Index

Abbott, E.A. 74
acceptability diamond 23
Africa
arid ecosystems 235–50
ecological indicators and monitoring 242–5
integrated assessment and monitoring 240–42
non-equilibrium versus equilibrium theory 236–40
social aspects 245–8
Arrow, K.J. 72
Ascher, W. 186
Asheim, G.B. 38
Austin, D. 277
Ayres, L.W. 210
Ayres, R.U. 204, 209, 210, 214
Azar, C. 73, 276
Bailey, P. 91
Balling, R.C. 239
Barney, G.O. 216
Barraclough, S.L. 257
Baumgartner, T.M. 186
Bawa, K.S. 257
Behnke, R.H. 237
Bentham, Jeremy 28
Berger, Thomas R. 136, 137
Berkes, F. 174
Berry, R.S. 210
Bielawski, E. 168
Biggs, B. 183
Binswanger, H. 256
Biome project 235–6
biophysical sustenance and cultural vitality 46–8
birds, Paraguay–Paraná Hidrovia (waterway) project and 120, 121, 122, 126
Boisvert, V. 47
Bolivia, see Paraguay–Paraná Hidrovia (waterway) project; Zudañez development plan
Bonilla, Olman Segura 133
Bonny, S. 71
Boulding, K.E. 214
Bourbouze, A. 247
Bovin, M. 246
Boyd, G. 288
Index

Braaf, R.R. 158
Braat, L.C. 214, 216
Bradbury, J.A. 22, 23
Brazil
Carajás project 136, 254–70
displacement of wheat production to Argentina 133
input–output model of impact of production on deforestation 254–70
literature review 256–8
model description 258–62
simulation results 262–9
water transport, see Paraguay–Paraná Hidrovía (waterway) project
Breusch, T.S. 279
Brewer, G.D. 85
Britski, H.A. 120
Brklacich, M. 170
Brouwer, R. 34, 42
Brown, K. 120, 257
Bucher, E.H. 123, 129, 130
Bunker, S.G. 256
Bürgenmeier, B. 2
Burton, I. 156, 158
Cabeza-Gutes, M. 69
Cadavid-Garcia, E.A. 122
Cagnin, J.U. 256
Campari, J. 256
Canada
Fraser Basin 183, 192
Georgia Basin 183, 195
Mackenzie Valley
Mackenzie Basin Impact Study 80, 167–72
pipeline 136
Cantor, R. 19
capital, natural 69–70, 204
Carajás project 136, 254–70
carbon emissions 277
iron and steel industry in US 277–8, 284
trading 155
carrying capacity 72
Casler, S. 210
Catella, A.C. 122
Cebon, P. 82
CETA model 81
Changnon, S.A. 157
chemical weapons 22–4
Chen, K. 257
Chenje, M. 80
choices 26–7
among different possibilities of socio-ecological solidarity 43–6
subsidies 60
Clark, N. 214, 216
Clark, W.C. 80, 91, 95
CLEAR model 82
Cleveland, C. 71, 277
climate change 276
African arid ecosystems and 239–40
integrated assessment (IA) 155–76
legacy of process 172–5
Mackenzie Basin Impact Study 167–72
questions 158–61
scientist–stakeholder collaboration 161–7
so what/what should be done questions 160
what if questions 159–60
coevolutionary models 216
Cohen, S.J. 78, 80, 82, 157, 158, 163, 165, 166, 167, 168, 170, 172, 173
collaborative approaches planning, see Zudañez development plan
scientist–stakeholder collaboration in climate change integrated assessment (IA) 161–7
legacy of process 172–5
Mackenzie Basin Impact Study example 167–72
Colorado river 137
commodities, production of 32
Common, M. 204, 205
commons, tragedy of 246–7
community 46
forest use and 47–8
peer community 59, 60
complex systems, environmental policy and 53–4, 60
