Index

3BL *see* triple bottom line

3M (company) 235

AccountAbility 354

acid rain lake *see* Big Moose Lake

Ackers, P. 112

ACL Bearing Company 81

‘active looking’ 528

Adams, C.A. 319

Adeboye, T. 166

Adediran, J.A. 408, 409

Adler, N. 227

Adler, P. 224, 238

Adriaanse, A. 141, 144

aero-derivative gas turbines 455

Agenda 21 (UNCED, 1992) 142, 175

Aggeri, F. 131

A’Hearn, T. 317

Ahring, B.K. 410

Ahuja, G. 330

Aini, M. 405

Akrich, M. 54

Alauzet, N. 410

Albu, M. 169

Alderman, D.R. 412

Alex Fraser Group 515

Alic, J.A. 120, 131

Allen, D. 29, 30

Allenby, B. 14, 15, 529

Altham, W. 284, 359

Altomare, M. 210

anaerobic digestion 408–10

Anaror, 148

Anastas, P. 27, 28

Anderson, D. 131

Anderson, T. 442

Anderson, T.W. 259

Andrews, S.K.T. 334

Angerer, H. 128

anthroposphere, definitions 477

anti-pollution patents 361–2, 366, 392–5

AtKisson, A. 380

Atlas Drycleaners 83

atmosphere

definitions 477

lead in 535

see also carbon dioxide cycle; methane cycle; paintings, showing pollution

Auster, E.R. 321

Austin, A. 234

Austin, D. 344, 345

Australia

forests 510–11

Green Pages presence 368–9

sustainable technology patent trends 366

see also Birdsville, Australia; building and construction (B&C) sector, Australia; Energy Australia; Ford Australia; National Strategy for Ecologically Sustainable Development; Newcastle City Council, Australia, green mission

Australian Capital Territory

‘No Waste by 2010’ commitment 507

Australian Country Choice 80

Austria, material efficiency 21

Ausbubel, J.H. 544

automobiles

cradle-to-cradle paradigm 38

LPG 423

more efficient 429

unleaded gasoline 128

voluntary agreement on fuel efficiency 130

see also electric vehicles websites; EU, End of Life Vehicles Directive; regenerative braking

Avery, I. 407

Ayalon, O.A.Y. 407, 408, 410, 412

Ayers, I. 344

Ayres, R. 16, 17, 141

backcasting from principles 211–12

Bacon, Francis (1561–1626) 524

Arundel, A. 334, 336

Ashford, N.A. 124, 125, 126, 131, 135, 336, 433

Ashley, R. 406

Asnaes Power Station 22

Athens Olympic Games development programme 411

AtKisson, A. 380

Australia

forests 510–11

Green Pages presence 368–9

sustainable technology patent trends 366

see also Birdsville, Australia; building and construction (B&C) sector, Australia; Energy Australia; Ford Australia; National Strategy for Ecologically Sustainable Development; Newcastle City Council, Australia, green mission

Australian Capital Territory

‘No Waste by 2010’ commitment 507

Australian Country Choice 80

Austria, material efficiency 21

Ausbubel, J.H. 544

automobiles

cradle-to-cradle paradigm 38

LPG 423

more efficient 429

unleaded gasoline 128

voluntary agreement on fuel efficiency 130

see also electric vehicles websites; EU, End of Life Vehicles Directive; regenerative braking

