Index

additive approach to research 39–40
Agenda 21 53
aggregation of data, and values 30–31
Apthorne, R. 57, 58
Arrow, K.J. 82, 129
Arthur, W.B. 181
assets, natural see natural assets

Bailes, K. 59
Becker, E. 56, 104, 105
Becker, G.S. 182
behavioural economics
 and environmental valuation 77–85
 see also economic psychology
Benartzi, S. 84
Bennett, E.M. 186
Bennett, J. 55
Bentham van den Bergh, G. van 57, 58
Bergh, J.C.J.M. van den 134
Berndt, E.R. 152–3
biodiversity
 protection priorities 131–2
 value of 31–2
Blakie, P. 62
Bookchin, M. 59, 63–4
boreholes, effect on cattle stocking 167
Botswana rangelands, modelling 147–8, 159–71
Boyden, S. 59, 61
Bromley, D.W. 190
Brookfield, H. 62
Bryant, R. 62

Caitcheon, G. 187
Capalbo, S.M. 157
capital–labour–energy trends 153–9
cattle stocking, Botswana rangelands 163–71
CBA (cost–benefit analysis) and nature policy 127–8
certification and green products 97
charitable giving 94
Clark, J. 63
coevolution of values 32–3
coffee production-to-consumption system 201–6
cointegration modelling 147
Collier, P. 161
Collingwood, R. 55
Coming Anarchy, The 67
Common, M. 60
consumers, green motivation 96–8
context dependence of economic values 78–84
contingent valuation method, natural assets 138
control costs, use of material budgets 187–8
control targets, use of material budgets 184–7
Coon Creek, catchment management 188–9
Costanza, R. 2, 132
cost–benefit analysis, nature policy 127–8
Crotty, M. 37
CVM (contingent valuation method), natural assets 138

Dahlberg, K. 55
Dalby, S. 67
Daly, H. 24, 28
Darby, J. 153
Dasgupta, P. 82
David, P. 181
De Jong, P. 155
decoupling of economic output and resources 152
delays in dynamic systems 183
developing countries, natural resource protection 136–7
development studies and sustainability 57–9
Diamond, J. 59
Diamond, P.A. 84
disciplinary research 39