conditional nature of knowledge 18, 28
conflicts
conflict resolution framework for Paraguay–Paraná Hidrovía (waterway) project valuation 130–34
Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>295</td>
</tr>
</tbody>
</table>

in environmental valuation 33–4
land-use conflict 60–63, 211
consensus conferences 60, 86
contingent valuation 36, 131
Converse, A.O. 257
Costanza, R. 86, 87, 207, 241, 249
cost–benefit analysis 32, 33
cost-of-response methods of valuation 35
Cox, K.K. 86
Cropper, M. 256, 257
cultural theory 18–20, 97
cultural vitality 46–8
da Fonseca, G.A.B. 121
Daly, H.E. 1, 204, 205, 210, 211, 249
damage, see environmental damage
Daucé, P. 71
Davis, S.H. 134
Dayanandan, S. 257
de Angelis, D. 238
de Camargo, M.B.P. 121
de la Gorce, L. 47
de Leeuw, P.N. 238
de Marchi, B. 63
de Mattos, C.A. 145
de Moraes, A. 131
de Vries, B. 81, 97, 99, 106, 275
Deacon, R.T. 256
decision making, approaches to 27–8
decisionism 57–8
deforestation, see forests
Deininger, K.W. 257
Delaware river dam project 20
Dell’Anno, P. 277
den Elzen, M.G.J. 103, 108
descriptive approach to social science 15, 16, 17
integration with interpretive approach 25–30
limitations of 18–25
insights from cultural theory 18–20
insights from research 20–24
Desert Biome project 235–6
desertification, see arid ecosystems in Africa
Despotakis, V.K. 228
DICE model 81
Dickey, D. 279
Diehl, M. 257
discharging 32, 56
distribution of sustainability 33, 42–3, 44, 45
Dosi, G. 215
Douglas, M. 19, 97
Dourojeanni, M.J. 249
Dowd, J. 276
Dowlatabadi, H. 80, 81, 82, 91, 275, 276
Dragun, A.K. 35
drylands, see arid ecosystems in Africa
Dubien, I. 47
Dunn, W.N. 21
Dunne, T. 130, 132, 133, 137
Dürrenberger, D. 86, 87
dynamic modelling
energy use and emissions in US iron and steel 275–89
carbon emissions 284
electricity generation 283–4
model structure and specification 279–82
production 282–3
results 285–8
of evolution 213–16
Eamer, J. 175
ecodevelopment 43–4
ecological economics, see integrated modelling in ecological economics
ecological footprint 72, 213
ecological growth theory 204, 213–14, 215, 218
economic planning 55–6
economic valuation
Paraguay–Paraná Hidrovia (waterway) project
as institutional challenge 131, 134–7
participatory/conflict resolution framework for 130–34
ecospace 72
Edmonds, J. 80, 81, 82, 87, 275
education 151
Ellis, J.E. 237
emissions, see carbon emissions
empiricism 16, 17
energy
energy return on input (EROI) 71
flow 71, 209
use and emissions in US iron and steel 275–89
entropy 209–10
environmental damage
monetary valuation of 34–6
restitution 39
environmental justice movement 54
environmental policy 53–75
in complex systems 53–4, 60
green national accounting 68–73
incommensurability principle 54–6
multicriteria evaluation as tool for 56–8
Netherlands land-use conflict example 60–63, 211
Sicilian water management example 63–8
quality concept 58–60
science and 53–4
environmental valuation 32–49
biophysical sustenance and cultural vitality 46–8