Avery, I. 407

Ayalon, O.A.Y. 407, 408, 410, 412

Ayers, I. 344

Ayres, R. 16, 17, 141

backcasting from principles 211–12

Bacon, Francis (1561–1626) 524

557
Bagautdinov, A.Z. 453
Baily, M.N. 291, 292
Bajsa, O. 409, 413
balance indicators 21
Balkema, A.J. 414
Ballinger, J. 461
Banks, R.D. 136
Barber, L. 113
Barbera, A.J. 294
Bari, Q.H. 409
Bartelmus, P. 141
Barth, J. 405, 408
Bashmakov, I.A. 452
Basic Environment Law 509
Basic Framework Law 509
BASIX (Building Sustainability Index) 385–6
Baumgärtner, S. 545
Bayliss, V. 110, 111
BC Sprawl Report: Economic Vitality and Livable Communities 383–4
Beavis, P. 406, 414
Beccali, G. 405, 406
Beck, U. 223, 235, 238, 258
Becker, B.E. 113
Beckmann, S. 256
Behrendt, S. 15
Benitez, E. 409
Bennett, J. 277
Bennett, M. 308, 313
Benson, D. 378
Benveniste, J. 105
Benyus, J. 24
Benyus, J.M. 97, 531
Berry, T. 525
best-of-sector screening 342–4
Beumer, L. 127
Bevan, S. 113
Beyer, D. 385
Biegelbauer, P. 378
Big Moose Lake 538–9
Bindlish, V. 501
bio-diesel 427, 446
biogas cookers, website 445
biological ecology 14
biological nutrient materials 36–8
biomass 425, 427
biomass consumption 536
biomimicy
 definitions 24–7, 31, 97, 531
 see also zero waste
biosphere, definitions 477
Bird, H. 59, 60
Bird, K. 260, 261
Birdsville, Australia 427
Blackmores 254
Blair, J. 386
Blassino, M. 412
Blazejczak, J. 135
Bleischwitz, R. 509
Bollerslev, T. 395
Bonen, J.T. 497
Boons, F. 23
Borghesi, S. 358
Borrás, S. 378
Bortoñi, H. 528
Boussama, F. 397
BP (British Petroleum) 99
Bradbury, J. 381
Bradken 81
Bradshaw, J. 405
Brand, K. 263
Braungart, M. 33
Brazil, ISO 14001 uptake 370–71
Bressers, H.T.A. 123
brick waste 413
Bringezu, S. 19, 20, 21, 141, 144
British Columbia, BC Sprawl Report 383–4
British Petroleum (BP) 96–7
Brix, H. 416
Brown, M.B. 52
Brown, M.T. 410
Browne, A.W. 261
Bruce, W.A. 456
Brunnermeier, S.B. 332
BSR (Business for Social Responsibility) website 441
building and construction (B&C) sector, Australia
environmental significance 461
initiative funding capacity 466–7
innovation capacities required 462–3
knowledge building capacity 465–6
opportunities 473–5
product coordination capacity 470
regulatory capacity 472–3
skill development capacity 470–72
technology diffusion capacity 469–70
technology export capacity 472
technology generation capacity 463–5
technology incorporation capacity 470
technology production capacity 467–9
Building Sustainability Index (BASIX) 385–6
buildings related websites 445, 446
Bulgaa, G. 159
Buranakarn, V. 410
Bureau of Labor Statistics, productivity measures 292–3
Burritt, R.L. 20, 271, 310, 311, 318, 320, 321
Burtraw, D. 126, 131
Business for Social Responsibility (BSR) website 441
Butter, M. 133
butterfly effect 527
Cadbury Schweppes, Ringwood Confectionary Plant 78–9
CAFE (corporate automobile fuel economy) standards 131
Canada
BC Sprawl Report 383–4
Green Pages presence 368–9
ISO 14001 uptake 371
sustainable technology patent trends 366
Cann, M. 29
Canter, L. 477
Caon, M. 82
Capra, F. 526
carbon dioxide cycle 535–6
carbon dioxide emissions
EU 449
Russia 448, 449–51
USA 449
carbon dioxide mitigation, Russia 453–6
carbon sequestering 529–30
Carlaw, K. 122
CarLovers 255
Carlton & United Breweries 229
carpet tiles cradle-to-cradle design 38, 41
leasing 548
cars see automobiles
Cascade Brewing Company 79–80
case studies
business cases 84–5
food industry 77–80
metal products industry 80–83
Qwaqwa district technology adoption 495–503
service sector 83–4
catastrophic system collapses 537–9
CCA (chromated copper arsenate) wood 412
CCGT (combined cycle gas turbine) technologies, carbon dioxide mitigation, Russia 454–6
CD waste see construction/demolition (CD) waste
Celis, R. 495
CFB (circulating fluidized bed) systems 454
CFCs 428
Chadwick, P. 336
Chambers, N. 21
Chan, F. 391
Chang, C.C. 407, 411
Chang, N.B. 412
chaotic systems 527–8
Chaplin, G. 81
Charter, M. 61
Chavchanidze, E.K. 454
chemical industry productivity measures 304
waste reduction 511–12
see also Dow Chemical; green chemistry; Responsible Care programme
Chennelle, J. 436
Chertow, M. 22
China
call for a circular economy 33
Green Pages presence 368–9
ISO 14001 uptake 369–71
resources use 4
S&T policy 168
Yangtze basin flooding 95
CHP (combined heat and power) systems 127, 450, 455
Christainsen, G.B. 294
Christensen, C. 131
circular economy 33
circulating fluidized bed systems 454
Cities as Sustainable Ecosystems 382
Cities for Climate Protection 384
Clark, G. 197
Clarke, I. 259
Clarke, M.J. 405, 406
Clarke, R. 159
Clarke, S.F. 336
Clarke, W.P. 407
Clauson-Kaas, J. 414
Clayton, A. 131
clean(er) technology 50, 77
see also integrated environmental technologies
Clean Air Act 126–7, 292, 298
