 22–4, 30–31
ING Group 227
innovation, definitions 119–22
innovation policies 4–5
innovation waivers 126–7
input indicators 21
input substitution 70–71
integrated environmental technologies 50
integrated gasification combined cycle systems 454
integrated waste management (IWM)
 construction/demolition waste 410–13
 domestic/municipal wastewater 413–16
 organic waste 407–10
 overview 405–7, 417
 intelligent materials pooling (IMP) 43–4
Interface Inc. 548
intermediary users 51
International Expert Meeting on Sustainable Consumption and Production (2003, Marrakech, Morocco) 143
International Geosphere-Biosphere Programme 424
International Institute for Sustainable Development (IISD) website 436–7
international policy, history 142–3
Internet
EMAS role 282
sustainable technologies information 367–9
intuition 528
inventory stage in lifecycle development 40
investment subsidies 127–8
iron, cyclic flow 545
Isenmann, R. 13, 15
ISO 14000 environmental management standard 485
ISO 14001 EMS Standard 86, 241–2, 369–71, 486
ISO 14040 LifeCycle Assessment method
application to a typical problem 201–7
principles and framework 195–6
strengths and weaknesses 207–8
see also lifecycle assessment (LCA)
ISO 14041 Life Cycle Inventory Analysis 196–7, 203–5
ISO 14042 Life Cycle Impact Assessment 197–200, 205–6
ISO 14043 Life Cycle Interpretation 200–201, 206–7
Italy
First Macrolotto, Prato 244–5
Green Pages presence 368–9
ISO 14001 uptake 371
sustainable technology patent trends 366
Jacob, K. 141
Jaffe, A.B. 126, 329, 331
Jalas, M. 141
James, P. 308, 313
Jang, Y.C. 411, 413
Jänicke, M. 148, 336
Japan
ISO 14001 uptake 369–71
material efficiency 21
recycling 507, 509–10
sustainable technology patent trends 366
Jazz 385
Jeantheau, T. 397
Jennings, I. 382
Jeppson, U. 414
Jevons, W.S. 141
Johnson, R.G. 530
Johnstone, N. 359
Jones, S.A. 486, 487
Jonsson, H. 414
Jordan, A. 378
Jorgenson, D.W. 298
Josephson, B. 100
Joshi, S. 295
Jung, C. 122
Jung, C.G. 525
Kalundborg, Denmark 22
Kärnä, A. 61
Kearins, K. 237
Kemira Acid Plant, Kalundborg 22
Kemp, R. 54, 120, 121, 122, 123, 127, 131, 132, 133, 135, 329, 336
Kemp, René 50
Kennedy, A. 104
Kenworthy, J. 379, 380, 383
Kenya, leather industry 169
Khanna, M. 316
Kierkegaard, H. 273
Kilbourne, W. 252, 256
Kilbourne, W.E. 262, 263, 264
Kincaid, J. 24
King Hubbert, M. 422
Kirsten, J. 493, 494, 495, 496, 500
Klang, A. 413
Kleinknecht, A. 334
Klimesch, D. 413
Kline, S. 135
Klok, P.J. 129
Klöpffer, W. 200
knowledge workers 104, 111
Koenig, A. 409
Kolk, A. 269, 327
Korea see South Korea
Korhonen, J. 17, 19
Kozhukhovskii, I.S. 458
Krishna, V.V. 159, 167, 168
Krook, J. 411, 412
Krugman, P. 111
Kubler, H. 410
Kuhn, T.S. 524
Kumar, S.K. 492
Kuzbass coalfields 457
Kwawe, D.B. 405, 408
Kwon, S. 224, 238
Kyoto Protocol 424
Lackner, B. 62
Lafleur, M. 85
Lakoff, G. 378
Lambert, A. 23
Lamond, J.F. 413
Lancaster, M. 27
Landcare (National Landcare Program) 513
landfill 513
 CD waste 410–11, 413
 costs 514
 organic waste 407, 513
 see also New York City recycling case study
Landfill Directive, EU 516
Landfill Tax, UK 130–31
Langowski, H. 197
Langston, C. 461
Lanjouw, J.O. 331
Larson, E.D. 542
Laszlo, C. 228
Laugel, J. 228
Lawn, P.A. 153
LCA see lifecycle assessment (LCA)