as choice among different possibilities of socio-ecological solidarity 43–6
conflicts in 33–4
fairness for long term and 40–41
monetary valuation of environmental damage 34–6
opportunity costs 34, 36–40
sustainability and 33, 41–3
equilibrium theory, arid ecosystems in Africa and 236–7
equity, intergenerational 204
ESCAPE model 82
Espinosa, J.A. 257
European Union (EU) 73
Everglades 137
evolutionary theory, dynamic models of evolution 213–16
expressed-preference methods of valuation 36
Faber, M. 214, 215
Fauchex, S. 2, 34, 38, 43, 68, 70, 218
Fearnside, P.M. 256
fish
Paraguay–Paraná Hidrovia (waterway) project and 120, 121, 122, 125–6
Sporades Islands 225–6
FLACSO, see Zudañez development plan
flows 71, 209
long-run materials flow patterns 218, 219–24
focus groups 60, 86, 87, 88
Folke, C. 174
forests
community use of 47–8
input–output model of impact of production on deforestation 254–70
literature review 256–8
model description 258–62
simulation results 262–9
Mackenzie Basin Impact Study 170
Paraguay–Paraná Hidrovia (waterway) project and 128
Forrester, Jay 182
Foster, J. 41
France 47
Fraser Basin (Canada) 183, 192
Freeman, A.M. 206
Friedel, M.H. 237
Froger, G. 58
Fuller, W. 279
Funtowicz, S.O. 19, 37, 39, 45, 53, 59, 63, 73, 141, 237
Galinken, M. 128, 129
Gallopín, G. 182, 190, 241
game models 86, 87
GCAM model 81, 82, 87
geographic information systems (GIS) 167
Georgescu-Roegen, N. 209, 210
Georgia Basin (Canada) 183, 195
Ghimire, K.B. 257
Giaoutzi, M. 216, 224
Gibson, B. 257
Gielen, D.J. 284
global change models 82
global warming, see climate change
Godard, O. 39
Godfrey, L.G. 279
Goodland, R. 249
Gough, C. 240
Gould, S.J. 214
Gowdy, J.M. 214, 216
Index

Gradus, R. 213
Greece, ecological–economic study of Sporades Islands 224–9
green national accounting 68–73
greenhouse effect, see climate change
Griffiths, C. 256, 257
Grin, J. 87
Gross, L.S. 209
growth theory 204, 213–14, 215, 218
Gutés, M.C. 204
Guzman, R. 256
Hall, A.L. 256
Hammond, A. 190, 192
Hammond, S.A. 165
Hanley, N. 35, 137
Hanna, S. 135
Hannon, B. 257, 277, 278
Hartley, I. 170
Hartwick, J.M. 204, 213
Hausrath, A. 86
Hayek, F.A. 55
health 151
Hecht, S. 256
hedonic pricing method of valuation 35
Hellerstein, D. 257
Hendriks, C.A. 275
Henrion, N. 82
Herbert, D. 170
Hernes, H. 157
Héron, C. 47
Hewlett, R.G. 21–2
Hidrovia, see Paraguay–Paraná Hidrovia (waterway) project
Higginbotham, J.B. 86
Hilderink, H.B.M. 87, 97, 107
Hizsnyik, E. 78, 86, 90
Hodgson, G.M. 214
Hofkes, M.W. 218
Holland, A. 34, 40, 41
Holling, C.S. 87, 205, 239
Hordijk, L. 86, 87, 257
Howarth, R.B. 37, 214
Hueting, R. 2
Hulme, M. 158
human appropriation of net primary production (HANPP) 70, 72, 74
Hume, David 16, 17
Huq, S. 158
Huszar, P.C. 129, 130
ICAM model 81
Iglesias, R.M.R. 238
IIASA project 86
IMAGE models 81, 82, 87
incommensurability principle 54–6
indigenous peoples
African arid ecosystems 239, 240, 246
Mackenzie Basin Impact Study (MBIS) and 167–9, 173, 174–5