see also electric utility sector, environmental protection costs
Clean Technology Development Programme 128
Clean Water Act 292
cleaner coal technologies, carbon dioxide mitigation, Russia 454
cleaner production concept evolution 68–70
and eco-efficiency 67, 74–7
methods 86–9
options for industry 71
see also case studies; eco-efficiency
Cleff, T. 51, 58, 336
Clemens, J. 409, 410
Clift, R. 405, 406
climate change, financial impacts 95–6
Climatex LifecycleÆ 36
Co-operative Bank 251, 254–5
crude-to-grave approach 405
see also lifecycle assessment (LCA)
Comprehensive Environmental Response,
Compensation and Liability Act 317
computers, recycling 508
Connelly, M. 29
Connolly, J. 251, 258
Conrad, K. 294
constructed wetlands 416, 531
construction/demolition (CD) waste
 integrated waste management (IWM)
 410–13
 recycling 515–17
constructive technology assessment (CTA) 63
corporate automobile fuel economy (CAFE)
 standards 131
corporate managers, demands from SRI 347–8
corporate responsibility 102
corporate sustainability
 achieving compliance 225–6
 beyond compliance 226–9
 distinction from corporate environmentalism
 222–3
 drivers of change 223–5
 efficiency phase 229–30
 human/ecological sustainability tensions
 237–8
 incremental and transformational change
 234–6
 leadership styles 236–7
 strategic phase 230–33
 sustainable organizations 234
Costi, P. 406
Cowell, R. 378, 379
Cozzens, S. 158, 172
cradle-to-cradle design
 aims 35
 financial concerns 44–5
 fractal triangle 45–6
 future 47–8
 integration into product development 42–3
 intelligent materials pooling (IMP) 43–4
 paradigm 35–8
 practice 39–41
 profitable example 46–7
 rising interest in 33–5
cradle-to-grave approach 405
see also organic recycling
Craig-Lees, M. 262, 264
Cramton, P. 344
Crandall, R.W. 294
Crane, A. 251, 259
Crane, D. 423
criticality 527
Crognaile, G. 485, 486
Crude, B.J. 251
CTA (constructive technology assessment) 63
Cuhls, C. 409, 410
Cui, Y. 529
Cunningham, W.H. 259
Cushman, R.M. 207
cyclic copper 548
see also copper recovery
Dabkowski, S. 110
dematerialization 19–20, 542–3
Denison, E.F. 294
Denmark
see Clean Technology Development Programme
De Geus, A. 228
de Hoo, S. 70, 86, 124
de Leeuw, B. 197
de Swaan Arons, J. 545
Dearing, A. 58
delays, K. 105, 106, 107
Delgado, C.L. 492, 495
dematerialization 19–20, 542–3
Detison, E.F. 294
Cui, Y. 529
corporate automobile fuel economy (CAFE)
 standards 131
corporate managers, demands from SRI 347–8
corporate responsibility 102
corporate sustainability
 achieving compliance 225–6
 beyond compliance 226–9
 distinction from corporate environmentalism
 222–3
 drivers of change 223–5
 efficiency phase 229–30
 human/ecological sustainability tensions
 237–8
 incremental and transformational change
 234–6
 leadership styles 236–7
 strategic phase 230–33
 sustainable organizations 234
Costi, P. 406
Cowell, R. 378, 379
Cozzens, S. 158, 172
cradle-to-cradle design
 aims 35
 financial concerns 44–5
 fractal triangle 45–6
 future 47–8
 integration into product development 42–3
 intelligent materials pooling (IMP) 43–4
 paradigm 35–8
 practice 39–41
 profitable example 46–7
 rising interest in 33–5
cradle-to-grave approach 405
see also lifecycle assessment (LCA)
Craig-Lees, M. 262, 264
Cramton, P. 344
Crandall, R.W. 294
Crane, A. 251, 259
Crane, D. 423
criticality 527
Crognaile, G. 485, 486
Crude, B.J. 251
CTA (constructive technology assessment) 63
Cuhls, C. 409, 410
Cui, Y. 529
Cunningham, W.H. 259
Cushman, R.M. 207
cyclic copper 548
see also copper recovery
Dabkowski, S. 110
dematerialization 19–20, 542–3
Denison, E.F. 294
Denmark
see Clean Technology Development Programme
De Geus, A. 228
de Hoo, S. 70, 86, 124
de Leeuw, B. 197
de Swaan Arons, J. 545
Dearing, A. 58
delays, K. 105, 106, 107
Delgado, C.L. 492, 495
dematerialization 19–20, 542–3
Detison, E.F. 294
Dernbach, J. 388
DESA (Department of Economic and Social Affairs) website 438–9
Descartes, René (1596–1650) 524
design for environment 77
Designtex 44
DeSimone, L. 72, 73, 86, 89, 220
detoxification 19
Deville, A. 161
Diab, R.D. 490
Dialogue for a City 379
Dialogue for the Pilbara 382
Dickson, D. 171
Dieleman, H. 124
direct material input (DMI) 21
dispersion 68
dissipation 543–4
diversity 17, 19
Dixit, A.K. 273
DMC (domestic material consumption) 21
DMI (direct material input) 21
Doherty, P. 238
Dolan, P. 251
dolphin-free tuna, Starkist 253–4
domestic material consumption (DMC) 21
domestic processed output (DPO) 21
Donkin, R. 110
Dow Chemical 96
Downing, P.B. 122
Doyle, D.J. 336
DPO (domestic processed output) 21
Drake, E.M. 529
Drumwright, M.E. 252, 254
dry-cleaning, alternative to halogenated solvents 29
drywall 516–17
Dryzek, J. 222
Dunford, R. 228, 235