LCD (lifecycle development) 39–41, 56
Leach, G. 423
lead (Pb), in the atmosphere 535
lead users/early adopters 56
leadership styles, for corporate sustainability 236–7
Learning Forum see UN Global Compact initiative website
leasing 548
LEED (Leadership in Energy and
Environmental Design) 385, 515–16
Lefebvre, E. 332
Lenox, M. 326, 336
Leopold, A. 525
Lesourd, J.-B. 271, 272, 273
Lesson, N. 461
Li, W.K. 397
LIBS (laser-induced breakdown spectroscopy) 412
LIFE (The Financial Instrument for the
Environment) 282
lifecycle design 77
lifecycle assessment (LCA) 513
 distinct from product design in LCD 39
 in EIA 487
 history 195
 in Integrated Waste Management 405–7
 organic waste management 408
 wastewater 414
 see also ISO 14040 LifeCycle Assessment method
lifecycle development (LCD) 39–41, 56
Lifset, R. 13, 77
Lin, S.H. 407, 411
Lindentmayer, D. 510
Ling, S. 397, 398, 400
Lipsey, R.G. 122
lithosphere, definitions 477
Liu, H.W. 407, 408, 409
Liu, X. 168
Livability Index 383
living machine concept 531
Local Agenda 21 (UNCED) 384
locality 17, 19
Loorbach, D. 133
Lorek, S. 141
Lovelock, J.E. 540
Lovins, A. 97, 229, 230, 237, 429, 505
Lowe, I. 424, 426
LPG (liquid petroleum gas) 423
Lundie, S. 406, 414
Lundvall, B.-Å. 49, 120
Lyne, M.C. 500
Maboeta, M.S. 409, 412
McAleer, M. 331, 359, 361, 390, 391, 397, 398, 400
McConnell, V.D. 294
McCormick, J. 195
McDaniel, S.W. 256
McDonagh, P. 251, 252, 260, 261
MacDonald, C. 269, 270
McDonald’s, reacting to consumers 253
McDonough Braungart Design Chemistry (MBDC) 42, 44, 48
McDonough, W. 33, 41
McDougall, F.R. 406
McGrath, C. 411
McIntosh, M. 230
Mackay, H. 53
McKean, M. 509
MacKenzie, J.J. 140
Mackey, B. 510
McMeekin, A. 327
Magat, W.A. 122
Mannheim Innovation Panel 51, 58
Mans, D. 167
manufacturing industry, environmental
 protection costs 295
 see also productivity measurements
Maor, D. 442
Marceau, J. 468
Marinova, D. 331, 359, 360, 361, 365, 366, 390, 391
marketing of environmental issues 59–60
Markusson, N. 50, 52, 60
Marrakech Process 143
Martinez, C. 159
Mata-Alvarez, J. 409, 410
Matata, J.B. 494
materiality 319, 345, 354
materials choices 541–2
materials flow analysis 19–22
materials intensity 72, 74
Matos, G.D. 409
Matten, D. 236
Mates, E. 360
Matthews, E. 21, 141
Maunders, K. 320
Maurer, M. 414
Mauser, A. 327
Max-Neef, M. 220
MBDC (McDonough Braungart Design Chemistry) 42, 44, 48
Meadows, Donella. H. 4, 531, 538, 539
Mechling, L. 256
MEEA (monetary external environmental accounting) 316
Melbourne Principles 382–3
Mello, W. 406
Mels, A.R. 414
MEMA (monetary environmental management accounting) 310–12
Mendelsohn, R. 122
Mendelson, N. 251
Menon, A. 251, 255
Menon, M. 251, 255
mentoring, and SME engagement 246
Merchant, C. 523
Merle, S. 499
Merme, M. 354
metal products industry case studies 80–83
‘metaphor of natural ecosystems’ 14
Metcalfe, J.S. 122
methane, as fuel 427
methane cycle 536
methane emissions, Russia 448, 451–3
methane mitigation, Russia 456–7
methanol, as fuel 423, 427
METRIX 386
Michaelis, L. 141
Micheletti, M. 258
Mijindadi, N.B. 496
Miles, I. 327
Miles, S. 264
Millennium Development Summit 140
Miller, D. 258
Milliman, S. 122, 123
Minton, A.P. 258
Miri chairs 42
Misi, S.N. 410
Mody, A. 331
Moe, A. 452, 456
Mohee, R. 405, 408
Mol, A. 222, 230