Mississippi River flood control scheme and 135–6
Paraguay–Paraná Hidrovia (waterway) project and 128
information theory 214
infrastructure, Mackenzie Basin Impact Study 170
Ingold, T. 25
input–output model of impact of production on deforestation 254–70
literature review 256–8
model description 258–62
simulation results 262–9
institutions, Paraguay–Paraná Hidrovia (waterway) project valuation as institutional challenge 131, 134–7
integrated assessment (IA) 15–18, 19, 28–30, 78–109
climate change 155–76
legacy of process 172–5
Mackenzie Basin Impact Study 167–72
questions 158–61
scientist–stakeholder collaboration 161–7
dilemmas 89–91
framework 79
future challenges 83, 85, 88, 108–9
good practice guidelines 91–3
methods 80–88
modelling 80–83
current trends and future challenges 81–3
methods 81
non-equilibrium theory of arid ecosystems in Africa and 240–42
participatory methods 85–8, 163
problems with 158–9
process of 160–61
quality criteria 93–6, 101–8
scenarios 83–5
current trends and future challenges 84–5
methods 83–4
TARGETS project 81, 82, 87, 97–108
insights 99–101
methodological quality 104–7
usability 107–8
towards IA toolkit 88
integrated modelling in ecological economics 203–30
comparison of theories and models in ecological economics 207
dynamic models of evolution 213–16
evaluation methods 217–18
examples 218–29
ecological–economic study of island region 224–9
long-run materials flow patterns 218, 219–24
incorporation of thermodynamic insights 207–10, 214
integration of models 205–6
interpreting and modelling sustainable development 203–5
spatial aspects of ecological economics 210–13
intergenerational equity 204
Intergovernmental Panel on Climate Change (IPCC) 155, 156, 157
interpretive approach to social science 15, 16–18
integration with descriptive approach 25–30
Irlbacher, S. 172
iron and steel
Brazilian Carajás project 136, 254–70
energy use and emissions in US 275–89
Isard, W. 257
Italy, water management in 63–8
Jacobi, H.D. 276
Jacobs, M. 131
Jäger, J. 86, 91, 95
Jakobsson, K.M. 35
Janssen, M. 216
Janssen, R. 217
Jansson, A.M. 216
Japan 72
Jepma, C.J. 157
Johnson, M. 165
Johnson, P. 80
Jones, D.W. 257
justice movement 54
Kahn, H. 83
Kamien, M.I. 218
Kandelaars, P.P.A.A.H. 210
Kant, Immanuel 16, 28
Kasemir, B. 78, 86, 165
Kavanagh, B. 169
Kay, J. 241
Keyfiz, N. 257
Khrushch, M. 277
knowledge
conditional nature of 18, 28
social construction of 18
Kofinas, G. 175
Koop, G. 257
Korea 72
Kothmann, Mort M. 238
Kuhn, T.S. 53
Kuznets environmental curve 72
Lammers, O. 123
land-use conflict 60–63, 211
Lange, M.A. 173
Lashof, D.A. 80
Lauenroth, W.K. 238
Lave, L.B. 82
Laycock, W.A. 238
learning, mutual 29, 87
Lee, H. 257
Lee, K. 257
Leontief, W. 257
Lewontin, R.C. 214
livelihoods, Paraguay–Paraná Hidrovia (waterway) project and 122, 127–8, 132–3
Livermore, M. 155
Lonergan, S. 169, 182, 189, 191, 192
Lopez, R. 257
Lyme Disease 54
McCully, P. 44
Mackenzie Hedger, M. 158
Mackenzie Valley
Mackenzie Basin Impact Study 80, 167–72