Dunn, S. 390
DuPont 97, 99
durability 73–4
durability model 36, 38
During, R.-A. 408
Dürrrenberger, G. 55
e-waste 507–8
Earth Day Resources 251
Earth Summit see UN Conference on Environment and Development
Earth Systems Engineering 529–30
Eastman, B.R. 409
Easy Access Environmental Management project 246
Eaton, D. 407, 408
ECCE (European Council of Civil Engineers) 516
Eckstein, B. 381, 382
eco-design 77
eco-efficiency and cleaner production 67, 74–7
calendar evolution 70–72
dimensions 72–3
elements 74
see also case studies; cleaner production
eco-efficiency elements 88–91
eco-efficiency innovations, categories of 6
eco-industrial park promotion framework 23
eco-industrial parks 541
eco-labelling, tourism sector 279–83
Eco Manufacturing Centre 231–3
ecological footprints
Western Australia 144
world 536–7
ecological sustainability 222
Economic Vitality Index 383
Edquist, C. 55, 62
education 556
see also online learning websites
EEA (external environmental accounting) 308–9, 315–20
efficiency indicators 21
Ehrenfeld, J.R. 22, 200, 224, 229, 238, 326, 336
Ehrenreich, B. 225
Ehrlich, A.H. 152
Ehrlich, P.R. 152
EIA (environmental impact assessment) in conjunction with EMS 486–7
cost–benefit analysis 479, 482
definitions 477–8
distinction from lifecycle impact assessment 198
environmental systems modelling 479
for evaluating environmental quality 283
and GIS 487, 490
and lifecycle assessment 487
methodology and scope 478–9
risk assessment 483–5
Eiderstrom, E. 284
Einstein, A. 523
electric utility sector carbon dioxide emissions, Russia 448, 449–51
environmental protection costs 293–5
see also coal-fired power stations, waste produced; productivity measurements
electric vehicles websites 445
electrical waste (e-waste) 507–8
Eliasson, B. 453
Elie, L. 397
Elkington, J. 105, 238, 256, 259, 344
EMA (environmental management accounting) 308–15
EMAS (Eco-Management and Audit Scheme) definitions 241–2
Internet role in 282
role in tourism sector 283–6
uptake 369, 371
EMAS-2 283
emissions allowances trading accounting for 318–20
and innovation 125–6
Emissions Trading Scheme (EUETS) 459
EMS (Environmental Management Systems) barriers 242
in conjunction with EIA 486–7
forms of 241–2
horizontal networks 243–5
light versions 242, 249
multi-stakeholder networks 246–7
network approaches 242–3, 247–9
vertical networks 245–6
see also EMAS; ISO 14001 EMS Standard
EMS (Environmental Management Systems) popularity of 369–71
EMS Standard see ISO 14001 EMS Standard
End of Life Vehicles Directive 547
end-of-pipe technologies 50
Energy Australia 223
energy efficiency approach limitations 549
energy-efficient buildings poor design and air quality 33, 35
websites 445
Energy Intelligent Europe Initiative 98
energy intensity 73–4
engineering method for cleaner production 86
engineers, and industrial ecology 15–16
England, medieval population collapse 539
Engle, R.F. 395
entropy 547
environmental accounting 308–10, 320–21
see also EEA; EMA
environmental innovation definitions 50–51, 325
drivers 57–9, 329
indicators 324–5, 327–36
typology 325–7
environmental innovation policies implications 131–2
innovation waivers 126–7
investment subsidies 127–8
niche policies 132
overview 130–31
policy types 122–4
pollution taxes and emission trading 125–6
R&D subsidies 128–9
rationale 119
standards and regulations 124–5
system innovation 132–3, 133–5
transition management 133
voluntary agreements/covenants 129–30
environmental lawyers 94
environmental liabilities 317–18
environmental management 3
environmental patents 362–3, 366
environmental protection measures, and productivity measurements 293–5
environmental sciences, and industrial ecology 14–15
environmental sociology, and industrial ecology 15
environmental technology 3
environmental technology management (ETM) 3
environmentally conscious design 29
see also green chemistry
EPA (Environmental Protection Agency), recommendations for 304–5
EPR (Extended Producer Responsibility) 509
Epida 549–50
Epstein, P.R. 487, 488
Epstein, S. 512
Eremin, L.V. 450
ERFA (environmentally related financial accounting) 271
Erkman, S. 30
Ernst, H. 390
ESD (ecologically sustainable development), classifying research for 160–65
Esperanza, M. 413
ESTs (environmentally sound technologies) see also technology transfer
ESTs (environmentally sound technologies), Agenda 21 definition 175
ethanol, as fuel 423, 427
ethical consumers 260–62
see also green consumers
ethical investing see SRI
ethical investment 341–2
Ethical Purchasing Index 251
ethics 529
Etzioni, A. 262
EU carbon dioxide emissions 449
End of Life Vehicles Directive 547
Factor 4 gain in resource productivity 97
legislation on recycling 507–8
REACH legislation 512