Mongolia, S&T policy 166–70
Moriguchi, Y. 19, 20, 21
Morris, W.M. 523
Morrison, C.J. 294
Morrison, P.D. 56
Moskal, T.M. 412
Mozambique, cashew production 169–70
Muchie, M. 169
Mulder, A. 414
 Muller, J.A. 410
Munnell, A.H. 291
Munro, D.A. 158
Naess, A. 525
Nakano, K. 414
Nakano, T. 509
nanotechnology patents 364–6
National Landcare Program 513
National Strategy for Ecologically Sustainable Development (NSES)D 160–65
Native American Reservation health centre example 478
Nattrass, B. 210
natural analogy 14
natural capitalism need for 96
principles 96
see also biomimicry; resource productivity increase; restoration
Natural Step Framework
constraints 216–17
engagement 218–19
goals 215–16
overview 210–11, 219–20
sustainability framework 211–13
system conditions 213–14
systems thinking 217–18
Natural Step Project 17
Nature Works polylactic acid (PLA) 29
Nell, W.T. 495, 496, 497
Nelson, D.B. 396, 398
Nelson, R.R. 122
NEPA (National Environmental Policy Act) 477
Nestor, D.V. 294, 299
Index 569

Dora Marinova, David Annandale, and John Phillimore - 9781847203052
Downloaded from PubFactory at 09/17/2023 04:00:07PM via free access
petroleum alternatives 423–4
see also bio-diesel; hydrogen, as transport fuel
petroleum reserves depletion 422
Pfeffer, J. 113, 228
Pfeiffer, F. 334
Phillips, T. 317
photovoltaic cells see PVC (photovoltaic cells)
photovoltaics (PV)
installation training needs 471
Piasecki, B. 227
Pigou, A. 119
Pimenova, P. 336
Pinch, T. 49
Pindyck, R.S. 273
Pittman, R.W. 299
PLA (Nature Works polylactic acid) 29
Pleypys, A. 141
Plunkett, C. 517
Pojašek, R. 86
Poldy, F. 149
politics, and sustainability assessment 379–80
pollution abatement costs and expenditures
(PACE) 324, 330–31
pollution levels 390, 424
pollution prevention 76–7
pollution taxes 125–6
Polansky, M.J. 60, 251, 256
polylactic acid (PLA), Nature Works 29
Poon, C.S. 405, 410, 411, 413
Pope, J. 375
Popoff, F. 72, 73, 86, 89, 220
Popp, D. 126, 332
Porter, M.E. 124, 125, 254, 294, 330, 534
Postel, S. 140
Prato model 244–5
pre-planning 411
Prentis, E. 59, 60
Preston, L. 230, 231
Pretty, J. 378
pricing, of bads 298
see also productivity measurements
Prince, R. 122, 123
productivity measurements
bias against environmental protection 295–9
current mechanisms 292–3
and environmental protection measures 293–5
importance of accuracy 291–2
improved mechanism 299–302
improved mechanism results 302–4
recommendations 304–5
Prothero, A. 251, 258, 264
Prutkovskii, E.N. 454
PSRC (Photovoltaics Special Research Centre) 464, 471, 473
pulp and paper industry
waste produced 301, 303–4
see also paper waste
Pure Energy Scheme (Energy Australia) 223
PV (photovoltaics)
installation training needs 471
PVC (photovoltaic cells)
arbitrary use in street lighting 384
Australian B&C sector adoption 464
calculators using 325
construction of 426
expert teams 465
Green Pages database 367
roofs incorporating 426–7, 463
Sacramento California electricity utility 98
PVC (polyvinyl chloride) 41–2
quality-based method for cleaner production 89
Quist, J. 146
Quisumbing, A. 492
Qwaqwa district case study
financial resources 500
human capital endowment 496–7
management skills 497–500
overview 495–6, 502–3
technology inputs used 501–2