pipeline 136
Mahar, D. 256, 257
Majone, G. 91
Malthus, Thomas 91
Manger, L. 246
Manne, A.S. 81
Marshall, P. 170
Martin, N. 277
Martinez-Alier, J. 33, 38, 42, 48, 55, 69, 71, 131, 247
Masuzumi, B. 168
materials flow patterns 218, 219–24
Matsuoka, Y. 81
Mauro, R. de A. 127
May, Peter H. 133
Maynard Smith, J. 214
Meadows, D.H. 80, 182, 216
Meadows, D.L. 80
Mendelsohn, R. 157
Menotti, V. 257
MERGE model 81
Midttun, A. 186
migration 144
Milchunas, D.G. 238
Miller, C. 261
Mills, B. 158
Minten, B. 257
Mintzer, I. 80
MIPS 70–71, 72, 74
Mississippi River flood control 135–6
MIT model 81
monetary valuation of environmental damage 34–6
Mongia, P. 276
Moran, D. 131
Moran, E. 256
Morgan, M.G. 81, 82, 91
Morita, T. 81, 82, 156
Morocco 247
Morton, S.R. 239
Mortsch, L. 158, 172
multicriteria evaluation 74
environmental policy and 56–8
Netherlands land-use conflict example 60–63, 211
Sicilian water management example 63–8
green national accounting and indices of sustainability 68–73
Munasinghe, M. 157
Munda, G. 43, 55, 56, 57, 58, 60, 66, 70, 217, 218
Munn, R.E. 80
mutual learning 29, 87
Nascimento, M.B. 260
Natenzon, C.E. 153
national income accounting, green 68–73
natural capital 69–70, 204
Nelkin, D. 20
Nelson, G.C. 257
Nelson, R.R. 214, 215
Netherlands ecological footprint 69, 72
land-use conflict in 60–63, 211
Neumann, J.E. 157
Neurath, Otto 56
Newby, H. 197
Newman, J. 276
Newton, J. 167
Niamir, M. 239, 245, 246, 248
Nijkamp, P. 64, 209, 212, 216, 217, 218, 219, 220, 223, 224, 225
Noël, J.-F. 47
non-equilibrium theory
arid ecosystems in Africa and 235–50
ecological indicators and monitoring 242–5
integrated assessment and monitoring 240–42
non-equilibrium versus equilibrium theory 236–40
social aspects 245–8
Nordhaus, W.D. 80, 81, 159
Nordhaus, W.W. 275
Norgaard, Richard B. 38, 39, 46, 214, 216
Novotny, P. 54
Noy-Meir, Immanuel 237, 238
nuclear waste 21–2
nutrition 151
O’Brien, K. 158
O’Connor, M. 33, 34, 36, 38, 39, 42, 43, 45, 47, 48, 49, 68, 131, 132, 247
Odum, Howard 71
O’Hara, F.M. 160
O’Neill, J. 43, 55
O’Neill, R.V. 257
opportunity costs 34, 36–40
Okschoor, J.B. 72
Ostrom, E. 135

Pagan, A. 279
Palo, M. 256, 257
Panayotou, S. 257
Panayotou, T. 130
Papp, D. 159
Paraguay–Paraná Hidrovia (waterway) project 119–38
assessment of effects 124–8
ecological 125–7
hydrological 124–5
land use and livelihoods 127–8
description of area 120–22
description of project 123–4
economic analysis 129–30
valuation
as institutional challenge 131, 134–7
participatory/conflict resolution framework for 130–34
Pareto-efficiency 35, 37
Parry, M. 155
Parson, E.A. 78, 80, 85, 86, 87, 90, 91, 96, 158
participatory action research (PAR) 165, 167–8
participatory methods
integrated assessment (IA) 85–8, 163
Paraguay–Paraná Hidrovia (waterway) project valuation 130–34
participatory rural appraisal (PRA) 163, 165
Passet, R. 71
Patterson, M. 283
Pearce, D.W. 69, 157, 204, 257
Peck, S.C. 81
peer community 59, 60
Peet, J. 39