Dora Marinova, David Annandale, and John Phillimore - 9781847203052
Downloaded from PubFactory at 09/19/2023 10:16:37AM via free access
Index 563

voluntary agreement on fuel efficiency 130
see also Energy Intelligent Europe Initiative
EU Emissions Trading Scheme (EUETS) 459
Evans, D. 198, 199, 207, 208
Everson, R. 501
expert teams 465–6
exponential growth 538
Extended Producer Responsibility (EPR) 509
external environmental accounting (EEA) 308–9, 315–20

fair trade 260–61
see also green consumers
Fane, S.A. 414, 416
Fare, R. 294, 295, 299
fate of materials 27
Fatta, D. 411
Favorita Banana Company 486
Felder, M.A. 407
Fényes, T.I. 494, 495, 500
Fineman, S. 50
Fiorino, D. 236, 237
First Macrolotto, Prato, Italy 244–5
Fischer, C. 122, 123
Fischer, K. 336
Fischer, S. 291
Fitchett, J.A. 251
Fleay, B. 422
Fleming, G. 411
food industry case studies 77–80
Foran, B. 423
Ford, J. 114
Ford Australia 82–3
Ford Motor Company, Rouge River plant 46–7
forests 510
Forster, C.F. 410
Foster, C. 57, 58, 135
Fowler, L. 509
Foxall, G.R. 64
Foxon, T.J. 120, 131, 132, 135
Foxwell, H.S. 141
fractal triangle 45–6
France
Green Pages presence 368–9
ISO 14001 uptake 371
sustainable technology patent trends 366
Franke, N. 55
Franklin, W.F. 195
free market, v active choice 4
Freeman, C. 49, 120
Freeman, M.A., III 301
Freeman, R.E. 270
Freund, P. 456
Friedman, M. 262
Frosh, R. 13
Frymier, P.D. 413
Fuji Xerox, Eco Manufacturing Centre 231–3, 234, 236, 238
funding see building and construction (B&C) sector, Australia, initiative funding capacity; Convoy funding scheme
Furima Iron Foundry 486
Gaia 540–41
Gajdos, R. 408, 410
Gale, J. 456
Galileo Galilei 524, 533
Gallopoulos, N. 13
Gardner, G. 140, 141
Garrison, D.R. 442
Garrod, B. 336
gas pipelines, methane mitigation, Russia 456
gas prices, Russian 457–8
Gath, S. 408
Gazprom, gas distribution emissions 456
Georg, S. 128
geothermal energy 425
see also Birdsville, Australia
Germany
energy efficient buildings and allergies 35
EPR (Extended Producer Responsibility) 509
Green Pages presence 368–9
ISO 14001 uptake 371
material efficiency 21
sustainable technology patent trends 366
Gertler, N. 22
Getzner, M. 334
Gibbons, P. 510
Gibson, R.B. 375
Giddens, A. 257, 258
Gifford, B. 253
Gillespie, G. 53, 506
GIS (geographical information systems), in EIA 487, 490
Global Change and the Earth System, A Planet Under Pressure 424
global climate change 424–5
Global Compact see UN Global Compact initiative website
global overstretch 140
Global Reporting Initiative (GRI) 319, 355
Globo sapiens 430–31
Glosten, L. 396
Godin, B. 336
Goethe, Johann Wolfgang von (1749–1832) 528
Gollan, P. 104, 105, 106, 111, 114, 229
Gollop, F.M. 294, 298
Index

Honda 253
Hoogma, R. 62, 63, 132

Hope for the Future strategy
hopes and visions 147
overview 143–5, 155
physical economy model 148–9
political challenge 149–52
solutions 147–8
sustainability assessment approach 374–8
targets and indicators framework 152–4
workshop approach 145–7, 148

hospitals see Native American Reservation health centre example; St John of God Health Care
Houghton, J. 536
Houghton, J.T. 140

houses from the Earth websites 445

housing see Building Sustainability Index

HRSG (heat recovery steam generators) 455–6
Hruska, J.P. 406
Hsiao, T.Y. 410, 411, 412
Hu Jintao 33
Huang, G. 405, 406, 408
Huang, S. 222
Huang, W.L. 411, 413
Hubbert, M. King 422
Huber, J. 15, 335, 336
Hughes, D.R. 260, 261
Hughes, J.C. 408, 409
Huitema, D. 123
human economy
growth 537–9
size compared to nature 535–7
human resource sustainability
current situation 109–10
definitions 106–8
institutions 110–12
need for 104–5
profitability 112–14
way forward 114–17
see also corporate sustainability,
human/ecological sustainability tensions
human sustainability 222
hunger elimination websites 445
Hunt, C.B. 321
Hunt, J.W. 116
Hunt, R.G. 195
Huselid, M.A. 113, 114
Huybers, T. 277
Hwang, Y. 411, 412
hydro-electricity 425–6, 445–6
hydrogen, as transport fuel 424, 428–9
hydrogen-electric economy 544–5
hydrosphere, definitions 477
IBM 254
Ibuprofen production 27, 29
ICI Ltd see Orica Ltd
IGCC (integrated gasification combined cycle) systems 454
IISD (International Institute for Sustainable Development) website 436–7
Imai, M. 76
IMP (intelligent materials pooling) 43–4
impact assessment in lifecycle development 40
incineration
in Japan 509
of PVC 41
of sewage sludge 414
of wood 412, 417
see also New York City recycling case study
INCO Pty Ltd. 227–8, 236–7, 238
India
Green Pages presence 368–9
ISO 14001 uptake 370–71
S&T policy 167–71
Indian Health Center see Native American Reservation health centre example
indicators, and sustainability assessment 380–82
indirect R&D 465
Indonesia, S&T policies 167–8
industrial ecology
definitions 13
outlook 30–31
perspectives 13–16
product and process applications 24–30
system applications 16–24
industrial ecosystem promotion framework 23
industrial metabolism 16–19
industrial symbiosis 22–4, 30–31
ING Group 227
innovation, definitions 119–22
innovation policies 4–5
innovation waivers 126–7
input indicators 21
input substitution 70–71
integrated environmental technologies 50
integrated gasification combined cycle systems 454
integrated waste management (IWM)
construction/demolition waste 410–13
domestic/municipal wastewater 413–16
organic waste 407–10
overview 405–7, 417
intelligent materials pooling (IMP) 43–4
Interface Inc. 548
intermediary users 51
International Expert Meeting on Sustainable Consumption and Production (2003, Marrakech, Morocco) 143

International Geosphere-Biosphere Programme 424

International Institute for Sustainable Development (IISD) website 436–7

International policy, history 142–3

Internet

EMAS role 282

sustainable technologies information 367–9

intuition 528

inventory stage in lifecycle development 40

investment subsidies 127–8

iron, cyclic flow 545

Isenmann, R. 13, 15

ISO 14000 environmental management standard 485

ISO 14001 EMS Standard 86, 241–2, 369–71, 486

ISO 14040 LifeCycle Assessment method

application to a typical problem 201–7

principles and framework 195–6

strengths and weaknesses 207–8

see also lifecycle assessment (LCA)