R&D capacity, in Australian B&C sector 463–5
R&D departments, and green issues 57
R&D subsidies, environmental innovation policies 128–9
rainwater harvesting websites 446
see also stormwater system, Ford, Rouge river
Rance, C. 109, 110
Raynolds, L.T. 260, 261
Raynor, S. 381
REACH (registration, evaluation and authorization of chemicals) legislation 512
Read, M.P. 511
‘real’ technology 4
Reason, P. 527
recyclability 73–4
recycling
of buildings 516
California 508
computers 508
construction/demolition (CD) waste 515–17
Index

cradle-to-cradle paradigm 38
environmental management paradigm 69
EU legislation 507–8
Japan 507, 509–10
on-site 70–71
organic material 512–15; see also composting
Singapore 507; see also New York City recycling case study; value loop
reductionism 526
Rees, W. 140, 144
Reeves, T.C. 442
regenerative braking 543
regional planning, and sustainability 382–4
Reijnders, L. 68, 69
Rein, M. 378
Reinhardt, F. 233
Ren, S. 413
renewable energy
case for 422, 429–31
and climate change 424–5
main options 425–7
petroleum alternatives 423–4
problems with 427–9
social inequity 425
renewable energy patents 363–4, 366
Rennings, K. 51, 58, 121, 135, 332, 334, 336
Repetto, R. 301, 344, 345
replumbing the planet 530
research
classification for ESD-relatedness 160–65
evaluation assessment issues 158–9
resource efficiency, as solution 141
resource productivity increase 96
Responsible Care programme 326, 352
restoration 97, 101–2
Rice, F. 254
Richardson, R. 113
Rio Earth Summit 67, 142, 175
Rip, A. 54, 62, 120
risk management, in SRI 344–5
river energy websites 446
Robért, K.-H. 17, 210, 212, 220
Roberts, M.J. 294, 298
Robinson, J.C. 295, 298
Rodriguez-Iglesias, J. 406
Rogers, E.M. 49, 497
Rohner Textil 44
Rohracher, H. 49, 55
Roome, N. 231, 326, 327, 336
Rose, A. 334
Rose, D.A. 51
Rose, R.L. 258
Rosenberg, N. 135
Rosenberger, P.J., III 251, 256
Ross, S. 198, 199, 207, 208
Rossi, M. 77
Rothwell, R. 136
Rotmans, J. 133
roundput 17, 19
Rubik, F. 61
Rudmin, F.W. 262, 263, 264
Rumbo, J.D. 262, 264
Russell, S. 53
Russia
carbon dioxide emissions 448, 449–51
carbon dioxide mitigation 453–6
commercial factors 457–9
data sources 448–9
methane emissions 448, 451–3
methane mitigation 456–7
Ryan, C. 140, 143
Rylander, D.H. 256
S&T (science & technology) policy
in developing countries 165–9
North–South differences 159–60, 171–2
for sustainable local development 169–71
SABRC (State Agency Buy Recycled Campaign) 508
Sagawa, S. 224
Saito, K.A. 492, 495, 496, 497, 498, 502
Salomons, W. 538
Sampat, P. 140, 141
Sanchez, L. 485
Sandcock, L. 381, 382
Sanders, J.H. 492, 495
Saneev, B.G. 449, 450, 451, 454
Sangle, S. 207
Satterthwaite, A. 264
Schachermayer, E. 410, 411, 413
Schaefer, A. 50, 57
Schalltegger, S. 20, 271, 308, 310, 311, 318, 319, 320, 321
Schemenau, W. 454
Schilizzi, S. 271, 272, 273
Schmidheiny, S. 124, 294, 336
Schmidt-Bleek, F. 220
Schober, G. 408
Schön, D. 378
Schor, J. 262
Schot, J. 61, 62, 63, 336
Schreff, D. 416
Schultz, P. 492
Schumacher, E.F. 359, 530
Schumpeter, J.A. 120
Schutz, H. 141, 144
scientific thought 523–5
see also holistic science
Sclove, R.E. 361
Scott, W. 378
Sedikh, A. 452
Segal, E. 224
Selber, J. 487, 488
Selman, P. 378
Senge, P.M. 235
Sennett, R. 112
Seo, S. 406, 411, 412, 414
Serov, V.I. 457