Perrings, C. 204, 205
Pezzey, J. 38, 213
Pfaff, A. 257
Pielke, R. 158
Pimentel, D. 71, 256, 257
Pimm, S.L. 239
planning
collaborative, see Zudañez development plan

Index

economic 55–6
Poggiese, H.A. 144, 152
polluter pays principle (PPP) 35
Ponce, V.M. 123
Popp, D. 81
popular epidemiology movement 54
population 104, 143–4
Porter, R. 218
post-normal science 58, 153
complex systems and 53–4
poverty 133–4, 143
Prescott-Allen, R. 189
Pretty, J. 163
Price, L. 275, 277
PRICE model 81
pricing
hedonic pricing method of valuation 35
shadow prices 69–70
probabilistic modelling approach 82
production
of commodities 32
input–output model of impact on deforestation 254–70
literature review 256–8
model description 258–62
simulation results 262–9
iron and steel industry in US 282–3
Proops, J.L.R. 214, 215
quality
criteria in integrated assessment (IA) 93–6, 101–8
QUEST scenario generation system 82, 182–97
calculating indicator values 192–3
philosophy behind 186–8
presentation of indicators 193–4
selection of indicators 191–2
specific and general indicators 189–91
use 183–6
RAINS study 80, 81, 87
rationality 57–8
Ravetz, J.R. 19, 37, 53, 59, 73, 86, 89, 90, 91, 141, 237
Rayner, S. 19, 97
reductionism 55

Hussein Abaza and Andrea Baranzini - 9781840649130
Downloaded from Elgar Online at 11/30/2018 12:30:30PM
via free access
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rees, W. 72, 213</td>
</tr>
<tr>
<td>reflexivity 28–9, 55</td>
</tr>
<tr>
<td>regional sustainable development 211–13</td>
</tr>
<tr>
<td>Reilly, J.M. 80</td>
</tr>
<tr>
<td>Reis, E. 256</td>
</tr>
<tr>
<td>Repetto, R. 277</td>
</tr>
<tr>
<td>resource models 215</td>
</tr>
<tr>
<td>revealed-preference methods of valuation 35</td>
</tr>
<tr>
<td>Rezende, M.E. 260</td>
</tr>
<tr>
<td>Ricardo, David 17</td>
</tr>
<tr>
<td>RICE model 81</td>
</tr>
<tr>
<td>rights-based approaches to decision making 27–8</td>
</tr>
<tr>
<td>Rio Declaration 1</td>
</tr>
<tr>
<td>Risbey, J. 91, 93, 275, 276</td>
</tr>
<tr>
<td>risk, acceptibility of 19</td>
</tr>
<tr>
<td>Roberts, Marc C. 282</td>
</tr>
<tr>
<td>Robinson, J.B. 29, 90, 93, 183, 186, 188, 189, 195</td>
</tr>
<tr>
<td>Robinson, M.P. 165</td>
</tr>
<tr>
<td>Robirosa, M. 144</td>
</tr>
<tr>
<td>Roland-Holst, D. 257</td>
</tr>
<tr>
<td>Rolfe, C. 155</td>
</tr>
<tr>
<td>Rose, A. 210</td>
</tr>
<tr>
<td>Rosenberg, N.J. 158</td>
</tr>
<tr>
<td>Rothman, D.S. 165, 170, 175, 195</td>
</tr>
<tr>
<td>Rotmans, J. 78, 80, 81, 82, 83, 86, 87, 89, 92, 93, 97, 99, 103, 106, 107, 165, 175, 183, 241, 275</td>
</tr>
<tr>
<td>Roy, B. 58</td>
</tr>
<tr>
<td>Roy, J. 276</td>
</tr>
<tr>
<td>Rudel, T.K. 256</td>
</tr>
<tr>
<td>Russell, B. 28</td>
</tr>
<tr>
<td>Ruth, M. 86, 87, 209, 210, 214, 216, 241, 276, 277, 278, 282</td>
</tr>
<tr>
<td>Ryan, G. 42</td>
</tr>
<tr>
<td>Ryan, J. 165</td>
</tr>
<tr>
<td>Sachs, Ignacy 44</td>
</tr>
<tr>
<td>Sagawe, T. 257</td>
</tr>
<tr>
<td>Sagoff, M. 132</td>
</tr>
<tr>
<td>Sambrook, R. 257</td>
</tr>
<tr>