ISO 14041 Life Cycle Inventory Analysis

196–7, 203–5

ISO 14042 Life Cycle Impact Assessment

197–200, 205–6

ISO 14043 Life Cycle Interpretation 200–201, 206–7

Italy

First Macrolotto, Prato 244–5

Green Pages presence 368–9

ISO 14001 uptake 371

sustainable technology patent trends 366

Jacob, K. 141

Jaffe, A.B. 126, 329, 331

Jalas, M. 141

James, P. 308, 313

Jang, Y.C. 411, 413

Jänicke, M. 148, 336

Japan

ISO 14001 uptake 306–71

material efficiency 21

recycling 507, 509–10

sustainable technology patent trends 366

Jazz 385

Jeantheau, T. 397

Jennings, I. 382

Jeppson, U. 414

Jevons, W.S. 141

Johnson, R.G. 530

Johnstone, N. 359

Joshi, S. 295

Jung, C. 122

Jung, C.G. 525

Kalundborg, Denmark 22

Kärnä, A. 61

Kearins, K. 237

Kemira Acid Plant, Kalundborg 22

Kemp, R. 54, 120, 121, 122, 123, 127, 131, 132, 133, 135, 329, 336

Kemp, René 50

Kennedy, A. 104

Kenworthy, J. 379, 380, 383

Kenya, leather industry 169

Khanna, M. 316

Kierkegaard, H. 273

Kilbourne, W. 252, 256

Kilbourne, W.E. 262, 263, 264

Kincaid, J. 24

King Hubbert, M. 422

Kirsten, J. 493, 494, 495, 496, 500

Klang, A. 413

Kleinknecht, A. 334

Klimesch, D. 413

Kline, S. 135

Klok, P.J. 129

Klöppfle, W. 200

knowledge workers 104, 111

Koenig, A. 409

Kolk, A. 269, 327

Korea see South Korea

Korhonen, J. 17, 19

Kozhukhovskii, I.S. 458

Krishna, V.V. 159, 167, 168

Krook, J. 411, 412

Krugman, P. 111

Kubler, H. 410

Kuhn, T.S. 524

Kumar, S.K. 492

Kuzbass coalfields 457

Kwame, D.B. 405, 408

Kwon, S. 224, 238

Kyoto Protocol 424

Lackner, B. 62

Lafleur, M. 85

Lakoff, G. 378

Lambert, A. 23

Lamond, J.F. 413

Lancaster, M. 27
Landcare (National Landcare Program)	Liu, H.W. 407, 408, 409
landfill	Liu, X. 168
CD waste 410–11, 413	Livability Index 383
costs 514	living machine concept 531
organic waste 407, 513	Local Agenda 21 (UNCED) 384
see also New York City recycling case study	locality 17, 19
Landfill Directive, EU 516	Loorbach, D. 133
Landfill Tax, UK 130–31	Lorek, S. 141
Langowski, H. 197	Lovelock, J.E. 540
Langston, C. 461	Lovins, A. 97, 229, 230, 237, 429, 505
Lanjouw, J.O. 331	Lowe, J. 424, 426
Larson, E.D. 542	LPG (liquid petroleum gas) 423
Laszlo, C. 228	Lundie, S. 406, 414
Laugel, J. 228	Lundvall, B.-Å. 49, 120
Lawn, P.A. 153	Lyne, M.C. 500
LCA see lifecycle assessment (LCA)	Maboeta, M.S. 409, 412
LCD (lifecycle development) 39–41, 56	McAleer, M. 331, 359, 361, 390, 391, 397, 398, 400
Leach, G. 423	McConnell, V.D. 294
lead (Pb), in the atmosphere 535	McCormick, J. 195
lead users/early adopters 56	McDaniel, S.W. 256
leadership styles, for corporate sustainability	McDonagh, P. 412
236–7	McDonald, C. 269, 270
Learning Forum see UN Global Compact initiative website	McDonald’s, reacting to consumers 253
leasing 548	McDonough Braungart Design Chemistry (MBDC) 42, 44, 48
LEED (Leadership in Energy and Environmental Design) 385, 515–16	McDonough, W. 33, 41
Lefebvre, E. 332	McDougall, F.R. 406
Lenox, M. 326, 336	McGrath, C. 411
Leopold, A. 525	McIntosh, M. 230
Lesourd, J.-B. 271, 272, 273	Mackay, H. 53
Lesson, N. 461	McKean, M. 509
Li, W.K. 397	MacKenzie, J.J. 140
LIBS (laser-induced breakdown spectroscopy)	Mackey, B. 510
412	McMeekin, A. 327
LIFE (The Financial Instrument for the Environment) 282	Magat, W.A. 122
life-cycle design 77	Magnusson, P.R. 56
lifecycle assessment (LCA)	Majake, C. 500
distinct from product design in LCD 39	Majone, G. 123
in EIA 487	Makarov, A.A. 452
history 195	Makatouni, A. 260
in Integrated Waste Management 405–7	Makower, J. 257
organic waste management 408	Malaman, R. 335
wastewater 414	Malin, R. 461
see also ISO 14040 LifeCycle Assessment method	Malmen, L. 409
lifecycle development (LCD) 39–41, 56	Maltbaek, C.S. 405, 408
Lifset, R. 13, 77	Mangan, A. 23
Lin, S.H. 407, 411	Maniadakis, K. 408
Lindenmayer, D. 510	Maniates, M. 262, 263, 264
Ling, S. 397, 398, 400	Mannheim Innovation Panel 51, 58
Lipsey, R.G. 122	Mans, D. 167
lithosphere, definitions 477	manufacturing industry, environmental protection costs 295
see also productivity measurements	
Maor, D. 442
Marceau, J. 468
Marinova, D. 331, 359, 360, 361, 365, 366, 390, 391
marketing of environmental issues 59–60
Markusson, N. 50, 52, 60
Marrakech Process 143
Martinez, C. 159
Mata-Alvarez, J. 409, 410
Matata, J.B. 494
materiality 319, 345, 354
materials choices 541–2
materials flow analysis 19–22
materials intensity 72, 74
Matos, G.D. 409
Matten, D. 236
Mattes, E. 360
Matthews, E. 21, 141
Maunders, K. 320
Maurer, M. 414
Mauser, A. 327
Max-Neef, M. 220
MBDC (McDonough Braungart Design Chemistry) 42, 44, 48
Meadows, Donella. H. 4, 531, 538, 539
Mechling, L. 256
MEEA (monetary external environmental accounting) 316
Melbourne Principles 382–3
Mellor, W. 406
Mels, A.R. 414
MEMA (monetary environmental management accounting) 310–12
Mendelsohn, R. 122
Mendelson, N. 251
Menon, A. 251, 255
Menon, M. 251, 255
mentoring, and SME engagement 246
Merchant, C. 523
Merle, S. 499
Merme, M. 354
metal products industry case studies 80–83
‘metaphor of natural ecosystems’ 14
Metcalfe, J.S. 122
methane, as fuel 427
methane cycle 536
methane emissions, Russia 448, 451–3
methane mitigation, Russia 456–7
methanol, as fuel 423, 427
METRIX 386
Michaelis, L. 141
Micheletti, M. 258
Mijindadi, N.B. 496
Miles, I. 327
Miles, S. 264
Millennium Development Summit 140
Miller, D. 258
Milliman, S. 122, 123
Minton, A.P. 258
Mirra chairs 42
Misi, S.N. 410
Mody, A. 331
Moe, A. 452, 456
Mohee, R. 405, 408
Mol, A. 222, 230
Mongolia, S&T policy 166–70
Moriguchi, Y. 19, 20, 21
Morris, W.M. 523
Morrison, C.J. 294
Morrison, P.D. 56
Moskal, T.M. 412
Mozambique, cashew production 169–70
Muchie, M. 169
Mulder, A. 414
Muller, J.A. 410
Munnell, A.H. 291
Munro, D.A. 158
Nakano, K. 414
Nakano, T. 509
nanotechnology patents 364–6
National Landcare Program 513
National Strategy for Ecologically Sustainable Development (NSES(D) 160–65
Native American Reservation health centre example 478
Nattrass, B. 210
natural analogy 14
natural capitalism
need for 96
principles 96
see also biomimicry; resource productivity increase; restoration
Natural Step Framework
constraints 216–17
engagement 218–19
goals 215–16
overview 210–11, 219–20
sustainability framework 211–13
system conditions 213–14
systems thinking 217–18
Natural Step Project 17
Nature Works polylactic acid (PLA) 29
Nell, W.T. 495, 496, 497
Nelson, D.B. 396, 398
Nelson, R.R. 122
NEPA (National Environmental Policy Act) 477
Nestor, D.V. 294, 299
Index 569