service intensity 73–4
service sector case studies 83–4
Sessions, G. 525
Shadbegian, R.J. 295, 306
Shah, S. 55
shale deposits, for oil 423
Shama, A. 262
Shaw, B. 468
Shaw, D. 258, 259, 262, 263
Shaw Industries, carpet tiles 38, 41
Shechter, M. 407, 408, 410, 412
Shehata, S.M. 407, 408
Sheldon, C. 86
Shepherd, N. 398
Shepherd, P. 345
Shonnard, D. 29, 30
Shook, M.D. 257
Shove, E. 54
Shrivastava, P. 237, 336
Singapore, recycling 507
Sinha, R.K. 409
Skea, J. 326, 336, 359
Skellenger, B. 317
Skytube 464
Slaughter, S. 55
Slavin, T. 112
SMEs (small and medium-sized enterprises), number of 241
Smith, D. 336
Smith, D.C. 408, 409
Smith, K. 135
Smith, M. 145, 508, 512
Smith, R.L. 412
SNM (strategic niche management) 63
Snyder, M.C. 494, 500
social/socially aware investing see SRI
socio-technical experiments 62–3
Socolow, R. 14
Soete, L. 120, 122, 390
soil fines 413
Solahart 80–81
solar energy 425–7, 445, 446–7
Sole, R. 527
Solo-Gabriele, H.M. 412
Sonnenfeld, D. 230
South Africa rural farming 492–4
technology adoption in small-scale farming 495; see also Qwaqwa district case study
South Australia, Zero Waste Office 507
South Korea
ISO 14001 uptake 371
patent trends 166, 366
Southwire Corporation 97
Spain
Green Pages presence 368–9
ISO 14001 uptake 370–71
Spangenberg, J.H. 141
spheres, Earth’s 477
Sprenger, R.-U. 124
SRI (socially responsible investment)
communicating with SRI community 353–5
corporate implications 348–9
corporate manager implications 347–8
developing understanding 352–3
evolution of 341–5
management implications 350–52
overview 340–41, 355–6
regulatory and industry responses 345–7
St John of God Health Care 84
Stace, D. 226, 235, 237
Stakhiv, R. 224, 329
Starkist, dolphin-free tuna 253–4
Statoil Refinery, Kalundborg 22
steel-making plants, environmental protection costs 295
see also productivity measurements
Steer, D. 416
Steffen, W. 424, 425
Steger, U. 327
Stelmachowski, M. 409
Stern, J.P. 452
Stevels, A. 60
Stevens, M. 427
Stewart, I. 527
Stigliani, W. 538
Stinson, C. 308
Stipp, D. 95
STMicroelectronics 99
stories, and sustainability assessment 380–82
stormwater system, Ford, Rouge river 47
Strasser, K. 124
strategic niche management (SNM) 63
Strong, C. 260
Sturgess, N.S. 511
substance flow analysis 20
see also materials flow analysis
supercritical carbon dioxide 29
Superfund legislation 317
supply chain management 60–61
survey indicators, as indicators of sustainability, need for 3–4
sustainability assessment of buildings and developments 384–7
of complex and strategic projects 374–8
of policies, programmes and plans 378–84
Sustainability Scorecards 385
see also Building Sustainability Index
SustainAbility website 440
Sustainable Business Value Matrix 350–51
sustainable finance 341
see also SRI
sustainable innovation 122
sustainable production and consumption 140–42
Sustainable Seattle 380
sustainable technologies definitions 358–59
websites 441–2, 445–7
SUVs 422
Sweden
ISO 14001 uptake 370–71
sustainable technology patent trends 366
Swiss Re 94
Switzerland
Green Pages presence 368–9
sustainable technology patent trends 366
Sydney 2000 Olympic Games 462, 514
Szejnwald Brown, H. 62

Tadajewski, M. 262
Tadesse, M. 494, 500
Taiwan, sustainable technology patent trends 366