211
discounting, future gains and losses 82–4
Dovers, S. 55, 59–60
Drabek, A. 57
Dryzek, J. 66
ecofeminism 67
ecological economics 89–91
and behavioural economics 77–85
and economic psychology 94–9
and sustainability 60–61
ecological-economic integration for nature policy 127–35
ecological and social sustainability 193–208
economic instruments
and environmental policy 124–5
non-point pollution control 189–90
economic psychology 91–4
and ecological economics 94–9
see also behavioural economics
economic value of gains and losses 78–84
economics, ecological see ecological economics
ecophilosophy 63
ecosystem health 28
ecosystem pricing 14–16
Eden, S. 68
employment, green motivation 96
energy efficiency trends, modelling 151–9
using Kalman filter 153–9
energy purchase, green motivation 97
entropy principle and production theory 16–17
environmental auditing 198
environmental concern 96–9
environmental economics 90
and nature policy 121–2
environmental history and sustainability 59–60
environmental impact and trade 195
environmental policy, evolutionary approach 18–19
environmental reporting 198
environmental resources see natural assets
Environmental sociology 66
environmental valuation 14–16, 77–84
epistemology and environmental policy-making 19–20
equity 31
erosive land uses, material budgets 184–6
ethical investment 98
Etzioni, A. 93
Evans, R. 188
evolutionary approach to environmental policy 18–19
exploratory approach to research 39–42
externalities and environmental policy 124
factor augmentation trends 150
ergy efficiency 154–5
Feachem, R. 61–2
feedbacks, dynamic systems 179–83
Fenneman, N. 69
fertilizer input, Lake Mendota 186–7
Fisher, J.V. 128–9
flows analysis, production-to-consumption system 202–7
flows, dynamic systems 178–9
future gains and losses, discounting 82–4
Gadgil, M. 64
gains, economic value of 78–84
GATT and environmental impact 195
GEF (Global Environmental Facility) 140–41
genotype, economic systems 19
Geographe Bay, N and P reduction 188
geography and sustainability 68–70
Georgescu-Roegen, N. 16, 177
giving 94
global benefits of nature policy 135–7
global environment studies 64–5
Global Environmental Facility 140–41
Gober, P. 69
green motivation 96–9
Greenberg, J. 62
Griffin, R.C. 190
Guha, R. 63, 64
habitat fragmentation 126
Haneman, W.M. 85–6
Hannigan, J. 66
Harrison, P. 53
Harrold, J. 57–8
Hartshorne, R. 68
Harvey, A.C. 153
hedonic pricing method, natural assets 137–8
Heide, C.M. van der 132, 134
Heidegger, M. 21
Holt-Jensen, A. 69
Horan, R.D. 189–90
house purchase, green motivation 97–8
Howarth, J. 20–21
Howarth, R.B. 31
HPM (hedonic pricing method), natural assets 137–8
human ecology 61–2
incentives, natural resource protection 136–7, 141
increasing returns see positive feedback
information flows analysis 204–6
informational feedback 181
instruments economic see economic instruments
policy, choice as interdisciplinary focus 111–13
integrated spatial modelling, and nature policy 132–4
integration and policy orientation 102–15
and sustainability 102–5
trade and sustainability 193–208
integrative report cards 197–202, 206–7
integrative research 35–49
interdisciplinarity and sustainability 1–5, 53–71, 102–5
intergenerational transfers 94
international trade and sustainability 193–208
interpersonal utilities 94
interpretive methodologies 37
inter-temporal giving 94–5
investment, green motivation 98
iterative research design 44–5
Jahn, T. 56
Jervis, R. 181, 182
job choice and green motivation 96
Jorgensen, D.W. 152
Kalman filter 147
energy efficiency trend estimation 153–9
and state space models 150–51
Kaplan, R. 67
Katona, G. 93–4
Kaufmann, R.K. 171
Kim, H.Y. 156
King, J. 2
Kinzig, A.P. 38
Kneese, A.V. 177, 180
knowledge and environmental issues 19–20
Krahl, A. 57, 58
Krutilla, J.V. 128–9
Krutilla–Fisher algorithm and nature policy 128–9
Kuhn, T.S. 181
Lake Mendota, phosphorus budget 186–7
Lal, D. 161
Land degradation and society 62
landscape ecology 133
LCA (life cycle assessment) 198
Lea, S.E.G. 92
Lee, K.N. 113
Leiss, W. 59
Leys, C. 58
life cycle assessment 198
Liverman, D. 69
local benefits of nature policy 135–7
local environment studies 64–5
losses, economic value of 78–84
Marshall, P. 153
Martinez-Alier, J. 61
material budgets 176–83
uses of 183–90
May, P. 113
McNaughton, P. 66
McNeill, D. 57
Mellors, B.A. 78
Merchant, C. 59
Merleau-Ponty, M. 21
methodologies, research 37
MFP (multifactor productivity) 149
modelling Botswana rangelands 147–8, 159–71
and valuation, natural assets 139
monetary flows analysis 203–4
monitoring, use of material budgets 188–9
Moral Dimension, The 93
Morrow, R. 62
multifactor productivity 149
Murrumbidgee River, phosphorus budget 187
Myers, N. 56
National Carbon Accounting System 39
natural assets
property rights, lack of 124
protection incentives 136–7, 141
quality, modelling 147
valuation 137
nature loss 125–7
nature policy 121–35
benefits of 135–9
and environmental policy 123–7
integrated approaches 127–35
negative externalities and environmental policy 124
negative feedback 179–81
normative argumentation 62
nutrient emission reduction using material budgets 188
O’Connor, M.P. 146, 171
operational goal of sustainability 18
operationalization of research design 44
Our Common Future 55
Ozanne L.K. 97
panarchy 183
Park, T. 62
path dependence 181–2
Perrings, C.A. 146, 160, 162, 171
personal giving 94
phenomenology and human-nature interactions 20–21
phenotype, economic systems 19
phosphorus budgets 186–7
policy cycles 109–11
policy instrument choice as focus for interdisciplinarity 111–13
policy interventions using material budgets 176–91
policy learning 113–14
policy monitoring 113
policy orientation as integrative strategy 102–15
policy processes 107–8
political ecology 62–3
pollutants and waste management 180–81
Ponting, C. 59
positive feedback 179–81
preanalytic visions 24–32
Primack, R.B. 132
problem-solving research 39
production-to-consumption systems and sustainability 194–6
production and process methods and environmental impact of trade 195–6
production theory and entropy principle 16–17
Proops, J. 18
proximate causes, nature loss 125–6
psychology, economic see economic psychology
Putnam, R.D. 178
quasi-option value and nature policy 129
Raaij, W.F. van 92
radical ecophilosophy 63
rainfall, effect on cattle stocking 166, 168–71
rangelands, Botswana, modelling 147–8, 159–71
Reboratti, C. 65
recycling feedback 181
Redclift, M. 66
reductionist approach to research 36–8
Rees, W. 61
remediation costs 187–8
remediation targets 184–7
renewable energy, conflict with nature policy 123
research approaches 36–41
residual diagnostics, Botswana rangelands model 163–4
residuals management system 180–81
rights markets in natural resources 107
river catchments, material budgets 184–6
Rose, G. 56
safe minimum standards approach and nature policy 130–31
sediment, river catchments, material budgets 184–6
Shortle, J.S. 189–90
Sidorchuk, A.Y. 184, 186
Slade, M.E. 153
Smith, N. 69
social capital 178
social constructionism 66
social and ecological sustainability 193–208
social ecology 63–4
socio-economics 93
soil conservation and coffee production 201
spatial nature of ecological processes 126
state space models and Kalman filter 150–51
Steiner, D. 61–2, 63
Sterman, J.D. 179
Stern, D.I. 155, 162, 171
stochastic technological change, modelling 146–71
stocks, dynamic systems 178–9
Summers, L. 31
sustainability
and geography 68–70
indicators 198–9
and interdisciplinarity 1–5, 53–71, 102–5
and international trade 193–208
problems 105–8
report cards see integrative report cards
and sustainable development 54–5
and teleology 18