Netherlands
Green Pages presence 368–9
material efficiency 21
sustainable technology patent trends 366
New York City recycling case study 505–6
New Zealand, zero waste commitment 507
Newcastle City Council, Australia, green
mission 253
Newell, R.G. 126, 335
Newholm, T. 258, 259, 262, 263
Newman, P. 379, 380, 382, 383
Newton, Isaac (1642–1727) 524
Nicholson, C.A. 496, 500
Nicolau, D.E. 365
Nike 38, 42
Noci, G. 58
Norberg-Böhm, V. 130, 132, 135, 329
Norman, W. 269, 270
Norworthy, J.R. 294
North Atlantic thermohaline conveyor 95
Novo Nordisk, Kalundborg 22
Nriagu, J.O. 140
NSESD (National Strategy for Ecologically
Sustainable Development) 160–65
NSW Sugar Milling Cooperative Ltd 78
NUON Energy 227, 234
nutrient cycles 535–6
nylon 36, 41
Oates, W. 294
ocean based power generation 427
ocean conveyor see North Atlantic
thermohaline conveyor
ocean energy websites 446
off-gassed chemicals 33–5, 41
oil and gas industries, methane emissions,
Russia 452–3
oil reserves depletion 422
Oldenburg, K. 91
Oleck, J. 253
Oles, J. 410
Olewiler, N. 324
Oliver, R. 433, 434, 436
OneSteel Market Mills 81–2
online learning websites
designing 442
most valued by experts 434–42, 443
overview 442–4
pedagogical requirements 433–4
optimization process in lifecycle development
40–41
organic recycling 512–15
see also composting
organic waste, IWM (integrated waste
management) 407–10
organizational environmental innovations 325,
326–7
organizational method for cleaner production
86–9
organizational sustainability 105–6
Orica Ltd 235, 236
Ornetzeder, M. 55
Orssatto, R. 233
Orts, E. 236
Ottman, J. 258, 260
Oudshoorn, N. 49
output indicators 21
Overall Smart Growth Index 383
Overcash, M. 24
Owens, S. 378, 379
Ozores-Hampton, M. 405
PACE (pollution abatement costs and
expenditures) 324, 330–31
Paci, R. 372
paintings, showing pollution 390
Palacios, J.M. 405, 406, 408
Palmer, I. 228, 235
Palmer, K. 124, 329, 331
Palmowski, L.M. 410
Panasonic, TV factory, Sydney 229–30, 234,
237–8
Panikkar, A. 413
paper waste 506
Parker, A.N. 493, 494
Parker, L. 308
Pasurka, C.A. 294, 299
patents
data sources 391–2
ecological/anti-pollution patents 392–400
as indicators of environmental innovation
331–2, 360–61, 371–2, 390–91
sustainable technology patent trends 361–7
Patterson, M. 112, 113, 114
Patterson, R.A. 414, 416
Pax World Fund 342
Pearce, D. 458
Pearce, F. 530
Pears, A. 106, 107
Peatling, S. 223
Peattie, K. 252, 258
PEEA (physical external environmental
accounting) 319–20
PEMA (physical environmental management
accounting) 311–12
Performance Bretagne Environnement Plus
247
permanent jobs, decline of 110–11
Perth Zoo 83
Peterson, J.A. 390
petroleum alternatives 423–4
see also bio-diesel; hydrogen, as transport fuel
petroleum reserves depletion 422
Pfeffer, J. 113, 228
Pfeffer, F. 334
Phillips, T. 317
photovoltaic cells see PVC (photovoltaic cells)
photovoltaics (PV)
installation training needs 471
Piasecki, B. 227
Pigou, A. 119
Pimenova, P. 336
Pinch, T. 49
Pindyck, R.S. 273
Pittman, R.W. 299
PLA (Nature Works polylactic acid) 29
Plepy, A. 141
Plunkett, C. 517
Poff, R. 86
Poldy, F. 149
politics, and sustainability assessment 379–80
pollution abatement costs and expenditures (PACE) 324, 330–31
pollution levels 390, 424
pollution prevention 76–7
pollution taxes 125–6
Polonsky, M.J. 60, 251, 256
polylactic acid (PLA), Nature Works 29
Poon, C.S. 405, 410, 411, 413
Pope, J. 375
Popp, F. 72, 73, 86, 89, 220
Popp, D. 126, 332
Porter, M.E. 124, 125, 254, 294, 330, 534
Postel, S. 140
Prato model 244–5
pre-planning 411
Prentis, E. 59, 60
Preston, L. 230, 231
Pretty, J. 378
pricing, of bads 298
see also productivity measurements
Prince, R. 122, 123
productivity measurements
bias against environmental protection 295–9
current mechanisms 292–3
and environmental protection measures 293–5
importance of accuracy 291–2
improved mechanism 299–302
improved mechanism results 302–4
recommendations 304–5
Prothero, A. 251, 258, 264
Prutkovskii, E.N. 454
PSRC (Photovoltaics Special Research Centre) 464, 471, 473
pulp and paper industry
waste produced 301, 303–4
see also paper waste
Pure Energy Scheme (Energy Australia) 223
PV (photovoltaics)
installation training needs 471
PVC (photovoltaic cells)
arbitrary use in street lighting 384
Australian B&C sector adoption 464
calculators using 325
construction of 426
expert teams 465
Green Pages database 367
roofs incorporating 426–7, 463
Sacramento California electricity utility 98
PVC (polyvinyl chloride) 41–2
quality-based method for cleaner production 89
Quist, J. 146
Quisumbing, A. 492
Qwaqwa district case study
financial resources 500
human capital endowment 496–7
management skills 497–500
overview 495–6, 502–3
technology inputs used 501–2
R&D capacity, in Australian B&C sector 463–5
R&D departments, and green issues 57
R&D subsidies, environmental innovation policies 128–9
rainwater harvesting websites 446
see also stormwater system, Ford, Rouge river
Rance, C. 109, 110
Raynolds, L.T. 260, 261
Raynor, S. 381
REACH (registration, evaluation and authorization of chemicals) legislation 512
Read, M.P. 511
'real' technology 4
Reason, P. 527
recyclability 73–4
recycling
of buildings 516
California 508
computers 508
construction/demolition (CD) waste 515–17
cradle-to-cradle paradigm 38
environmental management paradigm 69
EU legislation 507–8
Japan 507, 509–10
on-site 70–71
organic material 512–15; see also composting
Singapore 507; see also New York City recycling case study; value loop
reductionism 526
Rees, W. 140, 144
Reeves, T.C. 442
regenerative braking 543
regional planning, and sustainability 382–4
Reijnders, L. 68, 69
Rein, M. 378
Reinhardt, F. 233
Ren, S. 413
renewable energy
case for 422, 429–31
and climate change 424–5
main options 425–7
petroleum alternatives 423–4
problems with 427–9
social inequity 425
renewable energy patents 363–4, 366
Rennings, K. 51, 58, 121, 135, 332, 334, 336
Repetto, R. 301, 344, 345
replumbing the planet 530
research
classification for ESD-relatedness 160–65
evaluation assessment issues 158–9
resource efficiency, as solution 141
resource productivity increase 96
Responsible Care programme 326, 352
restoration 97, 101–2
Rice, F. 254
Richardson, R. 113
Rio Earth Summit 67, 142, 175
Rip, A. 54, 62, 120
risk management, in SRI 344–5
river energy websites 446
Robért, K.-H. 17, 210, 212, 220
Roberts, M.J. 294, 298
Robinson, J.C. 295, 298
Rodriguez-Iglesias, J. 406
Rogers, E.M. 49, 497
Rohner Textil 44
Rohracher, H. 49, 55
Roome, N. 231, 326, 327, 336
Rose, A. 334
Rose, D.A. 51
Rose, R.L. 258
Rosenberg, N. 135
Rosenberger, P.J., III 251, 256
Ross, S. 198, 199, 207, 208
Rossi, M. 77
Rothwell, R. 136
Rotmans, J. 133
roundput 17, 19
Rubik, F. 61
Rudmin, F.W. 262, 263, 264
Rumbo, J.D. 262, 264
Russell, S. 53
Russia
carbon dioxide emissions 448, 449–51
carbon dioxide mitigation 453–6
commercial factors 457–9
data sources 448–9
methane emissions 448, 451–3
methane mitigation 456–7
Ryan, C. 140, 143
Rylander, D.H. 256
S&T (science & technology) policy
in developing countries 165–9
North–South differences 159–60, 171–2
for sustainable local development 169–71
SABRC (State Agency Buy Recycled
Campaign) 508
Sagawa, S. 224
Saito, K.A. 492, 495, 496, 497, 498, 502
Salomons, W. 538
Sampat, P. 140, 141
Sanchez, L. 485
Sanderson, L. 381, 382
Sanders, J.H. 492, 495
Saneev, B.G. 449, 450, 451, 454
Sangle, S. 207
Satterthwaite, A. 264
Schachermayer, E. 410, 411, 413
Schaefer, A. 50, 57
Schalttegger, S. 20, 271, 308, 310, 311, 318, 319, 320, 321
Schenuxenau, W. 454
Schilizzi, S. 271, 272, 273
Schmidtheiny, S. 124, 294, 336
Schmidt-Bleek, F. 220
Schöber, G. 408
Schön, D. 378
Schor, J. 262
Schot, J. 61, 62, 63, 336
Schreiff, D. 416
Schulth, P. 492
Schumacher, E.F. 359, 530
Schumpeter, J.A. 120
Schutz, H. 141, 144
scientific thought 523–5
see also holistic science