Tangen, K. 452, 455, 469
Taschwer, K. 278
TBL see triple bottom line
total domestic output (TDO) 21
technical environmental innovations 325
technologically nutrient materials 36–8
see also Shaw Industries, carpet tiles
technology management 3
technology procurement 62
technology transfer capacity 187
challenges 178–81
commitments 189–90
diversity of pathways 177–8
doESTs 174–5, 191
international policies 175–6
needs assessments 181–3, 184–5
risk amelioration 183–7
risk communication 187–8
see also building and construction (B&C) sector, Australia, technology diffusion capacity; Qwaqwa district case study
termites, collective behaviour 527
terrorism 555
Thailand, One Village, One Product programme 170
thermohaline circulation 95
Thomke, S. 56
Thompson, M. 113
Throgmorton, J.A. 381, 382
tidal generators 427
Tisell, C. 283, 358
TMC (total material consumption) 21
TMR (total material requirement) 21, 144
Todd, J. 100, 531
Todd, N.J. 531
Tolaymat, T.M. 412
Tony’s Tuna International 78
Torch Programme 168
total domestic output (TDO) 21
total material consumption (TMC) 21
total material requirement (TMR) 21, 144
Toulmin, S. 524
tourism sector, environmental quality
EMAS role 283–6
overview 276–8
reporting and auditing 278–83
Townsend, T.G. 411, 413
toxic dispersion 73–4
Toxic Use Reduction Act 512
toxicity of materials 27
toxics use reduction 77
Toyota 515
hydrogen propelled automobiles 98
leading rather than following 252–3
Prius 252, 543
strategy
trial electric-automobile collective 252–4
Trapp, R. 105, 106
total material requirement (TMR) 21, 144
triple bottom line (TBL, 3BL) 269–74, 347
triple top line 44–5, 46
Tromp, T.K. 428
Truffer, B. 55
Tsoukas, H. 223
Tucker, S. 461
Turkey, Green Pages presence 368–9
Turner, G. 149
Turpin, T. 158, 159, 161, 168
Tushman, M. 227
Udo de Haes, H. 206
UK
Green Pages presence 368–9
ISO 14001 uptake 371
Landfill Tax 130–31
medieval England population collapse 539
SRI related regulation 345–7
sustainability assessment approach 378
sustainable technology patent trends 366
zero waste 507
Ulrich, D. 116
UN Conference on Environment and Development (1992, Rio de Janeiro, Brazil) 67, 142, 175
UN Global Compact initiative website 439–40
UN websites 437–40
UNCED see UN Conference on Environment and Development
UNEP website 437–8
unintentional environmental innovations 325
university courses
in ETM 432
in Photovoltaics and Solar Energy 471
Unruh, G.C. 131
Urban Form Index 383
urine separation 414
USA
carbon dioxide emissions 449
ecological/anti-pollution patents 392–400
Green Pages presence 368–9
ISO 14001 uptake 369–71
material efficiency 21
waste levels 97
zero waste organizations 507
see also New York City recycling case study
user-initiated innovations 55
users
definitions 51–2
and environmental innovations 52–7
importance in innovation processes 49–52, 63–4
relationships with producers 57–63
Usherwood, N.R. 495
Utterback, J.M. 132
value loop
cyclic loop 541–5
cyclic loop business models 546–50
importance 534–5
sustainability of cyclic flow 540–41
unsustainability of linear flow 535–9
van Berkel, R. 67, 68, 69, 70, 74, 77, 84, 85, 86, 89
van de Ven, A.H. 120
Van den Berg, C. 454
van der Linde, C. 124, 125, 254, 330
van der Voet, E. 20
van der Vorst, R. 336