<td>Sampaio, R.S. 260</td>
</tr>
<tr>
<td>Samuels, Warren J. 48</td>
</tr>
<tr>
<td>Sathaye, J. 276, 277</td>
</tr>
<tr>
<td>scale, problems of 25–6</td>
</tr>
<tr>
<td>Schmidt-Bleek, F. 70</td>
</tr>
<tr>
<td>Schneider, S. 80, 90, 91</td>
</tr>
<tr>
<td>Schreider, R. 256, 257</td>
</tr>
<tr>
<td>Schumacher, K. 276, 277</td>
</tr>
<tr>
<td>Schütz, J. 42</td>
</tr>
<tr>
<td>Schwartz, M. 19</td>
</tr>
<tr>
<td>Schwartz, N.L. 218</td>
</tr>
<tr>
<td>science 16, 19</td>
</tr>
<tr>
<td>complex systems and 53–4</td>
</tr>
<tr>
<td>environmental policy and 53–4</td>
</tr>
<tr>
<td>post-normal 53–4, 58, 153</td>
</tr>
<tr>
<td>quality and 58–9</td>
</tr>
<tr>
<td>scientist–stakeholder collaboration in climate change integrated assessment (IA) 161–7</td>
</tr>
<tr>
<td>legacy of process 172–5</td>
</tr>
<tr>
<td>Mackenzie Basin Impact Study example 167–7</td>
</tr>
<tr>
<td>thermodynamics 207–10, 214</td>
</tr>
<tr>
<td>Scoones, I. 237, 239, 247</td>
</tr>
<tr>
<td>Selden, T. 72</td>
</tr>
<tr>
<td>Serafeldin, I. 182, 189</td>
</tr>
<tr>
<td>shadow prices 69–70</td>
</tr>
<tr>
<td>Sharp, L.A. 238</td>
</tr>
<tr>
<td>Shukla, P.R. 156, 169</td>
</tr>
<tr>
<td>Sicilian water management 63–8</td>
</tr>
<tr>
<td>Sierra, R. 257</td>
</tr>
<tr>
<td>Simon, H.A. 58</td>
</tr>
<tr>
<td>Smith, J.B. 209</td>
</tr>
<tr>
<td>Smith, V.K. 257</td>
</tr>
<tr>
<td>Smulders, S. 214</td>
</tr>
<tr>
<td>Snow, C.P. 16</td>
</tr>
<tr>
<td>social construction of knowledge 18</td>
</tr>
<tr>
<td>social organization 19</td>
</tr>
<tr>
<td>social science</td>
</tr>
<tr>
<td>descriptive approach 15, 16, 17</td>
</tr>
<tr>
<td>integration with interpretive approach 25–30</td>
</tr>
<tr>
<td>limitations of 18–25</td>
</tr>
<tr>
<td>interpretive approach 15, 16–18</td>
</tr>
<tr>
<td>integration with descriptive approach 25–30</td>
</tr>
<tr>
<td>socialist economics 55–6</td>
</tr>
<tr>
<td>socio-ecological solidarity, choices among different possibilities of 43–6</td>
</tr>
<tr>
<td>Socolow, R.H. 20–21</td>
</tr>
<tr>
<td>Socrates 58</td>
</tr>
<tr>
<td>Solow, R.M. 204, 213</td>
</tr>
<tr>
<td>Song, D. 72</td>
</tr>
<tr>
<td>Southgate, D. 257</td>
</tr>
<tr>
<td>Spash, C.L. 35, 36, 37, 137</td>
</tr>
</tbody>
</table>
Index

spatial aspects of ecological economics and sustainable development 210–13
Sporades Islands, ecological–economic study of 224–9
Stafford-Smith, D.M. 239
stakeholders
 scientist–stakeholder collaboration in climate change integrated assessment (IA) 161–7
 legacy of process 172–5
 Mackenzie Basin Impact Study example 167–72
Stallings, J. 257
Starreveld, P.F. 210
steady-state economy 204–5
steel industry, see iron and steel
STELLA programming language 278
Sterner, T. 73
Stiles, D. 239
strong sustainability 69–70, 204
Strzepek, K.M. 158
Sungsuwan, S. 257
sustainable development
 criteria for grounding of 1–2
 development of idea of 1
 distribution of sustainability 33, 42–3, 44, 45
 environmental valuation and 33, 41–3