Dora Marinova, David Annandale, and John Phillimore - 9781847203052
Downloaded from PubFactory at 09/19/2023 10:16:37AM via free access
Sclove, R.E. 361
Scott, W. 378
Sedikh, A. 452
Segal, E. 224
Selber, J. 487, 488
Selman, P. 378
Senge, P.M. 235
Sennett, R. 112
Seo, S. 406, 411, 412, 414
Serov, V.I. 457
service intensity 73–4
service sector case studies 83–4
Sessions, G. 525
Shadbegian, R.J. 295, 306
Shah, S. 55
shale deposits, for oil 423
Shama, A. 262
Shaw, B. 468
Shaw, D. 258, 259, 262, 263
Shaw Industries, carpet tiles 38, 41
Shechter, M. 407, 408, 410, 412
Shehata, S.M. 407, 408
Sheldon, C. 86
Shepherd, N. 398
Shepherd, P. 345
Shonnard, D. 29, 30
Shook, M.D. 257
Shove, E. 54
Shrivastava, P. 237, 336
Singapore, recycling 507
Sinha, R.K. 409
Skea, J. 326, 336, 359
Skellenger, B. 317
Skytube 464
Slaughter, S. 55
Slavin, T. 112
SMEs (small and medium-sized enterprises),
number of 241
Smith, D. 336
Smith, D.C. 408, 409
Smith, K. 135
Smith, M. 145, 508, 512
Smith, R.L. 412
SNM (strategic niche management) 63
Snyder, M.C. 494, 500
social/socially aware investing see SRI
socio-technical experiments 62–3
Socolow, R. 14
Soete, L. 120, 122, 390
soil fines 413
Solahart 80–81
solar energy 425–7, 445, 446–7
Sole, R. 527
Solo-Gabriele, H.M. 412
Sonnenfeld, D. 230
South Africa
rural farming 492–4
technology adoption in small-scale farming
495; see also Qwaqwa district case study
South Australia, Zero Waste Office 507
South Korea
ISO 14001 uptake 371
patent trends 166, 366
Southwire Corporation 97
Spain
Green Pages presence 368–9
ISO 14001 uptake 370–71
Spangenberg, J.H. 141
spheres, Earth's 477
Sprenger, R.-U. 124
SRI (socially responsible investment)
communicating with SRI community 353–5
corporate implications 348–9
corporate manager implications 347–8
developing understanding 352–3
evolution of 341–5
management implications 350–52
overview 340–41, 355–6
regulatory and industry responses 345–7
St John of God Health Care 84
Stace, D. 226, 235, 237
Stakhiv, E. 207
Starkey, R. 224, 329
Starkist, dolphin-free tuna 253–4
Statoil Refinery, Kalundborg 22
steel-making plants, environmental protection
costs 295
see also productivity measurements
Steer, D. 416
Steffen, W. 424, 425
Steger, U. 327
Stelmachowski, M. 409
Stern, J.P. 452
Stevels, A. 60
Stevens, M. 427
Stewart, I. 527
Stigliani, W. 538
Stinson, C. 308
Stipp, D. 95
STMicroelectronics 99
stories, and sustainability assessment 380–82
stormwater system, Ford, Rouge river 47
Strasser, K. 124
strategic niche management (SNM) 63
Strong, C. 260
Sturgess, N.S. 511
substance flow analysis 20
see also materials flow analysis
supercritical carbon dioxide 29
ISO 14001 uptake 371
Landfill Tax 130–31
medieval England population collapse 539
SRI related regulation 345–7
sustainability assessment approach 378
sustainable technology patent trends 366
zero waste 507
Ulrich, D. 116
UN Conference on Environment and Development (1992, Rio de Janeiro, Brazil) 67, 142, 175
UN Global Compact initiative website 439–40
UN websites 437–40
UNCED see UN Conference on Environment and Development
UNEP website 437–8
unintentional environmental innovations 325
university courses in ETM 432
in Photovoltaics and Solar Energy 471
Unruh, G.C. 131
Urban Form Index 383
urine separation 414
USA
carbon dioxide emissions 449
ecological/anti-pollution patents 392–400
Green Pages presence 368–9
ISO 14001 uptake 369–71
material efficiency 21
waste levels 97
zero waste organizations 507
see also New York City recycling case study
user-initiated innovations 55
users
definitions 51–2
and environmental innovations 52–7
importance in innovation processes 49–52, 63–4
relationships with producers 57–63
Usherwood, N.R. 495
Utterback, J.M. 132
value loop
cyclic loop 541–5
cyclic loop business models 546–50
importance 534–5
sustainability of cyclic flow 540–41
unsustainability of linear flow 535–9
van Berkel, R. 67, 68, 69, 70, 74, 77, 84, 85, 86, 89
van de Ven, A.H. 120
Van den Berg, C. 454
van der Linde, C. 124, 125, 254, 330
van der Voet, E. 20
van der Vorst, R. 336
van Rensburg, L. 409, 412
van Weenen, J. 68, 69
Veiga, J. 228
Vercelli, A. 358
Verganti, R. 58
Vergragt, P.J. 53, 146, 336
Verheem, R. 378
verification, technology needs assessments 185–6
Vermeulen, W. 127
vermiculture 409, 412
Verstegen, P. 153
Vestby, G.M. 53
Victor Innovatex 44
Victor, P.A. 162
Vidal, N. 414
vinyl see PVC (polyvinyl chloride)
VISIT (Voluntary Initiatives for Sustainability In Tourism) project 282
VISTs (voluntary initiatives for sustainable tourism) 280
Vitousek, P.M. 140, 536
Volkwein, S. 207
Voluntary Initiatives for Sustainability In Tourism (VISIT) project 282
voluntary initiatives for sustainable tourism (VISTs) 280
voluntary simplicity 262–4
Volvo 254
von Hippel, E. 51, 55, 56, 468
von Weizsacker, E. 123, 145
Waage, S. 531
Wackernagel, M. 140, 144
Wahlstrom, M. 413
Wallace, D. 135
Wang, F.S. 406
Warner, J. 27, 28
Warner, L.L. 490
WASIG (Western Australian Sustainable Industry Group) 150
Wasik, J.F. 257
waste
from coal-fired power stations 295, 302–4
from pulp and paper industry 301, 303–4
USA levels 97
see also electrical waste; paper waste; zero waste
waste CD fines, reuse hazards 413
waste minimization 76, 446
see also biomimicry, eliminating the concept of waste; cleaner production
WasteCap Wisconsin 516
wastewater, domestic/municipal, integrated waste management (IWM) 413–16
water redirection 530
Watson, I. 111
Watson, R.T. 199
wave energy 427
WBCSD (World Business Council for Sustainable Development) website 434–6
Weaver, P. 129, 145, 220
Weber, M. 63
Weber, W.J. 412
websites see online learning websites; sustainable technologies, websites
WEEE (waste from electrical and electronic equipment) directive 507–8
Weick, K. 234
Weizsacker, E. 531
Welfens, M. 141
Welford, R. 224, 329
Wemelsfelder, F. 529
West, M. 113, 114
Western Australia
ecological footprint 144
Perth, Dialogue for a City 379
Sustainability Strategy see Hope for the Future strategy
zero waste initiatives 507
Western Australian Sustainable Industry Group (WASIG) 150
wetlands, and wastewater treatment 416, 531
Wever, G. 487
Weyer, J. 53, 55
Wheeler, D. 486
White, L.J. 122
White, R. 15
Wilcoxen, P.J. 298
Wildner, P.A. 416
Wilkinson, A. 104, 222, 223
Wilkinson, D. 430
Williams, G. 317
Williams, H.E. 336
Williams, R. 53, 54
Willums, J.O. 141
Wilson, E.O. 523, 538
wind energy 425–6, 428, 446
windrow composting 408–9
Winn, S.F. 327
Winter, M.G. 411
Winter, S.G. 122
wood, waste management of 412
Woodard, R. 405
World Business Council for Sustainable Development (WBCSD) website 434–6
World Resources Institute (WRI) website 440
World Summit on Sustainable Development (WSSD, 2002, Johannesburg, South Africa) 142–3, 176, 382
World3 computer model 539
Worrell, L. 110
WRI (World Resources Institute) website 440
WSSD see World Summit on Sustainable Development
Yangtze River basin flooding 95
Yangtze River redirecting 530
Yarime, M. 123
yellow water 413, 414
Yencken, D. 430
Yokwe, S. 495, 496, 501, 502
Zadek, S. 354
Zavestoski, S. 262, 263
Zeftron Savant® 36
ZERI (Zero Emissions Research and Initiatives) 542
zero waste
government commitments to 506–8
see also biomimicry, eliminating the concept of waste
Zero Waste New Zealand Trust 507
Zosel, T. 69, 76
Zuckerman, A. 254
Zwick, T. 332, 334, 336