1.1 Assessment of global warming damage in the United States 17
1.2 Estimates of the regional impacts of climate change 19
1.3 Estimates of the marginal damage costs of carbon dioxide emissions 25
3.1 Some impacts on water resources expected with changing climate 55
3.2 Socio-economic indicators 58
3.3 Annual water resources in some Middle Eastern countries 59
3.4 Current and projected water demand for the region 60
3.5 Climate change parameters 61
3.6 Socio-economic implications of climate change impacts on water resources in some Middle Eastern countries 65
3.7 Technical adaptation measures and non-conventional water resources 69
4.1 Characteristics and indicators of the case study countries 85
4.2 Correlation coefficients between dryland and irrigated wheat yield and current observed climate anomalies (1971–98); Zamora and Almeria 85
5.1 Ranges of estimated data on sectoral use of water resources, and supply–demand 96
5.2 Overview of the status of water pollution in Lebanon, reflecting on its quality 98
6.1 Descriptive features of the areas under study 116
6.2 The gross margin function 117
6.3 Regression results for the functional relation between farmers’ allotments and water stock levels 118
6.4 Statistical characterisation of inflows in each reservoir 119
6.5 Characterisation of the steady state (long-term stochastic equilibrium) 121
6.6 Expected gross margin for four climatic scenarios in the Bajo Guadalquivir 122
6.7 Expected gross margin for four climatic scenarios in the El Viar 122
6.8 Probabilities of not suffering economic losses in the different scenarios 126
7.1 GDP, agriculture ratio to GDP, AGDP per agricultural employee and AGDP growth rates 135
7.2 Mean yield of different crop types 1979–98 136
7.3 Cereal balances for the Near East/North Africa region 137
7.4 The pairwise comparison approach 150
7.5 An example of a comparison matrix 150
7.6 Agricultural sector driving forces at regional level 152
7.7 Agricultural production profitability 152
8.1 Models considered for integration in MODULUS; spatial resolution as specified by the developers 172
8.2 Models considered for integration in MODULUS; temporal resolution as specified by the developers 173
9.1 Crop groups 205
9.2 Total annual damage by crop groups, scenario I 206
9.3 Marginal revenue of water by crop groups 208
9.4 Annual damage by crop group, scenario III 209
9.5 Total damage by scenario 210
10.1 Waste management alternatives 216
10.2 Investment costs for GHG mitigation by various waste management alternatives 219
11.1 Major potential impacts identified in the studies 232
11.2 Major potential response measures identified in the studies 236
12.1 Vulnerability classes developed and used in the Common Methodology 250
12.2 Results from impact assessments using the IPCC Common Methodology 252
12.3 Qualitative synthesis of direct socio-economic impacts of climate change and sea-level rise on a number of sectors in coastal zones 254
12.4 Three levels of assessment in coastal zones, showing the respective requirements and the factors to be considered 257
12.5 Examples of the four different types of scenarios that can be used in coastal vulnerability assessment 258
12.6 Summary of the available methods to assess biogeophysical effects of sea-level rise 265
12.7 Examples of important technologies to protect against, retreat from or accommodate sea-level rise and other coastal impacts of climate change 274
12.8 Examples of important technologies to collect data, provide
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Definition of the variables used</td>
<td>296</td>
</tr>
<tr>
<td>14.2</td>
<td>Regression results for the global and national tourist destination models</td>
<td>297</td>
</tr>
<tr>
<td>14.3</td>
<td>Important correlation coefficients in the aggregated dataset</td>
<td>299</td>
</tr>
<tr>
<td>14.4</td>
<td>The countries included in the analysis</td>
<td>300</td>
</tr>
<tr>
<td>14.5</td>
<td>Log-linear regression of climate on the number of visitors in a country: a comparison between Dutch and British tourists</td>
<td>303</td>
</tr>
<tr>
<td>14.6</td>
<td>Component matrix: choice of Dutch summer tourists</td>
<td>305</td>
</tr>
<tr>
<td>14.7</td>
<td>Component matrix: choice of Dutch winter tourists and some factors for all tourists</td>
<td>307</td>
</tr>
<tr>
<td>14.8</td>
<td>Weather characteristics in the Netherlands</td>
<td>309</td>
</tr>
<tr>
<td>14.9</td>
<td>Number of observations for winter and summer tourists</td>
<td>309</td>
</tr>
<tr>
<td>14.10</td>
<td>Regression results for the micro model for choice of holiday activity in 1992</td>
<td>312</td>
</tr>
</tbody>
</table>

BOX

| 12.1 | The role of GIS in coastal risk assessment, adaptation and management | 270 |