 interpreting and modelling 203–5
 spatial aspects 210–13
Sustainable Society Project 183
Swallow, B. 237
Swart, R.J. 182
Swift, D.M. 237
Swift, J. 235
TARGETS project 81, 82, 87, 97–108
analytical quality 101–4
insights 99–101
methodological quality 104–7
usability 107–8
technical studies 20–21
Teisberg, T.J. 81
thermodynamics 207–10, 214
Thiele, R. 257
Thompson, M. 19, 97
Thorson, J.E. 136
Tinker, J. 189
Tirpak, D.A. 80
Tognetti, S.S. 247
Tol, R. 158
Tole, L. 257
Toman, M.A. 214, 218
total environmental assessment 19
Toth, F.L. 78, 86, 87, 90, 157
Tothill, J.C. 238
Toulmin, S. 29
tourism
 Paraguay–Paraná Hidrovia (waterway) project and 122
 Sporades Islands 224, 225
traditional ecological knowledge (TEK) 163, 167
transport, see Paraguay–Paraná Hidrovia (waterway) project
travel cost method of valuation 35
Tucker, C.J. 239
Turner, B.L. 80
Turner, R.K. 69, 207
Turner, R.S. 160
ULYSSES project 86, 87, 88, 165
Umaña, A.F. 210
uncertainty 82
United Kingdom, NW England QUEST model 183
United Nations 73, 104, 144, 155, 156
United States of America
 chemical weapons 22–4
 climate change impact in 157
 Colorado river 137
 Desert Biome project 235–6
 energy use and emissions in iron and steel industry 275–89
 Everglades 137
 Mississippi River flood control 135–6
 nuclear waste issue in 21–2
 popular epidemiology movement 54
 utility approaches to decision making 27–8
Valle, L. 260
valuation, see economic valuation;
 environmental valuation values
 systems of 19
 treatment of 26–7
van Asselt, M.B.A. 78, 81, 82, 83, 86, 90, 91, 93, 97, 99, 106, 165, 175, 241
van Bers, C. 183
van Daalen, C.E. 87
van den Bergh, J.C.J.M. 207, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 220, 223, 224, 225, 226
van den Fisher, K. 80
van der Sluijs, J.P. 80
van Ierland, E.C. 210
van Lierop, W.F.J. 214, 216
van Notten, P. 83
Veendorp, E.C.H. 209
Verbruggen, H. 213
VISIONS project 86, 87, 91–2
Vitousek, Peter 70
von Amsberg, J. 257
von Lierop, W.F.J. 214, 216
van Notten, P. 83
Vedeld, P.O. 207
Vellinga, P. 157
Wackernagel, M. 213
Wade, J.S. 120
Wajsmans, N. 257
Walker, B.H. 237, 238
Westoby, M. 237, 238
Weyant, J. 80, 81, 156
Wiebelt, M. 257
Wildavsky, A. 19, 97
wildlife
Paraguay–Paraná Hidrovia (waterway) project and 120, 121–2, 125–7
Sporades Islands 224–5
Wildavsky, A. 19, 97
Williams, M.A.J. 239
Windscale Inquiry 21
Wing, I. Sue 276
Winter, S. 215
Wittgenstein, C. 38
World Bank 133
World Commission on Development and the Environment (WCED) 1, 203
World Model 182
Worrell, E. 277
WRR study 85
Wynne, B. 18–19, 21, 131
Weak sustainability 69, 204
Weber, S. 209
Weibel, J.W. 214
Weibull, J.W. 214
Weierb, G. 173
Yang, Z. 81, 275
Yates, D.N. 158
Yin, Y. 170
Young, J.T. 210
Young, O. 174
Zdan, T. 170
Zimbavwe 247
Zucchetto, J. 216
Zudañez development plan 141–53
description of area 142–4
methodology and techniques 144–9
results 149–51

Hussein Abaza and Andrea Baranzini - 9781840649130
Downloaded from Elgar Online at 11/30/2018 12:30:30PM via free access