Sustainability and the social sciences 56
sustainable development and sustainability 54–5
sustainable housing 97
sustainable management 65

Tarde, G. 93
taxes and emission control 190
Taylor, G. 69
TCM (travel cost method), natural asset valuation 137
technological change 148–50
modelling Botswana rangelands 159–71
teleology and sustainability theory 18
Tetlock, P.E. 78
TFP (total factor productivity) 149–50

Thaler, R.H. 84
tools for integrating trade and sustainability 196–206
total factor productivity 149–50
Towards a Sociology of Nature 66
Toye, J. 57
Toynbee, A. 55
trade, international, and sustainability 193–208
transdisciplinary exploratory research 39, 42–9
transformative potential 4, 104
travel cost method, natural asset valuation 137
Turner, B. 69
Turner, M.G. 133
Turner, R.K. 80

UN Conference on Environmental and Development 53
underlying causes, nature loss 125
Urry, J. 66
valuation, environmental 77–84, 137–9
and behavioural research 84–5
and integrated modelling 139
values, and preanalytic visions 24–32
van Benthem van den Bergh, G. 57, 58
van den Bergh, J.C.J.M. 134
van der Heide, C.M. 132, 134
van Raaij, W.F. 92
van der Veeren, R. 188
Vellinga, P. 177
Wackernagel, M. 61
Waldrop, M.M. 176, 181
Wallbrink, P.J. 187
Wasson, R.J. 184, 186
waste management system 180–81
Webley, P. 98
Weitzman, M.L. 131–2
Weitzman ranking criterion, biodiversity protection 131–2
Wilcoxon, P.J. 152
willingness-to-accept (WTA) 79–84
willingness-to-pay (WTP) 79–84
Wren-Lewis, S. 153
Young, M.D. 188
Zimmerman, M. 63