van Rensburg, L. 409, 412
van Weenen, J. 68, 69
Veiga, J. 228
Vercelli, A. 358
Verganti, R. 58
Vergragt, P.J. 53, 146, 336
Verheem, R. 378
verification, technology needs assessments 185–6
Vermeulen, W. 127
vermiculture 409, 412
Verstegen, P. 153
Vestby, G.M. 53
Victor Innovatex 44
Victor, P.A. 162
Vidal, N. 414
vinyl see PVC (polyvinyl chloride)
VISIT (Voluntary Initiatives for Sustainability In Tourism) project 282
VISTs (voluntary initiatives for sustainable tourism) 280
Vitousek, P.M. 140, 536
Volkwein, S. 207
Voluntary Initiatives for Sustainability In Tourism (VISIT) project 282
voluntary initiatives for sustainable tourism (VISTs) 280
voluntary simplicity 262–4
Volvo 254
von Hippel, E. 51, 55, 56, 468
von Weizsacker, E. 123, 145
Waage, S. 531
Wackernagel, M. 140, 144
Wahlstrom, M. 413
Wallace, D. 135
Wang, F.S. 406
Warner, J. 27, 28
Warner, L.L. 490
WASIG (Western Australian Sustainable Industry Group) 150
Wasik, J.F. 257
waste
from coal-fired power stations 295, 302–4
from pulp and paper industry 301, 303–4
USA levels 97
see also electrical waste; paper waste; zero waste
waste CD fines, reuse hazards 413
waste minimization 76, 446
see also biomimicry, eliminating the concept of waste; cleaner production
WasteCap Wisconsin 516
wastewater, domestic/municipal, integrated waste management (IWM) 413–16
water redirection 530
Watson, I. 111
Watson, R.T. 199
wave energy 427
WBCSD (World Business Council for Sustainable Development) website 434–6
Weaver, P. 129, 145, 220
Weber, M. 63
Weber, W.J. 412
websites see online learning websites; sustainable technologies, websites
WEEE (waste from electrical and electronic equipment) directive 507–8
Weick, K. 234
Weizsacker, E. 531
Welfens, M. 141
Welford, R. 224, 329
Wemelsfelder, F. 529
West, M. 113, 114
Western Australia
ecological footprint 144
Perth, Dialogue for a City 379
Sustainability Strategy see Hope for the Future strategy
zero waste initiatives 507
Western Australian Sustainable Industry Group (WASIG) 150
wetlands, and wastewater treatment 416, 531
Wever, G. 487
Weyer, J. 53, 55
Wheeler, D. 486
White, L.J. 122
White, R. 15
Wilcozen, P.J. 298
Wilderer, P.A. 416
Wilkinson, A. 104, 222, 223
Wilkinson, D. 430
Williams, G. 317
Williams, H.E. 336
Williams, R. 53, 54
Willums, J.O. 141
Wilson, E.O. 523, 538
wind energy 425–6, 428, 446
windrow composting 408–9
Winn, S.F. 327
Winter, M.G. 411
Winter, S.G. 122
wood, waste management of 412
Woodard, R. 405
World Business Council for Sustainable Development (WBCSD) website 434–6
World Resources Institute (WRI) website 440
World Summit on Sustainable Development (WSSD, 2002, Johannesburg, South Africa) 142–3, 176, 382
World3 computer model 539
Worrell, L. 110
WRI (World Resources Institute) website 440
WSSD see World Summit on Sustainable Development
Yangtze River basin flooding 95
Yangtze River redirecting 530
Yarime, M. 123
yellow water 413, 414
Yencken, D. 430
Yokwe, S. 495, 496, 501, 502
Zadek, S. 354
Zavestoski, S. 262, 263
Zeftron Savant® 36
ZERI (Zero Emissions Research and Initiatives) 542
zero waste
government commitments to 506–8
see also biomimicry, eliminating the concept of waste
Zero Waste New Zealand Trust 507
Zosel, T. 69, 76
Zuckerman, A. 254
Zwick, T. 332, 334, 336